电磁场与电磁波复习资料
电磁场与电磁波期末复习知识点归纳课件

01
02
03
无线通信
电磁波用于无线通信,如 手机、无线网络和卫星通 信。
雷达技术
电磁波用于探测、跟踪和 识别目标,广泛应用于军 事和民用领域。
电磁兼容性
电磁波可能干扰其他电子 设备的正常工作,需要采 取措施确保兼容性。
THANKS
感谢观看
03
高强度的电磁波照射会使生物体局部温度升高,可能造成损伤。
对材料的影响
电磁感应
电磁波在导电材料中产生感应电流,可能导致材料发热或产生磁场。
电磁波吸收与散射
某些材料能吸收或散射电磁波,用于制造屏蔽材料或隐身技术。
电磁波诱导材料结构变化
长时间受电磁波作用,某些材料可能发生结构变化或分解。
对信息传输的影响
电磁场与电磁波期末复习知识 点归纳课件
ቤተ መጻሕፍቲ ባይዱ
目录
• 电磁场与电磁波的基本概念 • 静电场与恒定磁场 • 时变电磁场与电磁波 • 电磁波的传播与应用 • 电磁辐射与天线 • 电磁场与电磁波的效应
01
电磁场与电磁波的基本概 念
电磁场的定义与特性
总结词
描述电磁场的基本特性,包括电场、磁场、电位移矢量、磁感应强度等。
电磁波的折射
当电磁波从一种介质传播到另一种介质时,会发生折射现象,折射角与入射角的关系由斯涅尔定律确 定。
电磁波的散射与吸收
电磁波的散射
散射是指电磁波在传播过程中遇到障碍物时,会向各个方向散射,散射强度与障碍物的 尺寸、形状和介电常数等因素有关。
电磁波的吸收
不同介质对不同频率的电磁波吸收能力不同,吸收系数与介质的电导率、磁导率和频率 等因素有关。
微波应用
微波广泛应用于雷达、通信、加热等领域, 如微波炉利用微波的能量来加热食物。
《电磁场与电磁波》必考复习题(2013年)有答案

为体积 V 内总的损耗功率。
(E H) dS ——单位时间内通过曲面 S
S
进入体积 V 的电磁能量。
物理意义: 在单位时间内, 通过曲面 S 进入体积 V 的电磁能量等于体积 V 中 所增加的电磁场能量与损耗的能量之和——能量守恒! 。 8.什么是波的极化?说明极化分类及判断规则。 答:波的极化:在电磁波传播空间给定点处,电场强度矢量的端点随时间变化的 轨迹, 或者说是在空间给定点上电场强度矢量的取向随时间变化的特性分为线极 化、圆极化、椭圆极化三种。 判断规则:根据两正交分量的振幅或/和两者初相角的相对大小来确定,如 果 y x 0或 ,则为线极化;若 E ym E xm ,且 y x / 2 , 则是圆极化波;其它情况是椭圆极化波。 9.分别定性说明均匀平面波在理想介质中、导电媒质中的传播特性。 答:理想介质中的均匀平面波的传播特点: 电场、磁场与传播方向之间相互垂直,是横电磁波(TEM 波) ; 无衰减,电场与磁场的振幅不变; 波阻抗为实数,电场与磁场同相位; 电磁波的相速与频率无关,无色散; 电场能量密度等于磁场能量密度,能量的传输速度等于相速。 导电媒质中均匀平面波的传播特点: ●电场强度 E 、 磁场强度 H 与波的传播方向相互垂直, 是横电磁波 (TEM 波) ; ●媒质的本征阻抗为复数,电场与磁场相位不同,磁场滞后于电场 角; ●在波的传播过程中,电场与磁场的振幅呈指数衰减; ●电磁波的相速不仅与媒质参数有关,而且与频率有关 (有色散) ; ●平均磁场能量密度大于平均电场能量密度。 10.简要说明行波、驻波、行驻波之间的区别。 答:行波的振幅不变,其驻波比为 1;驻波的振幅最小值是零,其驻波比为无穷
电磁场与电磁波复习题

第二章(选择)1、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将( A )A升高B降低C不会发生变化D无法确定2、下列关于高斯定理的说法正确的是(A)A如果高斯面上E处处为零,则面内未必无电荷。
B如果高斯面上E处处不为零,则面内必有静电荷。
C如果高斯面内无电荷,则高斯面上E处处为零。
D如果高斯面内有净电荷,则高斯面上E处处不为零3、以下说法哪一种是正确的(B)A电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B电场中某点电场强度的方向可由E=F/q确定,其中q0为试验电荷的电荷量,q0可正可负,F为试验电荷所受的电场力C在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D以上说法都不正确4、当一个带电导体达到静电平衡时(D)A表面曲率较大处电势较高B表面上电荷密度较大处电势较高C导体内部的电势比导体表面的电势高D导体内任一点与其表面上任一点电势差等于零5、下列说法正确的是(D)A场强相等的区域,电势也处处相等B场强为零处,电势也一定为零C电势为零处,场强也一定为零D场强大处,电势不一定高6、就有极分子电介质和无极分子电介质的极化现象而论(D)A、两类电介质极化的微观过程不同,宏观结果也不同B、两类电介质极化的微观过程相同,宏观结果也相同C、两类电介质极化的微观过程相同,宏观结果不同D、两类电介质极化的微观过程不同,宏观结果相同7、下列说法正确的是( D )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷B闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零C闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。
D闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零8、根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( D )A若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷B若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零C若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷D介质中的电位移矢量与自由电荷和极化电荷的分布有关9、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将(A)A升高B降低C不会发生变化10、一平行板电容器充电后与电源断开,再将两极板拉开,则电容器上的(D)A、电荷增加B、电荷减少C、电容增加D、电压增加(判断)1、两个点电荷所带电荷之和为Q,当他们各带电量为Q/2时,相互间的作用力最小(×)2、已知静电场中某点的电势为-100V,试验电荷q0=3.0x10-8C,则把试验电荷从该点移动到无穷远处电场力作功为-3.0x10-6J (√)3、电偶极子的电位与距离平方成正比,电场强度的大小与距离的二次方成反比。
电磁场电磁波复习重点

电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积F.dS定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
电磁场与电磁波总复习

一、 单项选择题1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律 A B B A ⨯=-⨯B. 分配率 ()A B C A B A C ⨯+=⨯+⨯C. 结合率D. 以上均不满足 2. 下面不是矢量的是( C )A. 标量的梯度B. 矢量的旋度C. 矢量的散度D. 两个矢量的叉乘 3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量 4. 矢量场的散度在直角坐标下的表示形式为( D )A .A A A x y z ∂∂∂++∂∂∂B .y x z x y z A A Ae e e x y z ∂∂∂++∂∂∂C .x y z A A A e e e x y z ∂∂∂++∂∂∂ D . y x zA A A xy z ∂∂∂++∂∂∂ 5. 散度定理的表达式为( A )体积分化为面积分 A. sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰Ò B.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰Ò D.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò 6. 斯托克斯定理的表达式为(B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC.()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ 7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A.()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B. ()0u ∇∇=g ;C. ()0A ∇∇⨯=g ;D. ()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
电磁场期末复习_计算题

②电场、磁场强度复矢量
解: ① kex3ez4, k5, ek ex0.6ez0.8
k, 53108 1.5109rad/s
c
f 7.5108Hz, 20.4m
2
k
② E H x x,,z z e 0y H 3 1 x,e z j (e 3x k4 z)(A e x/0 m .8,e z0 .6 0) 41e0 2 j (3x 0 4z)V /m
求导线产生的磁场;线圈中的感应电动势。
解: ② CH dli HeI02 co ts(A /m )
id
b a
磁感应强度为
Be
I0cost 2
(T)
SB d sd dbI0 2 c o ta sd 2 I 0 aln d dbco ts
故感应电动势为 d d tI2 0 aln d dbsi n t(V )
Jd D t r0 E m s itn 8 1 31 6 1 9 0 2 16E 0 m s itn 4 .5 1 3 0 E m si2 n 1 (6t0 )
8
电磁场与电磁波
2014复习资料
8. 在E 理z,想t介 质e x (4 εr=c 2.0 25o ,μtrs =-1))k 中(均已z 匀知平该面平波面电波场频强率度为瞬10时G值Hz为, :
8. 在E 理z,想t介 质e x (4 εr=c 20 .25o ,μtrs =-1))k ( 中已均z 知匀该平平面面波波电频场率强为度1瞬0G时H值z, 为:
③求磁场强度瞬时值④平均坡印廷矢量。
解: ③ r 120 1 80 ,
r
2 .25
Hz , t
ey
40
cos(
t-kz
4
高中物理经典复习资料:电磁场和电磁波
【基础知识归纳】大小和方向都做周期性变化的电流叫做振荡电流.能产生振荡电流的电路叫振荡电路,L C 电路是最简振荡电路中产生振荡电流的过程中,线圈中的电流、电容器极板上的电量及其与之相联系的磁场能、1.振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能和磁场能的周期性2.振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零;电路中的电流和磁场能均增大,直到最大值.充电时,情况相反.电容器正反向充放电一次,便完成一次振荡的全过程.图13—2—1图13—2—13.周期和频率:电磁振荡完成一次周期性变化所用的时间叫做电磁振荡的周期.1 s 内完成电磁振荡的次数叫做电磁振荡的频率.对LCT =LCπ2 f =LCπ21三、电磁场和电磁波1(1(2)不仅电流能够产生磁场,变化的电场也能产生2变化的电场和磁场总是相互联系的,形成一个不可分割的统一体,即为电磁场,电磁场由近及远的传3在真空中,任何频率的电磁波的传播速度都等于光速c =3.00×108 m/s .其波速、波长、周期频率间关系为:c =Tλ=f λ(1)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验成功的证实了电磁波的存在. (2)在电磁波中,电场强度和磁感应强度是互相垂直的,且都和电磁波的传播方向垂直,所以电磁(3)电磁波的(41.调制:在无线电应用技术中,首先将声音、图象等信息通过声电转换、光电转换等方式转为电信号,这种电信号频率很低,不能用来直接发射电磁波.把要传递的低频率电信号“加”到高频电磁波上,1.电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最2.调谐:调谐电路的固有频率可以在一定范围内连续改变,将调谐电路的频率调节到与需要接收的某个频率的电磁波相同,即,使接收电路产生电谐振的过程叫做调谐.3.检波:从接收到的高频振荡中分离出所携带的信号的过程叫做检波.检波是调制的逆过程,也叫4.无线电的接收:天线接收到所有的电磁波,经调谐选择出所需要的电磁波,再经检波取出携带的电视系统主要由摄像机和接收机组成.把图象各个部位分成一系列小点,称为像素,每幅图象至少要有几十万个像素.摄像机将画面上各个部分的光点,根据明暗情况逐点逐行逐帧地变为强弱不同的信号电中国电视广播标准采用每1 s传送25帧画面,每帧由625雷达是利用无线电波来测定物体位置的无线电设备,一般由天线系统、发射装置、接收装置、输出装【方法解析】麦克斯韦电磁理论是理解电磁场和电磁波的关键所在,应注意领会以下内容:变化的磁场可产生电场,产生的电场的性质是由磁场的变化情况决定的,均匀变化的磁场产生稳定的电场,非均匀变化的磁场产生【典型例题精讲】[例1]L C振荡电路中,某时刻磁场方向如图13—2—2所示,则下列说法错误的是图13—2—2ABCD.若电容器【解析】先根据安培定则判断出电流的方向,若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B叙述正确,由楞次定律知D叙述亦正确.因而错误选项只有C【思考】(1)若磁场正在增强,则电场能和磁场能是如何转化的?电容器是充电还是放电?线圈两端的电压是增大还是减小?(2)若此时磁场最强(t=0),试画出振荡电流i和电容器上板带电量q随时间t变化的图象?(3)若使该振荡电路产生的电磁波的波长更短些,可采取什么措施?(包括:线圈匝数、铁芯、电介【思考提示】(1)磁场增强,磁场能增大,电场能减小,电容器放电,电容器两端电压降低,线圈(2LC,为减小λ,需减小L或C.(3)根据λ=cT和T=2π【设计意图】[例2]某电路中电场随时间变化的图象如图13—2—3所示,能发射电磁波的电场是图13—2—3【解析】变化的电场可产生磁场,产生的磁场的性质是由电场的变化情况决定的.均匀变化的电场图A中电场不随时间变化,不会产生磁场.图B和图C中电场都随时间做均匀的变化,在周围空间产生稳定的磁场,这个磁场不能再激发电场,所以不能激起电磁波.图D中电场随时间做不均匀的变化,能在周围空间产生变化的磁场,而这磁场的变化也是不均匀的,又能产生变化的电场,从而交织成一个不【设计意图】通过本例说明形成【达标训练】1.建立电磁场理论的科学家是_______.用实验证明电磁波存在的科学家是_______【答案】 麦克斯韦2 ABCD .电磁波的传播速度总是3.0×108m/s【答案】B3A .波长和频率BC .波长和波速D【答案】C4A .①③BC .①④D【答案】A5.关于电磁波,下列说法中正确的是 ABC.电磁波由真空进D【解析】 任何频率的电磁波在真空中的传播速度都是c ,故AB 都错.电磁波由真空进入介质,波速变小,而频率不变,C对.变化的电场、磁场由变化区域向外传播就形【答案】C6.无线电广播的中波段波长的范围是187 m ~560 m ,为了避免邻近电台的干扰,两个电台的频率范围至少应差104 Hz,则在此波段中最多能容纳的电台数约为多少个【解析】f max =1871038min⨯=λcHz =1.6×106Hzf min =5601038max⨯=λcHz =0.54×106Hzn =466min max 101054.0106.1⨯-⨯=-f f f ∆=106【答案】1067.某收音机接收电磁波的波长范围在577 m 到182 m【解析】 根据c =λff 1=57710381⨯=λcHz =5.20×105Hzf 2=18210382⨯=λcHz =1.65×106Hz所以,频率范围为5.20×105 Hz ~1.65×106Hz【答案】 5.20×105 Hz ~1.65×106Hz8.关于LCA BC D【答案】9.L C 振荡电路中,某时刻的电流方向如图13—2—4所示,则下列说法中正确的是A BCD .【答案】D10.在L C 振荡电路中,电容器C 的带电量随时间变化的图象如图13—2—5所示,在1×10-6 s 到2×10-6s 内,关于电容器的充(或放)电过程及因此产生的电磁波的波长,正确的结论是A .充电过程,波长为1200 m B .充电过程,波长为1500 m C .放电过程,波长为1200 m D .放电过程,波长为1500 m【解析】 在1×10-6s 到2×10-6s 内,电容器带电量增大,属充电过程.产生的电磁波周期T =4×10-6s ,波长λ=cT =3×108×4×10-6 m =1200 m【答案】 A11.L C 振荡电路中,某时刻磁场方向如图13—2—6所示,则下列说法错误的是图13—2—6A B C D【解析】 若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A 正确.若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B 正确,由楞次定律知D【答案】12.在L C 振荡电路中,电容C 两端的电压U C 随时间变化的图象如图13—2—7所示,根据图象可以确定振荡电路中电场能最大的时刻为_______,在T /2~3T /4时间内电容器处于_______状态,能量转化情况是_______【解析】 电容器两极板间电压最大时,电场能最大,由图可知电场能最大时刻为0,2T ,T .在2T ~43T 时间内,两极板间电压变小,电容器处于放电状态,电场能正转化为磁场能.T【答案】0,2,T;放电;电场能转化为磁场能。
电磁场与电磁波知识点总结
电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
电磁场与电磁波期末考试题库
电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。
2.静电势能的单位是\\\\。
3.感应电场的方向与引起它的磁场的变化方式\\\\。
4.麦克斯韦方程组包括\\\_\_个方程。
三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。
2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。
3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。
四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。
以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。
《电磁场与电磁波》复习题
2016年《电磁场与电磁波》复习题一、选择题1.已知矢量()()()2222x y z E e x axz e xy by e z z czx xyz =++++-+-,试确定常数a 、b 、c ,使E 为无源场【 】。
A .2,1,2a b c ===-B .2,1,2a b c =-==-C .2,1,2a b c ==-=-D .2,1,2a b c ===2.在两种媒质的分界面上,设n e 和t e 分别为界面的切向和法向,则电场1E 和2E 满足的关系式为___________。
【 】A 12()0n e E E ⨯-=B 12()0n e E E ∙-=C 12()0t e E E ∙-=D 12()0t eE E ⨯-=3. 在圆柱坐标系中,三个相互正交的坐标单位矢量为e ρ、e φ、z e ,其中为常矢量单位矢量为【 】。
A .e ρB .e φC .z eD .都不是4. 已知()()22222/x y z E e xyz y e x z xy e x y V m=-+-+,则点()2,3,1P -处E ∇的值为【 】。
A .-10B .5C .10D .-55.同轴线的内导体半径为1r ,外导体的内半径为2r ,内外导体间填充介电常数为0r εεε==的均匀电介质,则同轴线单位长度的电容C 为_________。
【 】 A 122ln(/)r r πε B 212ln(/)r r πε C 122ln(/)r r r πε D 212ln(/)r r r πε 6.已知标量函数2u x yz =,则u在点(2,3,1)处沿指定方向3/504/505/50l x y z e e e e =++的方向导数为【 】。
A .100/ B .112/ C .56/ D .224/7. 一般导电媒质的电导率σ,介电常数ε和电磁波角频率ω之间满足【 】。
A .()/1σωε>>B .()/1σωε<<C .()/1σωε=D .()/1σωε≈ 8.坡印廷矢量S E H =⨯,它的方向表示____方向,大小表示___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、理解标量场及矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。
梯度:x y z u u uu x y z∂∂∂∇=++∂∂∂e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。
y x zA A A x y z∂∂∂∇⋅=++∂∂∂A 散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: ()()V S dV d ∇⋅=⋅⎰⎰⎰⎰⎰A A S ,x y zy y x x z z x y z xyzA A A A A A x y z y z z x x y A A A ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭e e e A e e e旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。
斯托克斯定理:()()S L d d ∇⨯⋅=⋅⎰⎰⎰A S A l数学恒等式:()0u ∇⨯∇=,()0∇⋅∇⨯=A 3、理解亥姆霍兹定理的重要意义:若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
u =∇⨯-∇A F1、 理解静电场及电位的关系,,()()u =-∇E r r2、 理解静电场的通量和散度的意义,,静电场是有散无旋场,电荷分布是静电场的散度源。
3、 理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷及虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
点电荷对无限大接地导体平板的镜像:当两半无限大相交导体平面之间的夹角为α时,n =3600/α,n 为整数,则需镜像电荷数为n -1.4、 理解恒定磁场的环量和旋度的意义,,XY 平面XO导体)表明磁场是无散有旋场,电流是激发磁场的旋涡源。
5、 理解矢量磁位的意义,并能根据矢量磁位计算磁场。
B=∇×A ,(库仑规范:0∇⋅=A )0()(')()'4V V dV Rμπ=⎰⎰⎰J r A r 求H/B E/D L C1、 掌握麦克斯韦方程组的微分形式,理解其物理意义。
熟练掌握正弦电磁场的复数表示法。
()()()()()))((, 0 l V l S S S V S V d d t d d dV d d t ρ∂⎛⎫⋅=+⋅∂⋅ ⎪∂⎝⎭⋅⋅⋅=-==∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰BE l D H l J S B D S S S 表明:磁场是无源场,磁感线总是闭合曲表明:传导电流和变化的电场都能产生磁场表明:变化的磁场产线表生电场明:电荷⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩以发散的方式产生电场, ,本构关系:ε=D E ,σ=J E ,μ=B H ,复数表示:(,)e j t t R e ω⎡⎤=⎣⎦E r E ,Re (,)j te t ω⎡⎤=⎣⎦H H r2、正确理解和使用边界条件一般情况, 理想介质及理想介质, 理想介质及理想导体:, ,3、掌握电磁场的波动方程,无源理想介质,亥姆霍兹方程4、 理解坡印廷矢量的物理意义,并应用它分析计算电磁能量的传输情况。
S :表示单位时间内通过垂直于能量流动方向单位面积上的的能量。
=⨯S E H ,5、 理解矢量位A 和标量位ϕ的概念以及A 、ϕ满足的方程。
0∇⋅=⇒=∇⨯B B AE u t t∂∂∇⨯=-⇒+=-∇∂∂B AE在洛伦兹规范下,222222V Vuu t t ρεμεμεμ⎧∂∇-=-⎪⎪∂⎨∂⎪∇-=-⎪∂⎩A A J该方程表明矢位A 的源是电流密度,而标位u 的源是电荷。
时变场中电流密度和电荷是相互关联的。
1、 掌握均匀平面波的概念和表示方法。
了解研究均匀平面波的重要意义。
均匀平面波:等相位面上电场和磁场的方向、振幅都保持不变的平面波0(,,)jk r E x y z E e -⋅=,0(,,)jk r H x yz H e -⋅=,k =()0(;)cos e E r t E t k r ωϕ=-⋅+,()0(;)cos e H r t H t k r ωϕ=-⋅+01H k E η=⨯,0E H k η=⨯,ημε= 20011Re 22av S E H E k η*⎡⎤=⨯=⎢⎥⎣⎦2、 理解并掌握均匀平面波在无界理想介质中的传播特性1)横电磁波2)无衰减3)波阻抗为实数4)无色散5)()()m av e av w w =3、 理解并掌握均匀平面波在无界有损耗媒质中的传播特性,00(,,)c jk r r j r E x y z E e E e e αβ-⋅-⋅-⋅==,001(,,)r j r cH x y z k E e e αβη-⋅-⋅=⨯,j c c e ϑηη=1)是横电磁波2)有衰减3)波阻抗为复数4)有色散5)()()m av e av w w >4、 低耗介质和良导体1)低耗介质:特点:衰减小;β≈;电场和磁场之间存在较小的相位差 2)良导体趋肤效应:高频电磁波在良导体中衰减很快,以致于无法进入良导体深处,仅可存在其表面层内,这种现象称为趋肤效应。
趋肤深度(δ):电磁波进入良导体后,场强振幅衰减到表面处振幅的1/e 时所传播的距离5、 理解波的极化概念,掌握电磁波极化方式的判断方法。
波的极化:电场强度矢量随时间变化的轨迹和形状。
对于沿+ z 方向传播的均匀平面波:0(),jkz x x E z E e -=0()j jkz y y E z E e e δ-= 线极化:d =0、±p 。
d =0,在1、3象限; d =±p ,在2、4象限。
圆极化: d =±p /2,Ex m =Ey m 。
取“+”,左旋圆极化;取“-”,右旋圆极化。
椭圆极化:其它情况。
0 < d < p ,左旋;-p < d <0,右旋 。
1、 深刻理解均匀平面波对理想导体平面和对理想介质平面的垂直入射,要求熟练掌握分析方法和过程,理解所得结果所表征的物理意义;111111111000010011()()()1()()()c c c c c cc c jk z jk z jk z jk z i r i i r x x i jk z jk z jk z jk z i r i r yy z z z E e E e E e re E z z z E e E e e re ηη----⎧⎡⎤⎡⎤=+=+=+⎣⎦⎣⎦⎪⎪⎨⎡⎤⎡⎤=+=-=-⎪⎣⎦⎣⎦⎪⎩E E E e e H H H e e 222220000222()()()()c c c cjk z jk z t i t x x t i jk z jk z t yy z z E e tE eE tE z z e e ηη----⎧===⎪⎨===⎪⎩E E e e H H e e 反射系数:,透射系数:1)对理想导体平面的垂直入射(驻波):1r =-,0t =1111j j 1001j j 001111()(e e )j2sin 2cos ()(ee)k z k z i i x x ii k zk zyyz E E k zE E k z z ηη--=-=-=+=E e e H e e2)对理想介质平面的垂直入射(行驻波),,1r t +=1111001()(1)2sin jk z jk z jk z i ix x z E e re E r e j r k z --⎡⎤⎡⎤=+=++⎣⎦⎣⎦E e e ,振幅:122101()12cos2iz E r r k z ⎡⎤=++⎣⎦E11110011111()(1)2cos jk z jk z jk z i iyyz E e re E r e r k z ηη--⎡⎤⎡⎤=-=+-⎣⎦⎣⎦H e e ,振幅:12210111()12cos 2i z E r r k z η⎡⎤=+-⎣⎦H ()212112ii rav av av zE r η=+=-S S S e ,()22222222122i iavzz Et Eηηηη==+S e e2、 了解均匀平面波对分界面的斜入射的分析方法,理解反射定律和折射定律。
相位匹配条件:1i 1r 2t sin sin sin k k k θθθ== 折射定律:3、 了解产生全反射现象和无反射现象的条件,了解其应用。
全反射:21arcsin c nn θ==,12n n >,//1r r ⊥== 当i c θθ>,出现沿界面传播的倏逝波或表面波。
全透射:, //0r =1、矢量2x y A e x e xy =+的旋度为( ) A 2z e y B z e x C 2z e xy D z e x -2、海水的电导率4S m σ=,相对介电常数81r ε=。
当频率f=1MHz 时,海水中的位移电流及传导电流振幅之比为( )A 11.12510-⨯B 21.12510-⨯C 31.12510-⨯D 41.12510-⨯3、在分析静电场时,引入标量函数ϕ,并令E ϕ=-∇的依据是( ) A 0E ∇= B C 0E ∇⨯= D4、用镜像法求解电场边值问题时,判断镜像电荷设置是否正确的依据是( )A 镜像电荷的位置是否及原电荷对称B 待求区域内的电位函数所满足的方程及边界条件是否保持不变C 镜像电荷是否及原电荷等值异号D 镜像电荷数量是否满足2n-15、已知磁感应强度的表达式为2(2)()x y z B e x e y z e y mz =+--+,则m 等于( )A 3B 6C 9D 126、正方形导体线框边长为1m,现有一磁场垂直射入线框,磁感应强度大小随时间变化为35t +,其中t 为时间,当t=1时,线框中产生的感应电动势为( )A 3B 6C 9D 127、空气(磁导率10μμ=)及磁介质(磁导率204μμ=)的分界面是z=0的平面。
若已知空气中的磁感应强度124x z B e e =+,则磁介质中的磁感应强度应为( )A 2216x zB e e =+ B 284x z B e e =+C 22x z B e e =+D 2x z B e e =+8、均匀平面波sin()cos()44x m y m E e E t kz e E t kz ππωω=-++--的极化方式是( )A 线极化波B 左旋圆极化波C 右旋圆极化波D 椭圆极化波1、矢量x y z A e x e y e z =++的旋度为( ) A 0 B 3 C -3 D 3z e2、海水的电导率4S m σ=,相对介电常数81r ε=。