【高中数学】 概率与统计

合集下载

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳高中数学中的统计与概率是两个非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

本文将对这些知识点进行归纳和总结,以便读者更好地理解和掌握。

首先,让我们来看看统计。

统计是研究如何从数据中获取有用信息的学科。

在高中数学中,统计的主要内容包括以下三个方面:1、概率分布:这是统计的基础知识,它描述了各种可能结果出现的概率。

例如,投掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率为0.5。

2、参数估计:参数估计是通过样本数据来估计总体参数的方法。

例如,通过样本的平均值来估计总体的平均值。

3、假设检验:假设检验是用来检验一个假设是否成立的统计学方法。

例如,我们想要检验某种新药的疗效是否优于安慰剂,可以通过比较实验组和对照组的数据来进行假设检验。

接下来,让我们来看看概率。

概率是描述事件发生可能性大小的数学工具。

在高中数学中,概率的主要内容包括以下三个方面:1、事件的关系和运算:事件的关系包括互斥、独立、不独立等,事件之间的运算包括并、交、差等。

2、概率的性质和计算:概率的性质包括加法定理、乘法定理、全概率公式等,概率的计算方法包括直接计算、利用公式计算等。

3、概率分布:概率分布描述了随机变量的取值概率,例如伯努利分布、二项分布、正态分布等。

在应用方面,统计与概率的知识点可以应用于很多领域,例如金融、医学、工业、农业等。

例如,在金融领域,可以通过统计方法来分析股票数据的规律和趋势;在医学领域,可以通过概率方法来预测疾病的发病率和死亡率。

总之,统计与概率是高中数学中非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

通过对这些知识点的归纳和总结,我们可以更好地理解和掌握它们,从而更好地应用于实际问题的解决中。

高中数学概率与统计知识点总结高中数学:概率与统计知识点总结一、前言在现实生活中,我们经常需要处理各种与概率和统计相关的问题。

例如,在掷骰子时计算点数、在班级中选取学生、或者在评估天气预报的准确性。

高中数学统计与概率

高中数学统计与概率

高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。

4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。

高中数学统计与概率知识点

高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。

这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。

每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理概率与统计是高中数学中的重要内容,它们在我们日常生活中的应用非常广泛。

在学习概率与统计时,整理公式是非常重要的,它可以帮助我们更好地理解和应用这些知识。

本文将整理一些高中数学中常用的概率与统计公式,帮助大家更好地掌握这一知识点。

一、概率公式1. 事件的概率公式:对于一个事件A,它的概率可以用如下公式表示:P(A) = 事件A发生的次数 / 总的可能次数2. 互斥事件的概率公式:如果两个事件A和B是互斥事件(即两个事件不能同时发生),则它们的概率可以用如下公式表示:P(A或B) = P(A) + P(B)3. 相互独立事件的概率公式:如果两个事件A和B是相互独立事件(即一个事件的发生不受另一个事件的影响),则它们的概率可以用如下公式表示:P(A且B) = P(A) × P(B)4. 条件概率公式:如果事件B已经发生,事件A的概率可以用如下公式表示:P(A|B) = P(A且B) / P(B)5. 贝叶斯公式:如果事件A和事件B是两个相关事件,且P(B) ≠ 0,则事件B发生的条件下事件A发生的概率可以用如下公式表示:P(A|B) = P(B|A) × P(A) / P(B)二、统计公式1. 样本均值的计算公式:对于一组样本数据x1, x2, ..., xn,它们的均值可以用如下公式表示:x = (x1 + x2 + ... + xn) / n2. 总体均值的计算公式:对于一组总体数据x1, x2, ..., xn,它们的均值可以用如下公式表示:μ = (x1 + x2 + ... + xn) / N3. 样本方差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的方差可以用如下公式表示:s^2 = [(x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2] / (n - 1)4. 总体方差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的方差可以用如下公式表示:σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / N5. 样本标准差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:s = √[s^2]6. 总体标准差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:σ = √[σ^2]7. 正态分布的概率计算公式:对于一个服从正态分布的随机变量X,它的概率密度函数可以用如下公式表示:f(x) = (1 / (σ√(2π))) × e^(-((x - μ)^2) / (2σ^2))以上是高中数学中常用的概率与统计公式的整理。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。

4、对立事件对立事件是指两个事件必有一个发生的互斥事件。

例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。

而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。

对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。

2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。

5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。

相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。

2)必然事件与任何事件都是相互独立的。

3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。

6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。

如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结概率与统计是高中数学中的重要内容,为了帮助大家更好地理解和掌握这一部分知识,下面将对高中数学概率与统计的主要知识点进行总结和梳理。

一、概率基本概念概率是指事件发生的可能性大小,通常用一个介于0到1之间的数表示。

在计算概率时,我们需要先确定样本空间,即所有可能的结果组成的集合,并且需要利用概率公式进行计算。

1.1 样本空间与事件样本空间是指一个随机试验中所有可能结果组成的集合。

样本空间中的元素称为样本点。

事件是指样本空间的子集,即某些样本点的集合。

1.2 子事件与互斥事件子事件是指事件的子集,即由某些样本点组成的事件。

互斥事件是指两个事件不可能同时发生的事件。

1.3 事件的概率事件A的概率表示为P(A),计算方式为事件A的样本点数除以样本空间的样本点数。

概率的取值范围在0到1之间,且所有可能事件的概率之和为1。

二、概率计算方法概率的计算方法主要包括古典概型、频率概率和条件概率等几种常用方法。

2.1 古典概型古典概型适用于随机试验的样本点数有限且相等的情况。

在古典概型中,事件A的概率计算公式为P(A) = m/n,其中m为事件A中样本点的个数,n为样本空间中样本点的总个数。

2.2 频率概率频率概率适用于大量重复试验的情况。

频率概率是指事件A发生的频率,计算公式为P(A) = lim(N→∞) (m/N),其中m为事件A发生的次数,N为试验进行的总次数。

2.3 条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。

条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

三、排列与组合排列与组合是概率与统计中常用的计数方法,用于求解事件发生的可能性个数。

3.1 排列排列是指将若干个不同的元素按照一定的顺序排列的方式。

排列的计算公式为A(n, m) = n!/(n-m)!,其中n为元素个数,m为选取的元素个数。

数学高三数学概率与统计知识总结与题型解析

数学高三数学概率与统计知识总结与题型解析

数学高三数学概率与统计知识总结与题型解析概率与统计是高中数学中的一个重要部分,也是数学高考中的一个重点考点。

掌握好概率与统计的知识对于高三学生来说非常重要。

本文将对高三数学概率与统计的知识进行总结,并解析一些常见的题型。

一、概率的基本概念和性质概率是研究随机试验结果出现的可能性的数学理论。

在概率的研究中,有几个基本概念和性质需要掌握。

1.1 试验、样本空间和事件随机试验是指具有以下三个特点的试验:可以在相同的条件下重复进行,每次试验的结果不确定,且试验的结果有多种可能性。

样本空间是指一个随机试验的所有可能结果的集合。

事件是样本空间的一个子集,表示随机试验中我们关心的一些结果。

1.2 概率的定义和性质概率的定义可以通过两种方式来描述:频率定义和古典定义。

频率定义是指当试验重复进行很多次时,事件发生的频率趋近于概率值。

古典定义是指在满足条件的情况下,事件发生的可能性与样本空间中元素个数的比值。

概率具有以下几个性质:非负性、规范性、可列可加性、互斥性和独立性。

1.3 条件概率和乘法定理条件概率是指在另一个事件已经发生的条件下,某个事件发生的概率。

条件概率可以通过乘法定理来计算。

二、离散型随机变量离散型随机变量是指在有限或可数无限个取值中取一个确定值的变量。

离散型随机变量具有以下几个重要的性质:概率函数、分布函数、数学期望、方差等。

2.1 二项分布二项分布是指在n次独立的伯努利试验中,事件发生的次数所符合的概率分布。

如果事件发生的概率为p,不发生的概率为q=1-p,那么在n次试验中,事件发生k次的概率可以由二项分布来计算。

2.2 泊松分布泊松分布是在一定时间或空间范围内,某个事件发生的概率符合的分布。

泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。

三、连续型随机变量连续型随机变量是指在一个或者几个区间内取值的变量。

连续型随机变量具有以下几个重要的性质:概率密度函数、分布函数、数学期望、方差等。

高中数学统计与概率知识点归纳全

高中数学统计与概率知识点归纳全

高中数学统计与概率知识点归纳全统计与概率是数学中重要的一部分,出现在中学数学和高中数学的教学中。

它涵盖了很多基本的概念和方法,并且在实际生活中有广泛的应用。

本文将全面归纳高中数学统计与概率的知识点,以帮助读者更好地理解和掌握这一领域的内容。

一、基本概念1. 数据与统计:数据是通过观察、测量或实验获得的信息,统计是对数据进行收集、整理、分析和解释的过程。

2. 总体与样本:总体是指研究对象的全体,样本是从总体中选取的一部分。

3. 参数与统计量:参数是描述总体的数值特征,统计量是根据样本数据计算得到的总体参数的估计值。

4. 随机事件与样本空间:随机事件是指一个结果不确定、以概率形式描述的事件,样本空间是随机事件可能发生的所有结果的集合。

5. 概率:概率是用来描述随机事件发生可能性大小的数值。

它可以通过实验、几何、统计推理等方法进行计算。

二、统计方法1. 数据收集与处理:包括数据的收集、整理和清洗,以及计算数据的频数、频率、中位数、平均数等。

2. 描述统计和推断统计:描述统计通过图表、图像和数值等形式展示数据的分布特征;推断统计则通过样本数据进行参数估计、假设检验等,从而对总体进行推断。

3. 频数分布与频率分布:频数分布是指将数据按照取值范围划分成若干组,并统计每组中数据出现的频数;频率分布则是统计每组数据出现的频率。

三、概率相关知识1. 事件的概率:事件A发生的概率记为P(A),它满足0≤P(A)≤1。

2. 基本事件与复合事件:基本事件是样本空间中的单个事件,复合事件由一个或多个基本事件组成。

3. 互斥事件与相对事件:互斥事件是指两个事件不可能同时发生,相对事件是指两个事件都能够发生,或者都不能发生。

4. 概率的计算:通过等可能原理、频率法、古典概型等方法计算事件的概率。

5. 条件概率与独立事件:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记为P(A|B);独立事件是指事件A和事件B的发生与否互不影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回扣9 概率与统计1.牢记概念与公式 (1)概率的计算公式 ①古典概型的概率计算公式P (A )=事件A 包含的基本事件数m基本事件总数n;②互斥事件的概率计算公式P (A ∪B )=P (A )+P (B );③对立事件的概率计算公式P (A )=1-P (A );④几何概型的概率计算公式P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.(2)抽样方法简单随机抽样、分层抽样、系统抽样.①从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为nN;②分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量.(3)统计中四个数据特征①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数. ③平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…x n ).④方差与标准差 方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差:s =1n[x 1-x 2+x 2-x 2+…+x n -x 2].(4)八组公式①离散型随机变量的分布列的两个性质Ⅰ.p i ≥0(i =1,2,…,n );Ⅱ.p 1+p 2+…+p n =1. ②均值公式E (X )=x 1p 1+x 2p 2+…+x n p n .③均值的性质Ⅰ.E (aX +b )=aE (X )+b ; Ⅱ.若X ~B (n ,p ),则E (X )=np ; Ⅲ.若X 服从两点分布,则E (X )=p . ④方差公式D (X )=[x 1-E (X )]2·p 1+[x 2-E (X )]2·p 2+…+[x n -E (X )]2·p n ,标准差D X .⑤方差的性质Ⅰ.D (aX +b )=a 2D (X );Ⅱ.若X ~B (n ,p ),则D (X )=np (1-p ); Ⅲ.若X 服从两点分布,则D (X )=p (1-p ). ⑥独立事件同时发生的概率计算公式P (AB )=P (A )P (B ).⑦独立重复试验的概率计算公式P n (k )=C k n p k (1-p )n -k . ⑧条件概率公式P (B |A )=P AB P A.2.活用定理与结论 (1)直方图的三个结论①小长方形的面积=组距×频率组距=频率.②各小长方形的面积之和等于1.③小长方形的高=频率组距,所有小长方形高的和为1组距.(2)线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ).(3)利用随机变量K 2=n ad -bc2a +bc +da +cb +d来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的可能性越大.(4)如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ2)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.1.应用互斥事件的概率加法公式,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.4.要注意概率P (A |B )与P (AB )的区别(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).5.易忘判定随机变量是否服从二项分布,盲目使用二项分布的均值和方差公式计算致误.1.某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法 答案 D解析 总体由男生和女生组成,比例为400∶600=2∶3,所抽取的比例也是2∶3,故拟从全体学生中抽取100名学生进行调查,采用的抽样方法是分层抽样法,故选D.2.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率是( )A.13B.14C.16D.112 答案 C解析 投掷两颗骰子,得到其向上的点数分别为m 和n ,记作(m ,n ),共有6×6=36(种)结果.(m +n i)(n -m i)=2mn +(n 2-m 2)i 为实数,应满足m =n ,有6种情况,所以所求概率为636=16,故选C.3.一个袋子中有5个大小相同的球,其中3个白球2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )A.35B.310C.12D.625 答案 B解析 设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310.4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得线性回归方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元 答案 B解析 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4, ∴当x =15时,y ^=0.76×15+0.4=11.8(万元).5.设X ~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值为( )附:(随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%)( )A.6 038B.6 587C.7 028D.7 539 答案 B解析 由题意知,P (0<X ≤1)=1-12×0.682 6=0.658 7,则落入阴影部分的点的个数的估计值为10 000×0.658 7=6 587.故选B.6.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A.9 B.10 C.18 D.20 答案 C解析 由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为ab有A 25=20种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数有A 25-2=20-2=18,选C.7.甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示,他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( )A.0B.3C.6D.9 答案 A解析 设看不清的数字为x ,甲的平均成绩为99+100+101+102+1035=101,所以93+94+97+110+110+x 5<101,x <1,所以x =0.故选A.8.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,则这组样本数据的样本的相关系数为( ) A.-1 B.0 C.-13 D.1答案 A解析 数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,说明这组数据点完全负相关,其相关系数为-1,故选A.9.在区间[1,5]和[2,4]内分别取一个数,记为a ,b ,则方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为________. 答案 1532解析 当方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆时,有⎩⎪⎨⎪⎧a 2>b 2,e =c a=a 2-b 2a <32,即⎩⎪⎨⎪⎧ a 2>b 2,a 2<4b 2, 化简得⎩⎪⎨⎪⎧a >b ,a <2b .又a ∈[1,5],b ∈[2,4],画出满足不等式的平面区域,如图阴影部分所示 ,求得阴影部分的面积为154,故P =S 阴影2×4=1532.10.将某班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是________. 答案 13解析 系统抽样法取出的样本编号成等差数列,因此还有一个编号为5+8=21-8=13. 11.某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a ,28,b ,52号学生在样本中,则a +b =________. 答案 56解析 ∵样本容量为5,∴样本间隔为60÷5=12, ∵编号为4,a ,28,b ,52号学生在样本中, ∴a =16,b =40, ∴a +b =56.12.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;③从装有2个红球和2个黑球的口袋内任取2个球,“至少一个黑球”与“都是红球”;④从装有2个红球和2个黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.其中属于互斥事件的是________.(把你认为正确的事件的序号都填上).答案①③④解析①某人射击1次,“射中7环”与“射中8环”两个事件不会同时发生,故为互斥事件;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,前者包含后者,故②不是互斥事件;③“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,所以这两个事件是对立事件,故是互斥事件;④“没有黑球”与“恰有一个红球”,不可能同时发生,故他们属于互斥事件.13.国内某知名大学有男生14 000人,女生10 000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])男生平均每天运动的时间分布情况:女生平均每天运动的时间分布情况:(1)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);(2)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.①根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”运动达人非运动达人总计 男生 女生 总计参考公式:K 2=n ad -bc2a +ba +da +cb +d,其中n =a +b +c +d参考数据:P (K 2>k 0) 0.15 0.10 0.05 0.025 0.010 0.005 k 02.0722.7063.8415.0246.6357.879解 (1)由分层抽样得:男生抽取的人数为120×14 00014 000+10 000=70,女生抽取的人数为120-70=50,故x =5,y =2,则该校男生平均每天运动的时间为 0.25×2+0.75×12+1.25×23+1.75×18+2.25×10+2.75×570≈1.5.故该校男生平均每天运动的时间约为1.5小时.(2)①样本中“运动达人”所占比例是20120=16,故估计该校“运动达人”有16×(14 000+10000)=4 000(人). ②由表格可知:运动达人 非运动达人总计 男生 15 55 70 女生 5 45 50 总计20100120故K 2的观测值k =120×15×45-5×55220×100×50×70=9635≈2.743<3.841, 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”.14.某公司通过初试和复试两轮考试确定最终合格人选,当第一轮初试合格后方可进入第二轮复试,两次考核过程相互独立.根据甲、乙、丙三人现有的水平,第一轮考核甲、乙、丙三人合格的概率分别为0.4、0.6、0.5.第二轮考核,甲、乙、丙三人合格的概率分别为0.5、0.5、0.4.(1)求第一轮考核后甲、乙两人中只有乙合格的概率;(2)设甲、乙、丙三人经过前后两轮考核后合格入选的人数为X ,求X 的分布列和均值. 解 (1)设甲、乙经第一次考核后合格为事件A 1、B 1,设事件E 表示第一轮考核后甲不合格、乙合格,则P (E )=P (A 1·B 1)=0.6×0.6=0.36.即第一轮考核后甲、乙两人中只有乙合格的概率为0.36.(2)分别设甲、乙、丙三人经过前后两次考核后合格入选为事件A 、B 、C ,则P (A )=0.4×0.5=0.2,P (B )=0.6×0.5=0.3,P (C )=0.4×0.5=0.2,经过前后两轮考核后合格入选的人数为X ,则X 可能取0,1,2,3.P (X =0)=0.8×0.7×0.8=0.448,P (X =1)=0.2×0.7×0.8+0.8×0.3×0.8+0.8×0.7×0.2=0.416,P (X =3)=0.2×0.3×0.2=0.012,P (X =2)=1-0.448-0.416-0.012=0.124.X 的分布列为 X0 1 2 3 P0.448 0.416 0.124 0.012均值为E(X)=0×0.448+1×0.416+2×0.124+3×0.012=0.7.。

相关文档
最新文档