(新课标)高考数学一轮总复习 第九章 计数原理、概率、随机变量及其分布列 9-7 二项分布、正态分布
高考数学一轮总复习 第9章 计数原理与概率、随机变量及其分布 第2节 排列与组合课件 理 新人教版

的排法共有
()
A.24 种
B.60 种
C.90 种
D.120 种
解析:可先排 两人只有一种排法,由分步乘法计数原理满足条件
的排法共 A35=60(种).
答案:B
2.(教材习题改编)甲、乙两人从 4 门课程中各选修 2 门,则
甲、乙两人所选的课程中恰有 1 门相同的选法有 ( )
解析:由排列数公式可知 3x(x-1)(x-2)=2(x+1)x+6x(x-1), ∵x≥3 且 x∈N*, ∴3(x-1)(x-2)=2(x+1)+6(x-1), 即 3x2-17x+10=0,解得 x=5 或 x=23(舍去),∴x=5. 答案:5
2.某班级要从 4 名男生、2 名女生中选派 4 人参加社区服 务,如果要求至少有 1 名女生,那么不同的选派方案种 数为________.(用数字作答) 解析:法一:依题意可得 C21×C34+C22×C24=8+6=14, 故满足要求的方案有 14 种. 法二:6 人中选 4 人的方案有 C46=15 种,没有女生的 方案只有 1 种,所以满足要求的方案有 14 种. 答案:14
生中选派 4 名学生发言,要求甲、乙两人至少有一人参
考点一 排列问题 基础送分型考点——自主练透
[题组练透]
1.(2015·山西模拟)A,B,C,D,E,F 六人围坐在一张圆
桌周围开会,A 是会议的中心发言人,必须坐在最北面的
椅子上,B,C 二人必须坐相邻的两把椅子,其余三人坐
剩余的三把椅子,则不同的座次有
()
A.60 种
B.48 种
C.30 种
D.24 种
制,排列后再除以定序元素的全排列
2.解决排列类应用题的 3 种策略 (1)特殊元素(或位置)优先安排的方法,即先排特殊元素 或特殊位置. (2)分排问题直排法处理. (3)“小集团”排列问题采用先集中后局部的处理方法.
高考数学一轮总复习 第9章 计数原理与概率、随机变量及其分布 第2节 排列与组合课件 理 新人教版

解析:由题知有 2 门 A 类选修课,3 门 B 类选修课,从 中选出 3 门的选法有 C35=10 种.两类课程都有的对立 事件是选了 3 门 B 类选修课,这种情况只有 1 种.满足 题意的选法有 10-1=9 种. 答案:C
2.四面体的一个顶点为 A,从其他顶点与各棱的中点中取 3
个点,使它们和点 A 在同一平面上,不同的取法有( )
1.(2015·山西模拟)A,B,C,D,E,F 六人围坐在一张圆
桌周围开会,A 是会议的中心发言人,必须坐在最北面的
椅子上,B,C 二人必须坐相邻的两把椅子,其余三人坐
剩余的三把椅子,则不同的座次有
()
A.60 种
B.48 种
C.30 种
D.24 种
解析:由题知,不同的座次有 A22A44=48 种.
A.12 种
B.16 种
C.24 种
D.48 种
解析:依题意得知,满足题意的选法共有 C14·C13·C12=24 种. 答案:C
3.(教材习题改编)已知C1m5 -C1m6 =107Cm7 ,则 Cm8 =________.
解 析 : 由 已 知 得 m 的 取 值 范 围 为 m|0≤m≤5,m∈Z , m!55- !m!-m!66-!m!=7×71-0×m7!!m!,整理可得 m2-23m+42=0,解得 m=21(舍去)或 m=2.故 Cm8 =C28=28. 答案:28
A.24 种
B.60 种
C.90 种
D.120 种
解析:可先排 C,D,E 三人,共 A35种排法,剩余 A,
B 两人只有一种排法,由分步乘法计数原理满足条件
的排法共 A35=60(种).
答案:B
2.(教材习题改编)甲、乙两人从 4 门课程中各选修 2 门,则
高考数学(全国通用)一轮总复习(文理科)配套课件:第九章 计数原理、概率与统计 9.9

������曲边多边形������������������������������ ������四边形������������������������
2 3 1.
【参考答案】 B
第九章
第九节 几何概型
主干知识回顾
名师考点精讲
综合能力提升
-15-
解决与面积有关的几何概型的方法 求解与面积有关的几何概型时,关键是弄清某事件对应的几何元素,必要时可根据题意构 造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.
第九章
第九节 几何概型
主干知识回顾
名师考点精讲
综合能力提升
-12-
【变式训练】
1.已知函数
f(x)=log2x,x∈
1 2
,2
,若在区间
1 2
,2
上随机取一点
x0,则使得
f(x0)≥0
的
概率为
.
1.
2 3
【解析】由������ ∈
1 2
,2
, 且解不等式得 log2������ ≥ 0 得������ ∈ [1,2], 则使得������(������0) ≥
第九章
第九节 几何概型
主干知识回顾
名师考点精讲
综合能力提升
-16-
2015·福州期末考试)如图,若在矩形 OABC 中随机撒一粒豆子,则豆子落在图
中阴影部分的概率为 ( ) A.1 B.2
ππ
C.3 D.1
π2
B 【解析】阴影部分的面积为
π 2
0
cos ������d������
=
sin ������
×3×1 3× 2
=
1 4
2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-2

解析:(1)由题意可得其中 1 人必须完成 2 项工作,其他 2 1 2 2 人各完成 1 项工作,可得安排方式为 C3· C4· A2=36(种),或列式 4×3 1 2 1 为 C3· C4· C2=3× 2 ×2=36(种). 故选 D. (2)①当组成四位数的数字中有一个偶数时,四位数的个数 3 1 4 为 C5· C4· A4=960. ②当组成四位数的数字中不含偶数时,四位数的个数为 A4 5 =120. 故符合题意的四位数一共有 960+120=1 080(个).
从12人中选出512种选法从除去男生甲和女生乙外的10人中任选310种选法所以男生甲和女生乙不能同时入选的选法有c1067212017新课标全国卷安排3名志愿者完成4工作每人至少完成1项每项工作由1人完成则不同的安排方式共有22017天津卷用数字123456789组成没有重复数字且至多有一个数字是偶数的四位数这样的四位数一共有个
(3)组合数公式 m n! A n nn-1n-2„n-m+1 m Cn =⑨Am= = . m! m!n-m! m (4)组合数的性质 m n -m 性质 1:Cn = Cn . m m -1 m 性质 2:Cn+1=Cn +Cn (m≤n,n∈N*,m∈N*).
二、必明 3●个易误点 1.要注意均匀分组与不均匀分组的区别,均匀分组不要重 复计数. 2.解受条件限制的组合题,通常有直接法(合理分类)和间 接法(排除法).分类时标准应统一,避免出现遗漏或重复. 3.解组合应用题时,应注意“至少”、“至多”、“恰好” 等词的含义.
5.(2017· 浙江卷)从 6 男 2 女共 8 名学生中选出队长 1 人, 副队长 1 人,普通队员 2 人组成 4 人服务队,要求服务队中至少 有 1 名女生,共有________种不同的选法.(用数字作答)
第9章 第1节 计数原理与排列组合-2023届高三一轮复习数学精品备课(新高考人教A版2019)

►规律方法 解决组合应用题的方法
(1)“ 含 有 ” 或 “ 不 含 有 ” 某 些 元 素 的 组 合 题 型 : “含”,则先将这些元素取出,再由另外元素补足;“不 含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“至多”含有几个元素的题型:解这类 题必须十分重视“至少”与“至多”这两个关键词的含义, 谨防重复与漏解.用直接法和间接法都可以求解.通常用直 接法分类复杂时,考虑逆向思维,用间接法处理.
[例 2-1] 3 名男生,4 名女生,按照不同的要求排队,求不 同的排队方案的方法种数.
(3)全体站成一排,男、女各站在一起; 288 (4)全体站成一排,男生不能站在一起. 1440
[自主解答](3)相邻问题(捆绑法):男生必须站在一起, 是男生的全排列,有 A33种排法;女生必须站在一起,是女生 的全排列,有 A44种排法;全体男生、女生各视为一个元素,
_m__×__n__种不同的方法.
3.分类加法计数原理和分步乘法计数原理的区别
分类加法计数原理针对“分类”问题,其中各种方法相
互独立,用其中任何一种方法都可以做完这件事;分步乘法
计数原理针对“分步”问题,各个步骤相互依存,只有各个
步骤都完成了才算完成这件事. 4.排列与组合的概念
名称
定义
从 n 个不同元素中 按照_一__定__的_顺__序__排成一
m!(n-m)!
性质 (3)0!=1_;Ann=_n_! (4)Cmn =Cnn-m;Cmn+1=_C_nm_+__C_mn_-_1 __
教材拓展
1.排列与组合最根本的区别在于“有序”和“无 序”.取出元素后交换顺序,如果与顺序有关,则是排列; 如果与顺序无关,则是组合.
近年届高考数学一轮复习第9单元计数原理、概率、随机变量及其分布作业理(2021年整理)

2019届高考数学一轮复习第9单元计数原理、概率、随机变量及其分布作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第9单元计数原理、概率、随机变量及其分布作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第9单元计数原理、概率、随机变量及其分布作业理的全部内容。
第九单元计数原理、概率、随机变量及其分布课时作业(五十五)第55讲分类加法计数原理与分步乘法计数原理基础热身1.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有()A。
8种B。
15种C.35种D.53种2。
[2017·南阳六校联考]从集合{0,1,2,3,4,5}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A。
36个B.30个C.25个D。
20个3.[2017·南昌二模]为便民惠民,某通信运营商推出“优惠卡活动".其内容如下:卡号的前七位是固定的,后四位从“0000”到“9999”共10 000个号码参与该活动,凡卡号后四位带有“6"或“8"的一律作为“优惠卡",则“优惠卡”的个数是()A.1980 B。
4096C。
5904 D.80204.已知函数y=ax2+bx+c,其中a,b,c∈{0,1,2},则不同的二次函数的个数是()A。
256 B.18C.16D.105.[2017·雅安三诊]设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有个。
届高考数学大一轮总复习 第九章 计数原理、概率、随机变量及其分布 9.7 离散型随机变量及其分布列课

变式训练1 (1)随机变量X的分布列如下:
X
-1
0
1
P
a
b
c
2 其中a,b,c成等差数列,则P(|X|=1)=____3____。
解析 由题意知2a+b=b+a+c=c,1,
则 2b=1-b,则 b=31,a+c=23,
所以 P(|X|=1)=P(X=-1)+P(X=1)=a+c=32。
(2)在例1(2)中条件不变的情况下,求Y=2X+1的分布列。 解 列表
X
0
1
2342Fra bibliotek+11
3
5
7
9
∴P(Y=1)=P(X=0)=0.2,
P(Y=3)=P(X=1)=0.1,
P(Y=5)=P(X=2)=0.1,
P(Y=7)=P(X=3)=0.3,
P(Y=9)=P(X=4)=0.3。
因此,Y=2X+1的分布列为
Y
1
3
5
7
9
P
0.2
0.1
0.1
0.3
0.3
考点二 离散型随机变量的分布列
X
1
2
3
4
P
1 6
1
1
3
6
p
则 p=( )
1 A.3
解析
1
1
1
B.2
C.4
D.6
由概率分布列的性质可知16+13+16+p=1,解得 p=13。
答案 A
3.袋中装有10个红球、5个黑球。每次随机抽取1个球后,若取得黑球
则另换1个红球放回袋中,直到取到红球为止。若取球的次数为X,则表示
“放回5个红球”事件的是( )
基础自测
(新课标)2020年高考数学一轮总复习第九章计数原理、概率、随机变量及其分布列9_4古典概型课件理新人教A版

考点二|古典概型计算较复杂事件的概率 (方法突破) 【例2】 (2018·高考天津卷)已知某校甲、乙、丙三个年级的学生志愿者人数分别 为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活 动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同 学承担敬老院的卫生工作. ①试用所给字母列举出所有可能的抽取结果; ②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
4.(必修3·习题3.2B组改编)现从甲、乙、丙3人中随机选派2人参加某项活动,则
甲被选中的概率为
.
答案:23
考点一|古典概型的简单应用 (思维突破)
【例1】 (1)(2017·高考山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机
抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )
(3)如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,
那么每一个基本事件的概率都是
1 n
;如果某个事件A包括的结果有m个,那么事件
A的概率P(A)=mn .
[三基自测]
1.(必修3·习题3.2A组改编)一个盒子里装有标号为1,2,3,4的4张卡片,随机地抽取
2张,则取出的2张卡片上的数字之和为奇数的概率是( )
跟踪训练 一个盒子里装有三张卡片,分别标记有数字2,3,这三张卡片除标记 的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数 字依次记为a,b,c. (1)求“抽取的卡片上的数字满足a+b=c”的概率; (2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-7 二项分布、正态分布及其应用课时规X 练(授课提示:对应学生用书第331页)A 组 基础对点练1.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ等于( C ) A .1 B .2 C .4D .不能确定解析:当函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A ) A .0.8 B .0.75 C .0.6D .0.453.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( B )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%) A .4.56% B .13.59% C .27.18%D .31.74%4.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 38.解析:依题意,元件的使用寿命超过1 000小时的概率为12,则该部件的使用寿命超过1 000小时的概率为12×⎣⎢⎡⎦⎥⎤12×12+12×⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫1-12×12=38.5.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解析:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C ,P (B )=0.6,P (C )=0,4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C ) =P (A 1BC )+P (A 2B )+P (A 2B -C ) =P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C )=0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4)=0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,P (X =3)=P (D )-P (X =4)=0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06. X 的分布列为P 0.06 0.25 0.38 0.25 0.06数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4) =0.25+2×0.38+3×0.25+4×0.06=2.6.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2. ①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX . 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. 解析:(1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以EX =100×0.682 6=68.26.B 组 能力提升练1.某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩近似服从正态分布,即X ~N (100,a 2)(a >0),试卷满分为150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分(包含100分和110分)之间的人数约为( A ) A .400 B .500 C .600D .8002.已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( B ) A .6 B .7 C .8D .93.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( B )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .464.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( D ) A.23 B .512 C.79D .595.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( B )(附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4) A .1 193 B .1 359 C .2 718D .3 4136.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④.(写出所有正确结论的序号) ①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关. 解析:由题意知A 1,A 2,A 3是两两互斥的事件,P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3) =12×511+15×411+310×411=922. 7.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为 34.解析:记事件A 为“第一次摸到黑球”,事件B 为“第二次摸到白球”,则事件AB 为“第一次摸到黑球、第二次摸到白球”,依题意知P (A )=25,P (AB )=25×34=310,∴在第一次摸到黑球的条件下,第二次摸到白球的概率是P (B |A )=P AB P A =34.8.某学校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度,现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后一位数字为叶).(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.解析:(1)众数:8.6;中位数:8.75.(2)设A i (i =0,1,2,3)表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(3)ξ的所有可能取值为0,1,2,3.则ξ~B ⎝ ⎛⎭⎪⎫3,14, P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3. ξ的分布列为:所以E (ξ)=3×14=0.75.9.挑选空军飞行员可以说是“万里挑一”,需要通过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析知甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响. (1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解析:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B -C -)+P (A -B C -)+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X的可能取值为0,1,2,3,其中P(X=k)=C k3(0.3)k·(1-0.3)3-k. 故P(X=0)=C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027,故X的分布列为。