模糊集与粗糙集的简单入门

合集下载

粗糙集与直觉模糊特殊集

粗糙集与直觉模糊特殊集

记 U上模糊集全体为 F( , U) 则任意 AEF( , U)A={z, <

U ( ) lEU} A z >x 。取 ( ) 一 ( ) Vx z :1 z , EU, 直觉模 糊集
A, {z,A糊集表 u , 是
维普资讯
计算机科学 2 0 Vo. 3 Q 7 0 6 13 N .
粗 糙 集 与 直 觉 模 糊 特 殊 集 )
邱 卫根 杨 小 平
( 东工 业 大学 计算机 学院 广
摘 要
3O 3 广 州 50 9 ) ( 西财 经大 学计 算机 学 院 南 昌 3 O 1) 10 0 江
1 引言
P wl a a k的粗糙 集理 论是 数据 挖掘 中一 种重 要 的理论 工 具, 它的重要特点是数 据挖掘过 程 中只需要 利用数 据本 身提
则 A= < AlA2 一 {z ( ,A z > x U, , > < , z)V ( ) l EU } 由 于 Al , n Az 一 , 则
粗 集理论和直觉模糊特殊 集理论 都是 近年来发展起 来 的一种有 效的信息 处理理论 , 尤其在 不确 定信 息处理
中各有优 势。本 文首先讨论 了直 觉模糊特 殊集及 其算子的一 些性 质 , 并给 出了其海 明距 离的定 义和计算 。同时研 究
了粗 糙 近 似 空 间 上 一 类 粗 代 数 结 构 与 直 觉模 糊 特 殊 集 的 同 态关 系 。 关键词 粗 糙 集 , 觉模 糊 特 殊 集 , 小上 近 似 , 直 最 同态
法精确得到 , 所需要 的信息具有很大 的不确定性 , 非常适合 于
直觉模糊集理论 。事实上 , a as v的直觉模糊集不仅 扩展 Atn so 了 Z d h模糊集 , ae 而且将其 作为 自己研究 的特例 。 本文主要研究 了直觉 模糊特 殊集算 子 的性质 , 出 了其 给 海 明距 离的计算方法 , 讨 了粗糙 近似空 间上一 类粗代数 结 探 构 与其 直觉 模糊特殊集表示之 间的同态 关系。

粗糙集的简单应用解析

粗糙集的简单应用解析
pos (C ?{P }) ( D ) ? {t1, t2 , t3 , t4 , t6 , t8} ? posC (D) pos (C ?{Q}) ( D ) ? {t1 , t2 , t3 , t4 } ? pos C ( D )
pos(C ?{ R}) ( D) ? ? ? pos C (D)
第二十一页,编辑于星期三:二点 三十分。
规则提取
提取决策规则可以得到以下确定性规则:
(购买Q)且(不购买 R)—— (不购买 S) (购买 Q)且(购买 R) ——(购买S)
不确定规则为:
(不购买 Q)且(购买 R) —— (购买 S) ? (不买 Q买R,买 S ) ? 0.5
(不购买Q)且(购买 R)——(不购买 S)
论域, U 中的每个 xi (i ? n) 称为一个对象;
(2)A 是属性的非空有限集合,即 A ? {a1 , a2 ,? , an } , A 中
的每个 a j ( j ? m) 称为一个属性;
(3)V
?
?
a?
A
Va,Va
是属性的值域;
( 4) f :U ? A ? V 称为信息函数,它为每个对象关于每个
i Cij 表示分辨矩阵 中第 行,第 j 列的元素,Cij 被定义为:
C ij
?
??{a ? ? ??
A a ( xi ) ? a ( xj )}, D( xi ) ?
? , D (xi ) ? D( x j )
D(xj )
其中 i, j ? 1,2,? , n; n ? U
定义2.10 区分函数 是从分辨矩阵中构造的。约简算法的方法
定理2 core ( A) ? ? red ( A),其中 red ( A) 表示 A 的所有约简。

粗糙集理论的基本原理与模型构建

粗糙集理论的基本原理与模型构建

粗糙集理论的基本原理与模型构建粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它在信息科学、数据挖掘和人工智能等领域具有广泛的应用。

本文将介绍粗糙集理论的基本原理和模型构建方法。

一、粗糙集理论的基本原理粗糙集理论最早由波兰学者Pawlak于1982年提出,它是基于集合论和近似推理的一种数学模型。

粗糙集理论的核心思想是通过对数据集进行分析,找出数据之间的关联和规律,从而进行决策和推理。

粗糙集理论的基本原理包括下近似和上近似。

下近似是指在给定条件下,能够包含所有满足条件的对象的最小集合;上近似是指在给定条件下,能够包含所有满足条件的对象的最大集合。

通过下近似和上近似的计算,可以得到粗糙集的边界区域,进而进行数据分类、决策和模式识别等任务。

二、粗糙集模型的构建方法粗糙集模型的构建方法主要包括属性约简和决策规则提取两个步骤。

属性约简是指从原始数据集中选择出最具代表性和决策能力的属性子集。

属性约简的目标是减少属性的数量,同时保持原始数据集的决策能力。

常用的属性约简方法包括正域约简、核约简和快速约简等。

这些方法通过计算属性的重要性和相关性,从而选择出最优的属性子集。

决策规则提取是指从属性约简后的数据集中提取出具有决策能力的规则。

决策规则是一种描述数据之间关系的形式化表示,它可以用于数据分类、决策和模式识别等任务。

决策规则提取的方法包括基于规则的决策树、基于规则的神经网络和基于规则的关联规则等。

三、粗糙集理论的应用领域粗糙集理论在信息科学、数据挖掘和人工智能等领域具有广泛的应用。

它可以用于数据预处理、特征选择、数据分类和模式识别等任务。

在数据预处理方面,粗糙集理论可以帮助我们对原始数据进行清洗和转换,从而提高数据的质量和可用性。

通过对数据集进行属性约简和决策规则提取,可以减少数据集的维度和复杂度,提高数据挖掘和决策分析的效率和准确性。

在特征选择方面,粗糙集理论可以帮助我们选择出最具代表性和决策能力的属性子集。

粗糙集 (ppt)

粗糙集 (ppt)
一、概述 二、知识分类 三、知识的约简 四、决策表的约简 五、粗糙集的扩展模型 六、粗糙集的实验系统 七、粒度计算简介
2
一、 概述
现实生活中有许多含糊现象并不能简单 地用真、假值来表示﹐如何表示和处理这些 现象就成为一个研究领域。早在1904年谓词 逻辑的创始人G.Frege就提出了含糊(Vague) 一词,他把它归结到边界线上,也就是说在 全域上存在一些个体既不能在其某个子集上 分类,也不能在该子集的补集上分类。
12
Issues in the Decision Table
• The same or indiscernible objects may be represented several times. • Some of the attributes may be superfluous.
13
不可区分性Indiscernibility
二、 知识分类
为数学处理方便起见,在下面的定义中用等价关系 来代替分类。 一个近似空间(approximate space)(或知识库)定义 为一个关系系统(或二元组)
K=(U,R)
其中U(为空集)是一个被称为全域或论域(universe) 的所有要讨论的个体的集合,R是U上等价关系的一 个族集。
7
二、 知识分类
设PR,且P ,P中所有等价关系的交集称为P上 的一种不可区分关系(indiscernbility relation) 记作IND(P),即
[x]IND(p)= ∩[x]R RP 注意,IND(P)也是等价关系且是唯一的。
8
二、 知识分类
给定近似空间K=(U, R),子集XU称为U上的一个概念 (concept),形式上,空集也视为一个概念;非空子族集 PR所产生的不可区分关系IND(P)的所有等价类关系的集合 即U/IND(P),称为基本知识(basic knowledge),相应的等 价类称为基本概念(basic concept);特别地,若关系QR, 则关系Q就称为初等知识(elementary knowledge),相应的 等价类就称为初等概念(elementary concept)。 根据上述定义可知,概念即对象的集合,概念的族集(分类) 就是U上的知识,U上分类的族集可以认为是U上的一个知识 库,或说知识库即是分类方法的集合。

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰学者Pawlak于1982年提出。

粗糙集理论的核心思想是通过对数据进行粗糙化处理,将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括:粗糙集、等价关系、下近似集和上近似集。

首先,粗糙集是指在不完全信息条件下,通过将数据进行粗糙化处理得到的集合。

粗糙集可以看作是原始数据的一个近似描述,它包含了原始数据的一部分信息。

粗糙集的构建是通过等价关系来实现的。

其次,等价关系是粗糙集理论中的一个重要概念。

等价关系是指在给定的数据集中,将数据划分为若干等价类的关系。

等价关系的划分可以通过相似性度量来实现,相似性度量可以是欧氏距离、余弦相似度等。

等价关系的划分可以将原始数据进行分类,从而构建粗糙集。

下面,我们来介绍下近似集和上近似集。

下近似集是指在给定的粗糙集中,对于某个特定的属性或条件,能够确定的元素的集合。

换句话说,下近似集是能够满足某个条件的元素的集合,它是粗糙集的一个子集。

而上近似集是指在给定的粗糙集中,对于某个特定的属性或条件,可能满足的元素的集合。

上近似集是包含下近似集的最小集合,它是粗糙集的一个超集。

粗糙集理论的应用非常广泛,特别是在数据挖掘和模式识别领域。

通过粗糙集理论,可以对大量的数据进行处理和分析,从中发现隐藏的规律和模式。

粗糙集理论可以用于特征选择、属性约简、数据分类等任务,为决策提供有力支持。

总结起来,粗糙集理论是一种处理不确定性和模糊性问题的数学工具。

它通过粗糙化处理将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括粗糙集、等价关系、下近似集和上近似集。

粗糙集理论在数据挖掘和模式识别领域有着广泛的应用,可以用于特征选择、属性约简、数据分类等任务。

通过粗糙集理论,我们可以更好地理解和处理不确定性和模糊性问题,为决策提供有力支持。

粗糙集理论的使用方法与步骤详解

粗糙集理论的使用方法与步骤详解

粗糙集理论的使用方法与步骤详解引言:粗糙集理论是一种用来处理不确定性和模糊性问题的数学工具,它在数据分析和决策支持系统中得到了广泛的应用。

本文将详细介绍粗糙集理论的使用方法与步骤,帮助读者更好地理解和应用这一理论。

一、粗糙集理论概述粗糙集理论是由波兰学者Pawlak于1982年提出的,它是一种基于近似和粗糙程度的数学理论。

粗糙集理论的核心思想是通过对属性间的关系进行分析,识别出数据集中的重要特征和规律。

它主要包括近似集、正域、决策表等概念。

二、粗糙集理论的使用方法1. 数据预处理在使用粗糙集理论之前,首先需要对原始数据进行预处理。

这包括数据清洗、数据变换和数据归一化等步骤,以确保数据的准确性和一致性。

2. 构建决策表决策表是粗糙集理论中的重要概念,它由属性和决策构成。

构建决策表时,需要确定属性集和决策集,并将其表示为一个矩阵。

属性集包括原始数据中的各个属性,而决策集则是属性的决策结果。

3. 确定正域正域是指满足某一条件的样本集合,它是粗糙集理论中的关键概念。

通过对决策表进行分析,可以确定正域,即满足给定条件的样本集合。

正域的确定可以通过计算属性的约简度或者使用启发式算法等方法。

4. 近似集的计算近似集是粗糙集理论中的核心概念,它是指属性集在正域中的近似表示。

通过计算属性集在正域中的近似集,可以确定属性之间的关系和重要程度。

近似集的计算可以使用不同的算法,如基于粒计算、基于覆盖算法等。

5. 属性约简属性约简是粗糙集理论中的一个重要问题,它是指从属性集中选择出最小的子集,保持属性集在正域中的近似表示不变。

属性约简的目标是减少属性集的复杂性,提高数据分析和决策的效率。

属性约简可以通过计算属性的重要度、使用启发式算法或者遗传算法等方法实现。

6. 决策规则的提取决策规则是粗糙集理论中的重要结果,它是从决策表中提取出来的一组条件和决策的组合。

决策规则可以帮助我们理解数据集中的规律和特征,从而做出更好的决策。

粗糙集

粗糙集

粗糙集(Rough Set)理论是由波兰数学家Pawlak在1982年提出的一种数据分析理论,常用于处理模糊和不精确的问题。

RS可以从大量的数据中挖掘潜在的、有利用价值的知识,它与概率方法、模糊集方法和证据理论方法等其他处理不确定性问题理论的最显著的区别在于:它无需提供问题所需处理的数据集合之外的任何先验信息(即无需指定隶属度或隶属函数)。

粗糙集是提供了严格的数学理论方法。

它把知识理解为对对象的分类能力。

它包含了知识的一种形式模型,这种模型将知识定义为不可区分关系的一个族集。

在信息检索过程中,由于文档中存在大量的多义和近义现象,导致不确定性出现,这将影响检索的性能。

为此采用基于互信息的粗糙集理论来处理这类不确定性问题。

动态约简技术探讨:利用标准的粗糙集方法来产生约简,即直接在原决策表的基础上计算所有的约简集,然后利用这些约简计算决策规则集合来分类未知对象。

这种方法对于未知对象的分类不总是足够充分的,因为该方法没有考虑到约简集的属性部分可能是混乱、不规则的。

动态约简是来自于在决策表的众多随机采样的子表中具有最大的出现频率的约简,在此意义上来说,利用动态约简来分类位置对象是最为稳定、可靠的。

经典粗糙集理论是建立在对象空间的等价类之上,采用上近似、下近似和边界的概念来分析对象的空间中不能由等价关系定义的子集的性质,是一种利用三值逻辑处理不精确或不完全信息的形式化方法。

有“智慧”,实际上是它们将外部环境和内部状态的传感信号分类,得出可能的情况,并由此支配行动,知识直接与真实或抽象世界有关的不同分类模式联系在一起。

因此,任何一个物种都是由一些知识来描述,对物种可以产生不同的分类。

从而如何在知识库中进行本质特征提取,发现最简决策表及最简分类规则集成为知识描述的关键。

从理论上看,智能信息处理的重要任务就是要从大量观察和实验数据中获取知识、表达知识、推理决策规则,特别是对于不精确、不完整的知识。

RS是处理不精确信息的有力工具。

粗糙集

粗糙集

粗糙集理论的应用及发展摘要:粗糙集理论是一种新型的处理模糊和不确定知识的数学工具, 被广泛应用于不确定环境下的信息处理。

本文主要介绍了粗糙集理论的基本概念、研究对象,叙述了其在各领域的应用发展情况,然后对粗糙集理论应用进行了论述, 最后对粗糙集理论今后的研究方向进行了展望。

关键词:粗糙集、应用、数据挖掘、数据分析、发展趋势粗糙集(Rough sets) 理论是由波兰数学家Z. Pawlak 在1982 年提出的, 该理论是一种刻画不完整性和不确定性的数学工具,能有效地分析和处理不精确、不一致、不完整等各种不完备信息,并从中发现隐含的知识,揭示潜在的规律[1 ] 。

1992 年至今,每年都召开以RS 为主题的国际会议,推动了RS 理论的拓展和应用。

国际上成立了粗糙集学术研究会,参加的成员来自波兰、美国、加拿大、日本、挪威、俄罗斯、乌克兰和印度等国家。

目前,粗糙集这一新的数学理论已经成为信息科学领域的研究热点之一,它在机器学习、知识获取、决策分析、过程控制等许多领域得到了广泛的应用。

1、粗糙集理论的基本概念1. 1 知识的含义粗糙集理论建立在分类机制的基础上,并将等价关系对空间的划分与知识等同。

粗糙集理论的主要思想是利用已知的知识库,将不精确或不确定的知识用已知的知识库中的知识来(近似)刻画。

在粗糙集理论中,“知识”被认为是一种分类能力,也就是将知识理解为对数据的划分。

用集合的概念表示就是使用等价关系集R 对离散表示的空间U 进行划分,知识就是R 对U 划分的结果。

由此,在U 和R 的意义下,知识库可以定义为:属于R 中的所有可能的关系对U 的划分,记为K = ( U , R) (1)这样给定一组数据U 与等价关系集R ,在R 下对U 的划分, 称为知识, 记为U/ R 。

如果一个等价关系集对数据的划分存在矛盾, 则将导致不确定划分,可用粗糙度来度量。

1. 2 集合的上近似和下近似粗糙集理论的不确定性是建立在上、下近似的概念之上的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊集与粗糙集的简单入门1.前言Zadeh在1965年创立了模糊集理论[1],Pawlak在1982年又给出了粗糙集的概念[2],模糊集理论和粗糙集理论都是研究信息系统中只是不完全,不确定问题的两种方法,是经典集合论的推广,它们各自具有优点和特点,并且分别在许多领域都有成功的应用,如模式识别、机器学习、决策分析、决策支持、知识获取、知识发现等.模糊理论是简历集合的子集边缘的病态定义模型,隶属函数多数是凭经验给出的,带有明显的主观性;粗糙集理论基于集合中对象间的不可分辨行的思想,作为一种刻画不完整想和不确定性的数学工具,它无需任何先验信息,能邮箱分析处理不精确、不完整等不完备信息,对不确定集合的分析方法是客观的.两种理论之间有着密切的关系和很强的互补性,同事粗糙集理论和模糊集理论可以进行结合,产生粗糙模糊集理论和模糊粗糙集理论,并且发挥着不同的优势.本文在已有的模糊集理论和粗糙集理论的基础之上,分析和总结了模糊集和粗糙集理论,对二者进行了全面的比较.2.基本概念这部分将集中介绍模糊集和粗糙集的基本概念及其性质.2.1模糊集模糊理论[3][4]是一种用以数学模型来描述语意式的模糊信息的方法.模糊概念也是没有明确外延的概念.根据普通集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一;而模糊集则通常用隶属函数表示模糊概念.2.1.1模糊集合的基本定义定义 1 设X是有限非空集合,称为论域,X上的模糊集A用隶属函数表示如下:→→A X x A x:[0,1],()其中()A x表示元素x隶属于模糊集合A的程度,记X上的模糊集合全体为F X.()模糊集合的数学表示方式为A x A x X where A x=∈∈{(,(x))|},()[0,1]2.1.2模糊集合的运算设,A B为X上的两个模糊集,它们的并集,交集和余集都是模糊集,且其隶属函数分别定义为=∀∈A B A x B x x Xmax{(),()}A B A x B x x X=∀∈min{(),()}⌝=-A A12.1.3 模糊集合的关系A xB x作为模糊集合之间关系的表示方式,是以集合所存在的隶属函数(),()集合之间的关系表示的.(1)模糊集合之间的相等:=⇔=∀∈A B A x B x x X()()(2)模糊集合之间的包含:⊂⇔≤∀∈()()A B A x B x x X2.1.4 截集与支集定义2 对于()A F X ∈和任意[0,1]λ∈,定义{}()A x A x λλ=≥{}()s A x A x λλ=>分别为A 的λ截集和A 的λ强截集.特别的,当1λ=时,1A 为A 的核;当0λ=时,0s A 为A 的支集.表示为如下:{}1()()1core A A x A x ==={}0()()0s support A A x A x === 则根据上面截集的概念,模糊子集通过λ截集就变成了普通集合.截集就是将模糊集合转化为普通集合的方法,截集的概念是联系模糊集合与普通集合之间的桥梁.2.2 粗糙集2.2.1粗糙集合的基本定义(1)粗糙集合提出的背景由于经典逻辑只有真假二值之分,而在现实生活中存在许多含糊的现象,并不能简单的用真假值来表示.于是,在1904年,谓词逻辑的创始人G.frege 提出了含糊(vague)一词,他把含糊现象归结到边界线上.1965年,L.A. Zadeh 提出Fuzzy Sets 的概念,试图通过这一理论解决G.frege 的含糊概念.Zadeh 的FS 方法是利用隶属函数描述边界上的不确定对象.1982年,波兰华沙理工大学 Z.Pawlak 教授针对G. frege 的边界线区域思想提出了Rough Sets 理论.Pawlak 的RS 方法:把无法确认的个体都归属于边界区域,把边界区域定义为上近似集和下近似集的差集.(2)粗糙集合的定义粗糙集理论特点是不需要预先给定默写特征或属性的数量描述,直接从给定的问题的描述集合出发,通过不可分辨关系和不可分辨类确定给定问题的近似域,找出问题内在规律.定义 2 设(,,,)K X A V f =是一个知识库,其中X 是一个非空集合,称为论域.A C D =是属性的非空有限集合,C 为D 的决策属性,C D =Φ,a V 是属性a A ∈的值域,:f X A V ⨯→是一个信息函数,它为每个对象赋予一个信息值.定义 3 设X 是一个有限的非空论域,R 为X 上的等价关系,等价关系R 把集合X 划分为多个互不相交的子集,每个子集称为一个等价类,用[]R x 来表示,[]{}R x y X xRy =∈,其中x X ∈,称,x y 为关于R 的等价关系或者不可分辨关系.论域X 上的所有等价类的集合用/X R 来表示.2.2.2 上、下近似集,粗糙度(1)上下近似集的定义定义4 对于任意的Y X ⊆,Y 的R 上、下近似集分别定义为(){/|}R Y Z X R Z Y =∈≠Φ(){/|}R Y Z X R Z Y =∈⊆集合()posR Y 称为集合Y 的正域,()()posR Y R Y =;集合()()negR Y X R X =-称为集合Y 的负域;集合()()()bnR Y R Y R Y =-称为Y 的R 边界域.集合的不确定性是由于边界域的存在,集合的边界域越大,精确性越低,粗糙度越大. 当()()R Y R Y =时,称Y 为R 的精确集;当()()R Y R Y ≠时,称Y 为R 的粗糙集,粗糙集可以近似使用精确集的两个上下近似集来描述.(2) 粗糙度粗糙度是表示知识的不完全程度,由等价关系R 定义的集合X 的粗糙度为:()1R RX X RX ρ=-其中X ≠Φ,X 表示集合X 的基数.3 研究对象、应用领域及研究方法3.1模糊集的研究对象、应用领域及研究方法(1) 模糊集的研究对象模糊集研究不确定性问题,主要着眼于知识的模糊性,强调的是集合边界的不分明性.(2) 模糊集的应用领域模糊集理论[5]广泛应用与现代社会与生活中,主要有以下几个方面:消费电子产品、工业控制器、语音辨识、影像处理、机器人、决策分析、数据探勘、数学规划以及软件工程等等.(3)研究方法模糊集理论的计算方法是知识的表达和简化.从知识的“粒度”的描述上来看,模糊集是通过计算对象关于集合的隶属程度来近似描述不确定性;从集合的关系来看,模糊集强调的是集合边界上的病态定义,也即集合边界的不分明性;从研究的对象来看,模糊集研究属于同一类的不同对象间的隶属关系,强调隶属程度;从隶属函数来看,模糊集的隶属函数反映了概念的模糊性,而且模糊集的隶属函数大多是专家凭经验给出的,带有强烈的主观意志.3.2粗糙集的研究对象、应用领域及研究方法(1)粗糙集的研究对象[6]粗糙集理论研究不确定性问题,基于集合中对象间的不可分辨性思想,建立集合的子集边缘的病态定义模型.(2)粗糙集的应用领域粗糙集理论在近些年得到飞速发展,在数据挖掘,模式识别,粗糙逻辑方面取得较大进展.与粗糙集理论相关的学科主要有以下几方面:人工智能,离散数学,概率论,模糊集理论,神经网络,计算机控制,专家系统等等[7].(3)粗糙集的研究方法粗糙集理论的研究方法就是对知识的含糊度的一个刻画,其计算方法主要是连续特征函数的产生.粗糙集理论研究认知能力产生的集合对象之间的不可分辨性,通过引入一对上下近似集合,用它们的差集来描述不确定的对象.从集合的关系来看,粗糙集强调的是对象间的不可分辨性,与集合上的等价关系相联系;从研究的对象来看,粗糙集研究的是不同类对象组成的集合关系,强调分类;从隶属函数来看,粗糙集的粗糙隶属函数的计算是从被分析的数据中直接获得,是客观的[8].4.基本研究内容4.1 模糊集理论研究的主要内容模糊集理论研究的内容很广泛,主要包括以下几方面:模糊控制,模糊聚类分析,模糊模式识别,模糊综合评判,模糊集的扩展.4.1.1 模糊控制 自从Zadeh 发展出模糊集理论之后,对于不明确系统的控制有极大的贡献,自七十年代以后,便有一些实用的模糊控制器相继的完成,使得我们在控制领域中又向前迈进了一大步,在此将对模糊控制理论做一番浅介[6].模糊控制利用模糊集理论的基本思想和理论的控制方法.在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的.然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想.换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了.所以,模糊集理论便被用来处理这些控制问题.4.1.2模糊聚类分析模糊聚类分析的研究是基于模糊等价关系和以及模糊分类上的[4].主要有以下的定理以及定义.定理1 令R 是一个模糊等价关系,并且01αβ≤<≤,则对y X ∀∈有[][]R R y y βα⊆.定义 5 设数据集12{,,,}n X x x x =,且12,,,c A A A 是其一个分类,若该分类满足以下条件:(1) 对k ∀,存在i 使得k i x A ∈;(2) 对所以i 均有i A ≠Φ;则称该分类是X 的一个模糊划分.基于上面的理论,我们可以用一个划分矩阵()ik c n D d ⨯=来刻画数据集的分类,其中0 , 1 , k i ik k i x A d x A ∉⎧=⎨∈⎩ 定义6 对于上面的矩阵D ,若其满足以下三个条件:(1){}0,1ik d ∈;(2)11, c ik i d k ==∀∑;(3)10, n ik k d i =>∀∑;则称D 是X 上的一个精确的c -划分矩阵.定义7 设c 和n 时两个给定的正整数若模糊矩阵()ik c n D d ⨯=满足以下三个条件:(1) []0,1ik d ∈;(2) 11, c ik i d k ==∀∑;(3) 10, n ik k d n i =<<∀∑;则称D 为X 上的一个模糊的c -划分矩阵.定义8 设12{,,,}m n X x x x =⊆,12{,,,}m c V v v v =⊆,()ik c n D d ⨯=()c n ≤是X 上的一个模糊的c -划分矩阵,则 ()211(,)c n p ik i k i k J D V d v x ===-∑∑(p ∈)称为模糊划分上的一个聚类准则函数,这里()12()21[]m i i x x===∑ 定义9 如果对于任意的12{,,,}mn X x x x =⊆,存在****12{,,,}m c V v v v =⊆以及模糊的c -划分矩阵*D 使得 **(,)(,)J D V J D V ≤对所有的12{,,,}m n X x x x =⊆以及模糊的c -划分矩阵D 都成立,则称*D 为最优模糊c -划分矩阵,*V 为一个模糊聚类中心.4.1.3模糊模式识别模糊模式识别是利用模糊集理论对行为的识别.根据识别模式的性质,可以将模式识别分为两类:具体事物的识别,如对文字,音乐,语言等周围事物的识别;抽象事物的识别,如对已知的一个论点或者一个问题的理解等.下面介绍一些基本的定理及定义.定义10 清晰度增强因子:令()A F X ∈是X 上的一个模糊集,定义另外一个模糊集(2)()()I A F X ∈,其中 2(2)22() , ()[0,0.5]()()12(1()), ()(0.5,1]A x A x I A x A x A x ⎧∈⎪⎨--∈⎪⎩ 称(2)()()I A x 为清晰度增强因子.4.1.4模糊综合评判模糊综合评判是利用模糊集理论对一个事物进行评价.具体的过程为:将评价目标看成是由多种因素组成的模糊集合X ,再设定这些因素所能选取的评审等级,组成评语的模糊集合(称为评判集V ),分别求出各单一因素对各个评审等级的归属程度(称为模糊矩阵D ),然后根据各个因素在评价目标中的权重分配,通过计算(称为模糊矩阵合成),求出评价的定量解值.定义11 设:[0,1][0,1]n f →满足以下几个条件:(1)1212(,,,)n n x x x x f x x x x ====⇒=; (2)(1)(2)(1)(2)111111(,,,,,,)(,,,,,,)i i i i i n i i i n x x f x x x x x f x x x x x -+-+≤⇒≤,i ∀; (3)12(,,,)n f x x x 对每个变量都是连续的;则称f 为n -维综合函数. 常用的n -维综合函数主要有加权平均函数,几何平均函数,单因素决策函数,显著因素准则函数等等.4.2粗糙集理论研究的主要内容粗糙集理论作为一种数据分析处理理论,无论是在理论方面还是在应用实践方面都取得了很大的进展,展示了它光明的前景,因而其研究内容以及领域也是非常广泛的,主要包括以下几方面:变精度粗糙集,集值信息系统,粗糙集理论的应用,支持向量基等.4.2.1变精度粗糙集变精度粗糙集模型[9]是Pawlak 粗糙集模型的扩充,它是在基本粗糙集模型的基础上引入了β(00.5β≤<),即允许一定的错误分类率存在,这一方面完善了近似空间的概率,另一方面也有利于用粗糙集理论从认为不相关的数据集中发现相关的数据.当然,变精度粗糙集模型的主要任务是解决属性间无函数或不确定关系的数据分类问题.当0β=时,Pawlak 粗糙集模型是变精度粗糙集模型的一个特例.4.2.2集值信息系统集值信息系统[5]是信息系统的一般化模型,在实际应用中信息系统随着对象的变化而不断地动态变化.(,)S X AT =是信息系统,其中X 是对象的非空有限集合,AT 是属性的非空有限集合,对于每个a AT ∈有:a a X V →,其中a V 称为a 的值域.每个属性子集A AT ⊆决定了一个不可区分关系()ind A :(){(,)|,()()}ind A x y X X a A a x a y =∈⨯∀∈=.关系()ind A (A AT ⊆)构成了X 的划分,用/()X ind A 来表示.对于一个对象,一些属性值可能是缺省的.为了表明这种情况,通常给定一个区分值(即空值 null value )给出这些属性定义12 如果至少有一个属性a AT ∈使得a V 含有空值,则称S 是一个不完备信息系统[5],否则称它是完备的,我们用*表示空值.设S 是一个不完备信息系统,a AT ∈使得a V 含有空值*时,并且该空值*的取值为一个集合,该集合的元素是这个属性中其他所有可能值的集合,则S 就是集值信息系统.下面是一个不完备信息系统的例子:4.2.3 支持向量基支持向量机(Support Vector Machine,SVM)[10][11]是Corinna Cortes和Vapnik8等于1995年首先提出的.SVM起初是广泛应用在神经信息处理系统(Neural Information Processing Systems,NIPS), 但是,现今,SVM 已经在所有的机器学习研究领域中起着重要作用.SVM是一种学习系统,他利用高维空间中的线性分类器,在这个空间中建立一个最大的间隔超平面,这里的最大是基于最优化理论的.广义的SVM起源于统计学习理论[12].5.模糊集与粗糙集的结合由上面的讨论可知,模糊集理论与粗糙集理论各具特点,两种理论有着很强的联系与互补性,因此将两者的特点结合起来形成研究不完全数据集的有效方法.此外,通过模糊聚类和粗糙集两种方法进行属性的对象约简和属性约简,可以使数据得到横向和纵向两个方向上的约简,对象约简是引入了相似性的概念进行模糊聚类的过程,对象约简改变了标准粗糙集模型的不可分辨关系的确定条件;由于粗糙集所处理的都是离散数据,所以在数据分析中需要应用模糊聚类或隶属函数离散化,进而应用粗糙集理论属性约简、提取规则.所以结合模糊集、粗糙集理论能够有效地分析数据,提高生成规则的可信性和和合理性,倒出可信的规则集.5.1模糊粗糙集及粗糙模糊集结合模糊集和粗糙集两种理论可以得到模糊粗糙集及粗糙模糊集模型,当知识库中的知识模块是清晰的概念,而被描述的概念是一个模糊的概念,人们建立粗糙模糊集模型来解决此类问题的近似推理;当知识库中的知识模块是模糊知识,而被近似的概念是模糊概念时,则需要建立模糊粗糙集模型,也有人将普通关系推广称模糊关系或者模糊划分而获得模糊粗糙集模型.定义13 设R 是X 上的一个等价关系,()A F X ∈,[0,1]λ∈,模糊集A 、A λ以及s A λ的上下近似分别为:(){|[]},(){|[]}RR R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆ (){|[]},(){|[]}s s s s R R R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆(){|[]},(){|[]}RR R A x X x A R A x X x A =∈≠Φ=∈⊆ 可以验证,当A 是X 上的经典集合时,上面所介绍的上下近似就是Pawlak 意义下的上下近似. 定义14 设R 是X 上的等价关系,A 是X 的一个模糊集合,()A F X ∈,则A 关于R 的上下近似分别定义如下:()sup{()|[]},()inf{()|[]}R R R R A x A y y x A x A y y x =∈=∈可以看出,模糊集()A F X ∈关于等价关系R 的上下近似仍为模糊集合,若 R R A A =,则称A 是可定义的,否则称A 是粗糙集,称R A 是A 关于近似空间(,)X R 的正域,称~R A 是A 关于(,)X R 的负域,称(~)R R A A 为A 的边界.R A 可以理解为对象x 肯定属于模糊集A 的隶属程度;R A 理解为对象x 可能属于模糊集A 的隶属程度,同样可以验证,当A 时X 上的经典集合时,就是Pawlak 意义下的上下近似.在标准粗糙集模型中引入变精度,提高了相对近似精度,而在粗糙模糊集引入变精度,得到新定义:()sup{()|[]()1}R R A x A y y x A y ββ=∈∧>-()inf{()|[]()}R R A x A y y x A y ββ=∈∧≥这样下近似集合中元素隶属度降低,而上近似的隶属度提高,提高了相对精度.5.2粗糙隶属函数粗糙隶属函数式借助模糊理论来研究粗糙集理论的方法,通过粗糙隶属度函数可以将粗糙集理论与模糊集理论联系起来,建立一种粗糙集理论与模糊集理论的关系,并得到一些性质.定义15 设R 是论域X 上的一个相似关系,若A 是X 上的一个模糊集合,则A 关于R 的一个下近似()R A 和上近似()R A 分别定义为X 上的一个模糊集合,称为粗糙隶属度函数[5],定义为 |[]|()|[]|R R A x A x x = 粗糙隶属函数表示的是一个模糊概念,一般不是Zadeh 意义下的隶属函数.粗糙隶属函数()A x 表示的是x 的等价类[]R x 隶属于A 的程度.由定义14和定义15可以得到:模糊集A 的下近似且关于等价关系R 的等价类隶属于A 的程度为1;模糊集A 的上近似且关于等价关系R 的等价类隶属于A 的程度为大于0小于1,因此有:性质1 1(){|()1,/}Core A A x A x x X R RA ===∈=0(){|()0,/}s support A A x A x x X R ==>∈(){|0()1,/}bnR A RA RA x A x x X R =-=<<∈(){|()0,/}negR A X RA x A x x X R =-==∈性质2 []()()R y x A x A y ∈⇒=[]()1R x A A x ⊆⇒=[]()0R x A A x =Φ⇒=[] []()(0,1)R Rx A and x A A x ⊄≠Φ⇒∈ 6 总结本文系统的介绍了模糊集理论与粗糙集理论,二者研究的主要内容,以及二者的结合的相关理论.是对本学期所学的模糊计算和粗糙计算的一个简单的小结,也是我本人对该学科的一个简单的入门.参考文献[1] L.A.Zadeh, Fuzzy sets[J], Information and Control, 1965,8:338-353.[2]Pawlak Z, Rough sets[J], International Journal of Computer andInformation science, 1982,1(11):341-356.[3]胡宝清,模糊理论基础,武汉:武汉大学出版社,2010.[4]张文修,模糊数学基础,西安:西安交通大学出版社,1984.[5]张文修,粗糙集理论与方法,北京:科学出版社,2001[6] /view/87377.htm[7]K. Y. Chan, C.K. Kwong, B.Q. Hu, Market segmentation and ideal pointidentification for new product design using fuzzy data compression and fuzzy clustering methods[J], Applied Soft Computing, 2012, 12, 1371-1378.[8]Z.Pawlak, Rough sets and fuzzy sets [J], Fuzzy sets and Systems,1985,17,99-102.[9]Beynon M.Reducts within the variable precision rough sets model: afurther investigation[J], European Journal of Operational Research, 2001,134:592-605.[10]邓乃扬,田英杰,数据挖掘中的新方法:支持向量基,北京:科学出版社,2004.[11]邓乃扬,田英杰,支持向量基-理论、算法与拓展,北京:科学出版社,2009.[12]V.Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.。

相关文档
最新文档