数字图像处理常用方法

合集下载

数字图像处理课件ppt

数字图像处理课件ppt

06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换

亮度、对比度、饱和度、锐度、色调方法指导

亮度、对比度、饱和度、锐度、色调方法指导

亮度、对比度、饱和度、锐度、色调方法指导亮度、对比度、饱和度、锐度和色调是数字图像处理中常用的调整方法,它们可以让图像表现出更好的视觉效果,并突出图像中想要表达的内容。

在本指导中,我们将针对每种调整方法进行详细介绍和操作指导。

一、亮度调整亮度是指图像中明亮部分的强度,亮度调整可以让图像看起来更加明亮或更加暗淡,从而改变图像整体的光感。

在数字图像处理软件中进行亮度调整时,可以通过调整图像的曝光值或亮度参数来实现。

在Photoshop软件中,可以通过打开图像后进入“图像”菜单下的“调整”选项,选择“亮度/对比度”来对图像整体的亮度进行调整。

你可以通过滑动亮度调节条或手动输入数值来改变图像的亮度。

二、对比度调整对比度是指图像中明暗部分之间的差异程度,对比度调整可以让图像的细节更加清晰,色彩更加丰富。

在数字图像处理软件中进行对比度调整时,可以通过调整图像的对比度参数来实现。

在Photoshop软件中,可以通过同样的“亮度/对比度”选项来对图像的对比度进行调整,你可以通过滑动对比度调节条或手动输入数值来改变图像的对比度。

三、饱和度调整饱和度是指图像中色彩的强度和纯度程度,饱和度调整可以让图像的色彩更加生动鲜艳。

在数字图像处理软件中进行饱和度调整时,可以通过调整图像的饱和度参数来实现。

在Photoshop软件中,可以通过打开图像后进入“图像”菜单下的“调整”选项,选择“色相/饱和度”来对图像的饱和度进行调整。

你可以通过滑动饱和度调节条或手动输入数值来改变图像的饱和度。

四、锐度调整锐度是指图像中线条和边缘的清晰程度,锐度调整可以让图像的轮廓更加清晰,细节更加突出。

在数字图像处理软件中进行锐度调整时,可以通过调整图像的锐度参数来实现。

在Photoshop软件中,可以通过打开图像后进入“滤镜”菜单下的“锐化”选项来对图像的锐度进行调整。

你可以通过滑动锐化调节条或手动输入数值来改变图像的锐度。

五、色调调整色调是指图像中主色调的整体氛围和风格,在数字图像处理软件中进行色调调整时,可以通过调整图像的颜色平衡、色温等参数来实现。

数字图像处理技术简介

数字图像处理技术简介

数字图像处理技术简介数字图像处理技术是指利用数字计算机技术对数字图像进行各种操作和处理的过程,它将数字图像视为信号,对其进行各种分析和处理,以达到改善图像质量、提取有用信息、识别和恢复失真等目的。

目前,数字图像处理技术已广泛应用于医学、遥感、地质勘察、环境监测、安全监控等众多领域。

一、数字图像的表示方式数字图像是以点阵形式存储在计算机中的,每个点称为像素(Pixel),每个像素有一个灰度值或彩色值。

灰度图像每个像素仅有一个数值,代表图像的亮度;彩色图像每个像素有三个数值,代表图像的红、绿、蓝三个通道的值。

数字图像的表示方式主要有以下两种:1.二值图像:每个像素只有两种取值,分别为黑和白。

二值图像常用于文字、边缘提取等领域。

2.灰度图像/彩色图像:每个像素有多种取值,分别表示亮度或颜色的不同程度。

灰度图像和彩色图像常用于人脸识别、医学图像等领域。

二、数字图像处理的基本步骤数字图像处理主要包括以下四个基本步骤:1.图像获取:通过传感器、摄像机等设备采集图像。

2.预处理:对获取的图像进行预处理,包括图像去噪、增强、几何校正等。

3.图像分析与处理:对预处理后的图像进行各种分析和处理,包括图像分割、特征提取、模式识别等。

4.后处理:对处理后的图像进行后处理,可根据具体需求进行目标检测、修改、输出等处理。

三、常用的数字图像处理技术1.图像增强:图像增强是指改善图像质量,使其更符合人眼视觉要求的一系列操作。

包括直方图均衡化、各种滤波、彩色平衡等。

2.图像分割:图像分割是将图像分成多个互不重叠的区域,每个区域内的像素具有类似的特征。

常用的分割方法包括阈值分割、区域增长、边缘检测等。

3.特征提取:特征提取是指从图像中识别出各种特征,用于图像分类、目标检测等。

常用的特征提取方法包括形状特征、纹理特征、颜色特征等。

4.模式识别:模式识别是通过对已知图像的学习,准确地识别新图像所属的类别。

常用的模式识别方法包括神经网络、最近邻算法等。

数字图像处理领域的二十四个典型算法

数字图像处理领域的二十四个典型算法

数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。

图像处理是信号处理在图像域上的⼀个应⽤。

⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。

本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。

由于篇幅所限,只给出某⼀算法的主体代码。

ok,请细看。

⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。

灰度分为256阶。

所以,⽤灰度表⽰的图像称作灰度图。

程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。

这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。

数字图像处理中常用的插值方法

数字图像处理中常用的插值方法

分类: 算法 数字图像处理中常用的插值方法
2010-11-15 14:05 在做数字图像处理时,经常会碰到小数象素坐标的取值问题,这时就需要依据邻近象如:做地图投影转换,对目标图像的一个象素进行坐标变换到源图像上对应的点时,数,再比如做图像的几何校正,也会碰到同样的问题。

以下是对常用的三种数字图像
1、最邻近元法
这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象
对于 (i, j+v),f(i, j) 到 f(i, j+1) 的灰度变化为线性关系,则有:
f(i, j+v) = [f(i, j+1) - f(i, j)] * v + f(i, j)
同理对于 (i+1, j+v) 则有:
f(i+1, j+v) = [f(i+1, j+1) - f(i+1, j)] * v + f(i+1, j)
从f(i, j+v) 到 f(i+1, j+v) 的灰度变化也为线性关系,由此可推导出待求象素灰度的计算 f(i+u, j+v) = (1-u) * (1-v) * f(i, j) + (1-u) * v * f(i, j+1) + u * (1-v) * f(i+1, j) 双线性内插法的计算比最邻近点法复杂,计算量较大,但没有灰度不连续的缺点,结性质,使高频分量受损,图像轮廓可能会有一点模糊。

3、三次内插法
该方法利用三次多项式S(x)求逼近理论上最佳插值函数sin(x)/x, 其数学表达式为:
待求像素(x, y)的灰度值由其周围16个灰度值加权内插得到,如下图:
待求像素的灰度计算式如下:f(x, y) = f(i+u, j+v) = ABC
其中:
三次曲线插值方法计算量较大,但插值后的图像效果最好。

灰度重心法 定位边缘

灰度重心法 定位边缘

灰度重心法定位边缘灰度重心法和定位边缘是数字图像处理中常用的两种方法。

灰度重心法是一种基于图像灰度值分布的特征提取方法,用于确定物体的几何中心。

而定位边缘则是一种检测图像中物体边缘的方法,可以用于目标识别和跟踪等应用。

一、灰度重心法1. 灰度重心法原理灰度重心法是利用物体在图像上的灰度分布来确定其几何中心。

对于一个二值化的图像,其几何中心可以通过计算黑色像素点和白色像素点在x和y方向上的平均值得到。

但对于一个灰度图像,其像素点不仅有黑白两种颜色,还有不同程度的灰色。

因此,在计算几何中心时,需要考虑每个像素点所占据的权重。

设I(x,y)表示图像上坐标为(x,y)处的像素值,Gx和Gy分别表示在x和y方向上所有像素点所占据权重的平均值,则物体在x和y方向上的几何中心可以表示为:Xc = ∑(I(x,y)*x)/∑I(x,y)Yc = ∑(I(x,y)*y)/∑I(x,y)其中∑I(x,y)表示图像中所有像素点的灰度值之和。

2. 灰度重心法应用灰度重心法常用于图像分割、目标跟踪、形状识别等领域。

例如,在目标跟踪中,可以通过计算物体在前一帧和当前帧中的几何中心来确定物体的运动轨迹。

二、定位边缘1. 定位边缘原理定位边缘是一种检测图像中物体边缘的方法。

在数字图像处理中,边缘是指物体与背景之间的明显变化区域。

通过检测这些变化区域,可以确定物体的轮廓和形状。

常用的定位边缘方法包括Canny算子、Sobel算子、Laplacian算子等。

其中Canny算子是最经典和最常用的方法之一。

它基于图像梯度的变化率来检测边缘,并采用非极大值抑制和双阈值分割等技术来提高检测精度。

2. 定位边缘应用定位边缘常用于目标识别、图像增强、自动驾驶等领域。

例如,在自动驾驶中,可以通过检测道路边缘来确定车辆的行驶方向和位置。

总结:灰度重心法和定位边缘是数字图像处理中常用的两种方法。

灰度重心法基于图像灰度值分布的特征提取,用于确定物体的几何中心;定位边缘则是一种检测图像中物体边缘的方法,可以用于目标识别和跟踪等应用。

数字图像处理的理论与方法

数字图像处理的理论与方法数字图像处理(Digital Image Processing)是指利用计算机对图像进行处理和分析的一种技术。

它涉及的理论与方法是指对图像进行数学建模和处理的一系列过程和方法。

下面将对数字图像处理的理论与方法进行详细介绍,并分点列出步骤。

一、数字图像处理的理论基础1. 数学基础:数字图像处理的理论与方法建立在一系列数学基础上,包括几何学、代数学、概率论、统计学等。

2. 图像重建理论:数字图像处理的核心目标是从原始图像中还原出最准确的信息,图像重建理论为实现这一目标提供了依据。

3. 信号处理理论:图像本质上是一个二维信号,所以信号处理理论对于数字图像处理至关重要,包括傅里叶分析、滤波器设计等。

二、数字图像处理的方法1. 图像获取:获得数字图像是数字图像处理的前提,方法包括数码相机、扫描仪、卫星遥感等。

2. 图像预处理:对原始图像进行预处理是为了去除噪声和改善图像质量。

常用的方法有平滑滤波、锐化、直方图均衡化等。

3. 图像增强:根据具体需求,对图像进行增强可以使图像更加鲜明和易于分析,常用方法有对比度增强、边缘增强等。

4. 图像恢复:通过数学模型和算法,重建被损坏的图像或以更好的方式表示图像是图像恢复的关键过程,常用方法有降噪、插值等。

5. 图像分割:将图像划分为具有特定特征的区域,常用方法有阈值分割、边缘检测、聚类等。

6. 特征提取:从分割后的图像中提取出与感兴趣的目标有关的特征,常用方法有形状分析、纹理分析等。

7. 目标识别与分类:根据提取的特征,利用模式识别算法对目标进行识别与分类,常用方法有神经网络、支持向量机等。

8. 图像压缩与编码:为了减少图像数据的存储空间和传输带宽,常使用图像压缩与编码技术,例如JPEG、PNG等。

三、数字图像处理的应用领域1. 医学影像处理:数字图像处理在医学影像诊断中起着重要作用,例如X光、磁共振成像、超声等。

2. 人脸识别:数字图像处理为人脸识别提供了基础技术,常用于安全、人机交互等领域。

图像数字化处理常用方法

图像数字化处理常用方法1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。

因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。

目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。

如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。

4 )图像分割:图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。

因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

5 )图像描述:图像描述是图像识别和理解的必要前提。

作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。

对于特殊的纹理图像可采用二维纹理特征描述。

随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

数字图像处理实例集锦

通过设置一个或多个阈值,将图像的像素值进行分类,从而实现图像分割。这种方法适用于背景和前景有明显差异的图像,如黑白图像或二值化图像。
阈值分割
基于像素的聚类算法,适用于彩色图像分割
将像素点聚类成K个类别,使得同一类别内的像素点在颜色和空间上相近。通过迭代优化,将像素点归入最接近的类别,从而实现图像分割。
数字图像处理实例集锦
CATALOGUE
目录
图像增强 图像恢复 特征提取 图像分割 图像识别 图像压缩
01
图像增强
总结词
通过拉伸图像的灰度直方图,增强图像的对比度。
详细描述
直方图均衡化通过重新分配图像像素强度,使得图像的灰度级分布更均匀,从而提高图像的对比度。这种方法尤其适用于图像整体偏暗或对比度不足的情况。
03
优缺点: 优点是能够处理复杂背景和多目标分割;缺点是计算量大,需要确定初始区域数目和生长规则。
基于区域的分割
05
图像识别
总结词
人脸识别技术利用计算机算法对输入的人脸图像或视频流进行身份识别。
实现原理
人脸识别通常包括人脸检测和人脸特征提取两个步骤。人脸检测用于确定输入图像中的人脸位置,而人脸特征提取则通过算法提取出人脸的几何特征或纹理特征,用于比对。
应用场景
人脸识别技术广泛应用于智能手机解锁、银行ATM机、机场安检等领域,提高了安全性和便利性。
详细描述
人脸识别技术广泛应用于安全、门禁、移动支付等领域,通过比对人脸特征与数据库中存储的信息,实现快速的身份验证。
人脸识别
总结词:物体识别是计算机视觉领域的一个重要分支,旨在识别图像中的物体并对其进行分类。
优缺点: 优点是能够处理彩色图像,对噪声和光照变化有一定的鲁棒性;缺点是计算量大,需要预先确定聚类数目K。

数字图像处理

数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。

它涉及对数字图像进行获取、处理、分析和解释的过程。

数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。

本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。

数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。

在数字图像处理中,我们通常使用灰度图像和彩色图像。

•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。

灰度图像通常表示黑白图像。

•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。

彩色图像可以表示图像中的颜色信息。

图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。

1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。

2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。

3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。

常见的处理包括滤波、边缘检测、图像变换等。

4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。

常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。

•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。

•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。

•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。

边缘检测边缘检测是用于寻找图像中物体边缘的方法。

常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。

•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。

•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理常用方法
是基于图像的性质进行计算,利用数字图像处理方法来处理和分析数字图像信息。

数字图像处理包括图像采集、图像建模、图像增强、图像分割、图像特征提取、图像修复、图像变换等。

具体数字图像处理方法有:
1、图像采集:利用摄像机采集图像,可以采用光学成像、数字成像或其他技术技术来实现;
2、图像建模:利用数学模型将图像信息表达出来,有些模型可以用来确定图像的特征,而有些模型则能够捕捉图像的复杂细节;
3、图像增强:对采集的图像数据进行处理,包括图像的锐化、滤波、清晰度增强、局部像素增强等;
4、图像分割:根据指定的阈值将图像分成不同的区域,分割图像后可以获得更多的精确细节和信息;
5、图像特征提取:将图像信息中的有价值部分提取出来,提取的过程有多种算法,提取的结果均可以用来进行分类识别等;
6、图像修复:通过卷积神经网络,利用图像的实际内容和特征,自动修复受损图像;
7、图像变换:针对图像的数据结构,可以利用变换矩阵将图像像素坐标和分量进行变换,以获得新的图像。

相关文档
最新文档