信息论习题(含答案).doc

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载信息论与编码理论习题答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第二章信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此每个码字的信息量为 2=23=6 bit因此,信息速率为 61000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1} ==得到的信息量 ===2.585 bit(2) 可能的唯一,为 {6,6}=得到的信息量===5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) =信息量===225.58 bit(b)==信息量==13.208 bit2.9 随机掷3颗骰子,X表示第一颗骰子的结果,Y表示第一和第二颗骰子的点数之和,Z表示3颗骰子的点数之和,试求、、、、。

解:令第一第二第三颗骰子的结果分别为,,,相互独立,则,,==6=2.585 bit===2(36+18+12+9+)+6=3.2744 bit=-=-[-]而=,所以= 2-=1.8955 bit或=-=+-而= ,所以=2-=1.8955 bit===2.585 bit=+=1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。

奇数在传送过程中以0.5的概率错成另外一个奇数,其余正确接收,求收到一个数字平均得到的信息量。

信息论课堂习题及答案

信息论课堂习题及答案

2.3 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?解:(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x p bit x p x I i i 581.225!52log )(log )(==-= (2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:bit C x p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少? 解: 男士:symbolbit x p x p X H bitx p x I x p bit x p x I x p i i i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑3.2 设二元对称信道的传递矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32313132 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.1 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4.06.0)(21x x X P X 通过一干扰信道,接收符号为Y = { y1, y2 },信道转移矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡43416165,求: (1) 信源X 中事件x 1和事件x 2分别包含的自信息量;(2) 收到消息y j (j=1,2)后,获得的关于x i (i=1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度H(X/Y)和噪声熵H(Y/X); (5) 接收到信息Y 后获得的平均互信息量。

信息论部分习题及解答

信息论部分习题及解答

2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“3和5同时出现” 这事件的自信息量。

(2)“两个1同时出现” 这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵或平均信息量。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:(1)设X 为‘3和5同时出现’这一事件,则P (X )=1/18,因此 17.418log)(log)(22==-=x p X I (比特)(2)设‘两个1同时出现’这一事件为X ,则P (X )=1/36,因此 17.536log)(log)(22==-=x p X I (比特)(3 ) “两个相同点数出现”这一事件的概率为1/36,其他事件的概率为1/18,则 337.418log181536log366)(22=+=X H (比特/组合)(4)222222111111()[log 36log 18()log 12()log 936181836181811136111()log ]2()log 6 3.44(/)1818365181818H X =++++++++⨯+++=比特两个点数之和(5)两个点数至少有一个为1的概率为P (X )= 11/36 71.13611log)(2=-=X I (比特)2-6设有一离散无记忆信源,其概率空间为⎪⎪⎭⎫⎝⎛=====⎪⎪⎭⎫⎝⎛8/134/124/118/304321x x x x PX该信源发出的信息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求:(1) 此信息的自信息量是多少?(2) 在此信息中平均每个符号携带的信息量是多少? 解:(1)由无记忆性,可得序列)(比特/18.87)3(6)2(12)1(13)0(14=+++=I I I I(2)符号)(比特/91.145/==I H 2-9在一个袋中放有5个黑球、10个白球,以摸一个球为一次实验,摸出的球不再放进去。

信息论与纠错编码课后练习题含答案

信息论与纠错编码课后练习题含答案

信息论与纠错编码课后练习题含答案前言信息论与纠错编码是计算机科学与通信工程中非常重要的领域。

本文档将介绍该领域中一些常见的练习题,并且配有答案供参考。

第一部分:信息论题目一假设在信道中有两个符号a和b,其发生概率分别为P(a)和P(b)。

则符号a和b在信道中的平均传输信息量为多少?答案一符号a和b分别传输的信息量为 $I(a)=-\\log_2P(a)$ 和 $I(b)=-\\log_2P(b)$。

因此,符号a和b在信道中的平均传输信息量为:$$I_{avg}=\\frac{1}{2}(I(a)+I(b))=\\frac{1}{2}(-\\log_2P(a)-\\log_2P(b))=-\\frac{1}{2}\\log_2(P(a)P(b))$$题目二以上一题中的符号为例,若P(a)=0.2,P(b)=0.8,则符号b传输的信息量是符号a的多少倍?答案二符号a和b的信息量为:$$I(a)=-\\log_2P(a)=-\\log_2(0.2)=2.322$$$$I(b)=-\\log_2P(b)=-\\log_2(0.8)=0.321$$因此,符号b传输的信息量为符号a的 $\\frac{0.321}{2.322}=0.138$ 倍。

第二部分:纠错编码题目三对于一个二元码,其生成矩阵为$G=\\begin{bmatrix}1&0&1\\\\0&1&1\\end{bmatrix}$。

请问该码的最小汉明距离是多少?答案三对于二元码,最小汉明距离等于最小权值。

该码的所有码字是:$$\\begin{bmatrix}1&0&0\\end{bmatrix},\\begin{bmatrix}0&1&0\\end{bmatrix},\\begin{bmatrix}1&1&0\\end{bmatrix},\\begin{bmatrix}0&0&1\\end{bmatrix},\\begin{bmatrix}1&0&1\\end{bmatrix},\\begin{bmatrix}0&1&1\\end{bmatrix},\\begin{bmatrix}1&1&1\\end{bmatrix},\\begin{bmatrix}0&0&0\\end{bmatrix}$$因此,该码的最小汉明距离是d min=1。

(完整word版)信息论习题集

(完整word版)信息论习题集

信息论习题集第一章、判断题1、信息论主要研究目的是找到信息传输过程的共同规律,提高信息传输的可靠性、有效性、保密性和认证性,以达到信息传输系统的最优化。

(√)2、同一信息,可以采用不同的信号形式来载荷;同一信号形式可以表达不同形式的信息。

(√)3、通信中的可靠性是指使信源发出的消息准确不失真地在信道中传输;(√)4、有效性是指用尽量短的时间和尽量少的设备来传送一定量的信息。

(√)5、保密性是指隐蔽和保护通信系统中传送的消息,使它只能被授权接收者获取,而不能被未授权者接收和理解。

(√)6、认证性是指接收者能正确判断所接收的消息的正确性,验证消息的完整性,而不是伪造的和被窜改的。

(√)7、在香农信息的定义中,信息的大小与事件发生的概率成正比,概率越大事件所包含的信息量越大。

(×)第二章一、判断题1、通信中获得的信息量等于通信过程中不确定性的消除或者减少量。

(√)2、离散信道的信道容量与信源的概率分布有关,与信道的统计特性也有关。

(×)3、连续信道的信道容量与信道带宽成正比,带宽越宽,信道容量越大。

(×)4、信源熵是信号符号集合中,所有符号的自信息的算术平均值。

(×)5、信源熵具有极值性,是信源概率分布P的下凸函数,当信源概率分布为等概率分布时取得最大值。

(×)6、离散无记忆信源的N次扩展信源,其熵值为扩展前信源熵值的N倍。

(√)7、互信息的统计平均为平均互信息量,都具有非负性。

(×)8、信源剩余度越大,通信效率越高,抗干扰能力越强。

(×)9、信道剩余度越大,信道利用率越低,信道的信息传输速率越低。

(×)10、信道输入与输出之间的平均互信息是输入概率分布的下凸函数。

(×)11、在信息处理过程中,熵是不会增加的。

(√)12、熵函数是严格上凸的。

(√)13、信道疑义度永远是非负的。

(√)14、对于离散平稳信源,其极限熵等于最小平均符号熵。

(完整word版)答案~信息论与编码练习(word文档良心出品)

(完整word版)答案~信息论与编码练习(word文档良心出品)

1、有一个二元对称信道,其信道矩阵如下图所示。

设该信道以1500个二元符号/秒的速度传输输入符号。

现有一消息序列共有14000个二元符号,并设在这消息中P(0)=P(1)=1/2。

问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传送完?解答:消息是一个二元序列,且为等概率分布,即P(0)=P(1)=1/2,故信源的熵为H(X)=1(bit/symbol)。

则该消息序列含有的信息量=14000(bit/symbol)。

下面计算该二元对称信道能传输的最大的信息传输速率: 信道传递矩阵为:信道容量(最大信息传输率)为:C=1-H(P)=1-H(0.98)≈0.8586bit/symbol得最大信息传输速率为:Rt ≈1500符号/秒× 0.8586比特/符号 ≈1287.9比特/秒 ≈1.288×103比特/秒此信道10秒钟内能无失真传输得最大信息量=10× Rt ≈ 1.288×104比特 可见,此信道10秒内能无失真传输得最大信息量小于这消息序列所含有的信息量,故从信息传输的角度来考虑,不可能在10秒钟内将这消息无失真的传送完。

2、若已知信道输入分布为等概率分布,且有如下两个信道,其转移概率矩阵分别为:试求这两个信道的信道容量,并问这两个信道是否有噪声?3 、已知随即变量X 和Y 的联合分布如下所示:01100.980.020.020.98P ⎡⎤=⎢⎥⎣⎦111122221111222212111122221111222200000000000000000000000000000000P P ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11222211122222log 4(00)1/()log 42/log 8(000000)2/(),H bit symbol H X bit symbol C C H bit symbol H X C =-===>=-==1解答:(1)由信道1的信道矩阵可知为对称信道故C 有熵损失,有噪声。

信息论复习题期末答案

信息论复习题期末答案1. 信息论的创始人是谁?答案:信息论的创始人是克劳德·香农。

2. 信息熵的概念是什么?答案:信息熵是衡量信息量的一个指标,它描述了信息的不确定性或随机性。

在信息论中,熵越高,信息的不确定性越大。

3. 请简述信源编码定理。

答案:信源编码定理指出,对于一个具有确定概率分布的离散无记忆信源,存在一种编码方式,使得信源的平均编码长度接近信源熵的值,且当信源长度趋于无穷大时,编码长度与信源熵之间的差距趋于零。

4. 什么是信道容量?答案:信道容量是指在特定的通信信道中,能够以任意小的错误概率传输信息的最大速率。

它是信道的最大信息传输率,通常用比特每秒(bps)来表示。

5. 香农公式是如何定义信道容量的?答案:香农公式定义信道容量为信道输入和输出之间的互信息量的最大值,可以表示为C = B log2(1 + S/N),其中C是信道容量,B是信道带宽,S是信号功率,N是噪声功率。

6. 差错控制编码的目的是什么?答案:差错控制编码的目的是为了检测和纠正在数据传输过程中可能发生的错误,以提高数据传输的可靠性。

7. 什么是线性码?答案:线性码是一种特殊的编码方式,其中任意两个合法编码的线性组合仍然是一个合法编码。

线性码通常可以用生成矩阵和校验矩阵来表示。

8. 卷积码和块码有什么区别?答案:卷积码和块码都是差错控制编码的类型,但它们的主要区别在于编码的结构和处理方式。

卷积码是连续的,其编码过程是按时间序列进行的,而块码是离散的,其编码过程是针对数据块进行的。

9. 什么是信道编码定理?答案:信道编码定理指出,对于任何给定的信道和任何小于信道容量的错误概率,都存在一种编码方式,可以使得错误概率趋近于零。

10. 请解释什么是信道编码的译码算法。

答案:信道编码的译码算法是一种用于从接收到的编码信号中恢复原始信息的方法。

常见的译码算法包括维特比算法、最大似然译码和最小均方误差译码等。

这些算法旨在最小化译码错误的概率。

信息论答案完整版


/8
⎥ ⎦
,其发出的消息为(202
120
130
213
001
203 210 110 321 010 021 032 011 223 210),求:
(1) 此消息的自信息是多少?
(2) 在此消息中平均每个符号携带的信息量是多少?
解:(1)因为离散信源是无记忆的,所以它发出的消息序列中各个符号是无依赖的,统计独立的。因
在研究香农信源编码定理的同时,另外一部分科学家从事寻找最佳编码(纠错码)的研究工作,并 形成一门独立的分支——纠错码理论。
1959 年香农发表了“保真度准则下的离散信源编码定理”,首先提出了率失真函数及率失真信源 编码定理。从此,发展成为信息率失真编码理论。
香农 1961 年的论文“双路通信信道”开拓了网络信息论的研究。 现在,信息理论不仅在通信、计算机以及自动控制等电子学领域中得到直接的应用,而且还广泛地 渗透到生物学、医学、生理学、语言学、社会学、和经济学等领域。
I (a4
=
3)
=
− log
P(a4 )
=
− log
1 8
=
log2
8=3(比特)
此消息中共有 14 个符号“0”,13 个符号“1”,12 个符号“2”和 6 个符号“3”,则此消息的自
信息是
I = 14I (a1 = 0) +13I (a2 = 1) +12I (a3 = 2) + 6I (a4 = 3) ≈ 14×1.415 +13× 2 +12× 2 + 6× 3 ≈ 87.71(比特)
此,此消息的自信息就等于各个符号的自信息之和。则可得:
I
(a1
=

信息论第二章课后习题解答

这样,平均每个像素携带的信息量为:
每帧图像含有的信息量为:
按每秒传输30帧计算,每秒需要传输的比特数,即信息传输率 为:
(2)需30个不同的色彩度,设每个色彩度等概率出现,则其概 率空间为:
由于电平与色彩是互相独立的,因此有
这样,彩色电视系统的信息率与黑白电视系统信息率的比值为
【2.13】每帧电视图像可以认为是由3×105个像素组成,所以 像素均是独立变化,且每一像素又取128个不同的亮度电平,并 设亮度电平等概率出现。问每帧图像含有多少信息量? 若现有一广播员在约 10000 个汉字的字汇中选 1000 个来口述 此电视图像,试问广播员描述此图像所广播的信息量是多少 (假设汉字是等概率分布,并且彼此无依赖)?若要恰当地描 述此图像,广播员在口述中至少需用多少汉字?
解: 信源为一阶马尔克夫信源,其状态转换图如下所示。
根据上述c) ,
【2.20】黑白气象传真图的消息只有黑色和白色两种,即信源, X={白 黑} ,设黑色出现的概率为 P(黑) =0.3 ,白色出现的 概率为P(白)=0.7。 (1) 假设图上黑白消息出现前后没有关联,求熵H(X) ; (2) 假设消息前后有关联,其依赖关系为P(白|白)=0.9 , P(白|黑)=0.2 ,P(黑|白)=0.1 ,P(黑|黑)=0.8 ,求此一阶马 尔克夫信源的熵H2 。 (3) 分别求上述两种信源的冗余度,并比较H(X)和H2的大小, 并说明其物理意义。
解:(1)如果出现黑白消息前后没有关联,信息熵为:
(2)当消息前后有关联时,首先画出其状态转移图,如下所 示:
设黑白两个状态的极限概率为Q(黑) 和Q (白) ,
解得:
此信源的信息熵为: (3)两信源的冗余度分别为:
结果表明:当信源的消息之间有依赖时,信源输出消息的不确 定性减弱。有依赖时前面已是白色消息,后面绝大多数可能 是出现白色消息;前面是黑色消息,后面基本可猜测是黑色 消息。这时信源的平均不确定性减弱,所以信源消息之间有 依赖时信源熵小于信源消息之间无依赖时的信源熵,这表明 信源熵正是反映信源的平均不确定的大小。而信源剩余度正 是反映信源消息依赖关系的强弱,剩余度越大,信源消息之 间的依赖关系就越大。

信息论考试卷及答案解析

考试科目名称:信息论一. 单选(每空2分,共20分)1.信道编码的目的是(C ),加密编码的目的是(D )。

A.保证无失真传输B.压缩信源的冗余度,提高通信有效性C.提高信息传输的可靠性D.提高通信系统的安全性2.下列各量不一定为正值的是(D )A.信源熵B.自信息量C.信宿熵D.互信息量3.下列各图所示信道是有噪无损信道的是(B )A.B.C.D.4.下表中符合等长编码的是( A )5.联合熵H(XY)与熵H(X)及条件熵H(X/Y)之间存在关系正确的是(A )A.H(XY)=H(X)+H(Y/X)B.H(XY)=H(X)+H(X/Y)C.H(XY)=H(Y)+H(X)D.若X和Y相互独立,H(Y)=H(YX)6.一个n位的二进制数,该数的每一位可从等概率出现的二进制码元(0,1)中任取一个,这个n位的二进制数的自信息量为(C )A.n2B.1 bitC.n bitnD.27.已知发送26个英文字母和空格,其最大信源熵为H0 = log27 = 4.76比特/符号;在字母发送概率不等时,其信源熵为H1 = 4.03比特/符号;考虑字母之间相关性时,其信源熵为H2 = 3.32比特/符号;以此类推,极限熵H=1.5比特/符号。

问若用一般传送方式,冗余度为( B )∞A.0.32B.0.68C .0.63D .0.378. 某对称离散信道的信道矩阵为 ,信道容量为( B )A .)61,61,31,31(24log H C -= B .)61,61,31,31(4log H C -= C .)61,61,31,31(2log H C -= D .)61,31(2log H C -= 9. 下面不属于最佳变长编码的是( D )A .香农编码和哈夫曼编码B .费诺编码和哈夫曼编码C .费诺编码和香农编码D .算术编码和游程编码二. 综合(共80分)1. (10分)试写出信源编码的分类,并叙述各种分类编码的概念和特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息理论基础习题集【考前必看】 一、 判断: 1、 必然事件和不可能事件的自信息量都是0 。

2、 自信息量是)(ixp的单调递减函数。 3、 单符号离散信源的自信息和信源熵都具有非负性。 4、 单符号离散信源的自信息和信源熵都是一个确定值。 5、单符号离散信源的联合自信息量和条件自信息量都是非负的和单调递减的 6、自信息量、条件自信息量和联合自信息量之间有如下关系: )/()()/()()(jijijijiyxIyIxyIxIyxI 7、自信息量、条件自信息量和互信息量之间有如下关系: )/()()/()();(ijjjiijixyIyIyxIxIyxI

8、当随机变量X和Y相互独立时,条件熵等于信源熵。

9、当随机变量X和Y相互独立时,I(X;Y)=H(X) 。 10、信源熵具有严格的下凸性。 11、平均互信息量I(X;Y)对于信源概率分布p(xi)和条件概率分布p(yj/xi)都具有凸函数性。 12、m阶马尔可夫信源和消息长度为m的有记忆信源,其所含符号的依赖关系相同。 13、利用状态极限概率和状态一步转移概率来求m阶马尔可夫信源的极限熵。 14、定长编码的效率一般小于不定长编码的效率。 15、信道容量C是I(X;Y)关于p(xi)的条件极大值。 16、离散无噪信道的信道容量等于log2n,其中n是信源X的消息个数。 17、信道无失真传递信息的条件是信息率小于信道容量。 18、最大信息传输速率,即:选择某一信源的概率分布(p(xi)),使信道所能传送的信息率的最大值。 19、信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小。 20、率失真函数对允许的平均失真度具有上凸性。 21、信源编码是提高通信有效性为目的的编码。 22、信源编码通常是通过压缩信源的冗余度来实现的。 23、离散信源或数字信号的信源编码的理论基础是限失真信源编码定理。 24、一般情况下,哈夫曼编码的效率大于香农编码和费诺编码。 25、在编m(m>2)进制的哈夫曼码时,要考虑是否需要增加概率为0的码字,以使平均码长最短。 26、对于BSC信道,信道编码应当是一对一的编码,因此,消息m的长度等于码字c的长度。 27、汉明码是一种线性分组码。 28、 循环码也是一种线性分组码。 29、 卷积码是一种特殊的线性分组码。 30、 可以用克劳夫特不等式作为唯一可译码存在的判据。 ( ) 31、线性码一定包含全零码。 ( )

32、确定性信源的熵H(0,0,0,1)=1。( ) 33、信源X的概率分布为P(X)={1/2, 1/3, 1/6},对其进行哈夫曼编码得到的码是唯一的。

( ) 34、离散无记忆序列信源中平均每个符号的符号熵等于单个符号信源的符号熵。 ( ) 35、非奇异的定长码一定是唯一可译码。 ( ) 36、信息率失真函数R(D)是在平均失真不超过给定失真限度D的条件下,信息率容许压缩的最小值。 ( )

37、信源X的概率分布为P(X)={1/2, 1/3, 1/6},信源Y的概率分布为P(Y)={1/3,1/2,1/6},则

信源X和Y的熵相等。 ( ) 38、互信息量I(X;Y)表示收到Y后仍对信源X的不确定度。 ( ) 39、对信源符号X={a1,a2,a3,a4}进行二元信源编码,4个信源符号对应码字的码长分别为K1=1,K2=2,K3=3,K3=3,满足这种码长组合的码一定是唯一可译码。 ( ) 40、设C = {000000, 001011, 010110, 011101, 100111, 101100, 110001, 111010}是一个二元线性分组码,则该码最多能检测出3个随机错误。 ( )

二、选择题(共10 分,每题2分) 1.下面表达式中正确的是( )。 A.jijxyp1)/( B.iijxyp1)/(

C.jjjiyyxp)(),( D.iijixqyxp)(),( 4.线性分组码不具有的性质是( )。 A.任意多个码字的线性组合仍是码字 B.最小汉明距离等于最小非0重量 C.最小汉明距离为3 D.任一码字和其校验矩阵的乘积cmHT=0 5.率失真函数的下限为( )。 A .H(U) B.0 C.I(U; V) D.没有下限 6.纠错编码中,下列哪种措施不能减小差错概率( )。 A. 增大信道容量 B. 增大码长 C. 减小码率 D. 减小带宽 7.一珍珠养殖场收获240颗外观及重量完全相同的特大珍珠,但不幸被人用外观相同但重量仅有微小差异的假珠换掉1颗。一人随手取出3颗,经测量恰好找出了假珠,不巧假珠又滑落进去,那人找了许久却未找到,但另一人说他用天平最多6次能找出,结果确是如此,这一事件给出的信息量( )。 A. 0bit B. log6bit C. 6bit D. log240bit 8.下列陈述中,不正确的是( )。 A.离散无记忆信道中,H(Y)是输入概率向量的凸函数 B.满足格拉夫特不等式的码字为惟一可译码 C.一般地说,线性码的最小距离越大,意味着任意码字间的差别越大,则码的检错、 纠错能力越强 D.满足格拉夫特不等式的信源是惟一可译码 10.下列离散信源,熵最大的是( )。 A. H(1/3,1/3,1/3); B. H(1/2,1/2); C. H(0.9,0.1); D. H(1/2,1/4,1/8,1/8) 11.下列不属于消息的是( )。 A.文字 B.信号 C.图像 D.语言 12.为提高通信系统传输消息有效性,信源编码采用的方法是( )。 A.压缩信源的冗余度 B.在信息比特中适当加入冗 余比特 C.研究码的生成矩阵 D.对多组信息进行交织处理 13.最大似然译码等价于最大后验概率译码的条件是( )。 A.离散无记忆信道 B.无错编码 C.无扰信道 D.消息先验等概 14.下列说法正确的是( )。 A.等重码是线性码 B.码的生成矩阵唯一 C.码的最小汉明距离等于码的最小非0重量 D.线性分组码中包含一个全0码字 15.二进制通信系统使用符号0和1,由于存在失真,传输时会产生误码,用符号表示下列事件,u0:一个0发出 u1:一个1发出 v0 :一个0收到 v1:一个1收到 则已知收到的符号,被告知发出的符号能得到的信息量是( )。 A. H(U/V) B. H(V/U) C. H(U,V) D. H(UV) 16. 同时扔两个正常的骰子,即各面呈现的概率都是1/6,若点数之和为12,则得到的自信息为( )。 A. -log36bit B. log36bit C. -log (11/36)bit D. log (11/36)bit 17.下列组合中不属于即时码的是( )。 A. { 0,01,011} B. {0,10,110} C. {00,10,11} D. {1,01,00} 18.已知某(6,3)线性分组码的生成矩阵011101110001111010G,则不用计算就可判断出下列码中不是该码集里的码是( )。 A. 000000 B. 110001 C. 011101 D. 111111 20.设有一个无记忆信源发出符号A和B,已知4341)(,)(BpAp,发出二重符号序列消息的信源,无记忆信源熵)(2XH 为( )。 A.0.81bit/二重符号 B.1.62bit/二重符号 C.0.93 bit/二重符号 D .1.86 bit/二重符号 21.给定xi条件下随机事件yj所包含的不确定度和条件自信息量p(yj

/xi),( )

A.数量上不等,单位不同 B.数量上不等,单位相同 C.数量上相等,单位不同 D.数量上相等,单位相同 22.条件熵和无条件熵的关系是: ( ) A.H(Y/X)<H(Y) B.H(Y/X)>H(Y) C. H(Y/X)≤H(Y) D.H(Y/X)≥H(Y) 23.根据树图法构成规则, ( ) A.在树根上安排码字 B.在树枝上安排码字 C. 在中间节点上安排码字 D.在终端节点上安排码字 24.下列说法正确的是: ( ) A.奇异码是唯一可译码 B.非奇异码是唯一可译码 C. 非奇异码不一定是唯一可译码 D.非奇异码不是唯一可译码 25.下面哪一项不属于熵的性质: ( ) A.非负性 B.完备性 C.对称性 D.确定性

三、二元对称信道如图。 1)若430p,411p,求XH、YXH|和YXI;; 2)求该信道的信道容量。 解:1)共6分

2) ,此时输入概率分布为等概率分布。 四、已知信源 1234560.20.20.20.20.10.1SssssssP







(1)用霍夫曼编码法编成二进制变长码;(6分) (2)计算平均码长L;(4分) (3)计算编码信息率R;(2分) (4)计算编码后信息传输率R;(2分)

(5)计算编码效率。(2分)

(1)

01010100111.00.20.20.20.20.10.11S2S3S4S5S6S

符号/749.0|bitYXH

相关文档
最新文档