北师大版九年级数学上册第四章 图形的相似培优测试卷(含解析)

合集下载

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。

北师大新版初三上第四章相似图形培优及答案附考点卡片

北师大新版初三上第四章相似图形培优及答案附考点卡片

北师大新版初三上第四章相似图形培优一 •填空题(共10小题)_1. (2011?苏州)如图,已知△ ABC 是面积为 的等边三角形,△ ABC ADE , AB=2AD , / BAD=45 ° AC 与DE 相交于点卩,则厶AEF 的面积等于 _____________________________ (结果保留根号).in 92. ( 2015?曲靖)若厶 ADE ACB ,且='',DE=10,贝U BC=AC 34. ( 2015?重庆)已知△ ABC DEF ,若△ ABC 与厶DEF 的相似比为 2: 3,则厶ABC 与△ DEF 对应边上中线的比为 __________ .5. ( 2015?重庆)已知△ ABC DEF ,△ ABC 与厶DEF 的相似比为 4: 1,则厶ABC 与厶 DEF 对应边上的高之比为 ____________ .6. ( 2015?本溪)在厶 ABC 中,AB=6cm ,AC=5cm ,点 D 、E 分别在 AB 、AC 上.若△ ADE与厶ABC 相似,且S ^ADE : S 四边形BCED =1 : 8,则AD= __________ cm .7.( 2010?湖州)如图,已知图中的每个小方格都是边长为 1的小正方形,每个小正方形的顶点称为格点.若△ ABC 与厶A 1B 1C 1是位似图形,且顶点都在格点上,则位似中心的坐标 是 _______ .8. ( 2015秋?九江期末)如图,E (- 6, 0), F (- 4, - 2),以O 为位似中心按比例尺 1 : 2把厶EFO缩小到第一象限,则点 F 的对应点F'的坐标为 _____________________________ .其中AB=5, BC=6,CA=9,DE=3,那么△ DEF 的C周长是ABC DEF ,■ » Un L> L _「节-liT 丄(■_ II H S-I 4 4* 4 J I-9. (2015秋?乐至县期末)如图,△ ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ ABC的位似图形△ A'BC,并把△ ABC的边长放大到原来的2倍.设B的坐标是(3,- 1),则点B的坐标是________________________ .V AO -10. (2010?津南区一模)如图,△ ABC与厶DEF是位似图形,点O是位似中心,若OA=2AD ,S A ABC =8,贝U S A DEF等于______ .二.解答题(共20小题)—2 弋11. (2012?金山区一模)已知丄'-,(1)求一的值;(2)若:,i ' 「,求x2 3 4 z值.12. (2013?谯城区校级模拟)已知」=「'=「=k,求k的值.c b a13. (2012秋?金安区校级月考)已知x= “:,求x的值.a+b b+c a+c“.K+Z y+z x+y . 十」古14. 已知------ =------ = =k ,求k值.y K z15. (2012?卢湾区一模)如图,已知点F在AB上,且AF : BF=1 : 2,点D是BC延长线上一点,BC: CD=2 : 1,连接FD与AC交于点N,求FN : ND的值.C16. (2013秋?北京校级期中) 已知:如图,△ ABC 中,DE // BC , AD + EC=9 , DB=4 , AE=5 , 求AD 的长.17. (2015秋?黄岛区期中)如图,一个矩形广场的长为 60m ,宽为40m ,广场内两条纵向 小路的宽均为1.5m ,如果设两条横向小路的宽都为 x m ,那么当x 为多少时,小路内外边 缘所围成的两个矩形相似?18. (2013春?武威校级月考)如图,四边形 ABCD 和EFGH 相似,求角 a B 的大小和EH 的长度x .19. (2016?兴化市校级二模)如图,在正方形ABCD 中,E 、F 分别是边 AD 、CD 上的点,AE=ED ,DF= - DC ,连接EF 并延长交BC 的延长线于点 G . 20. (2013?益阳)如图,在△ ABC 中,AB=AC ,BD=CD ,CE 丄 AB 于 E .求证:△ ABD s △ CBE .B C(1)求证:△ ABE DEF ;D21. (2015?常州模拟)如图,在正方形 ABCD 中,E 为边AD 的中点,点F 在边CD 上,且22. (2015?湘潭)如图,在 Rt A ABC 中,/ C=90° △ ACD 沿AD 折叠,使得点 C 落在斜 边AB 上的点E 处.(1) 求证:△ BDEBAC ;(2)已知AC=6 , BC=8,求线段 AD 的长度.角形,其中线段 BD 交AC 于点G ,线段AE 交CD 于点F ,求证: (1 )△ ACE ◎△ BCD ;(2) I 'I .24. (2013?陕西)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD 的高度.如图,当李明走到点 A 处时,张龙测得李明直立时身高 AM 与影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段 AB ,并测得AB=1.25m ,已知李明直立时的身高为 1.75m ,求路灯的高CD 的长.(结果精确到0.1m ).B 、C 、E 三点在同一条直线上,△ABC 与厶DCE 都是等边三DB C E25. (2015?邵阳)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.26. (2015?蓬溪县校级模拟)小红用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5 米时,她刚好能从镜子中看到教学大楼的顶端 B •已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).27. (2012?西城区模拟)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN .(1 )指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3 )若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.28. (2015秋?江北区期末)如图,阳光通过窗口照到教室内,竖直窗框在地面上留下 2.1m 长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m ,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)29. (2009?杭州)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.30. (2016春?建湖县校级月考)如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?参考答案与试题解析一•填空题(共10小题)1. (2011?苏州)如图,已知△ ABC是面积为「的等边三角形,△ ABC s\ ADE , AB=2AD , /主视團左视图单位:厘米2第7页(共31页)BAD=45 ° AC 与DE 相交于点卩,则厶AEF 的面积等于'-忑(结果保留根号)•【考点】相似三角形的性质;等边三角形的性质. 【专题】计算题.【分析】根据相似三角形面积比等于相似比的平方求得三角形 ADE 的面积,再根据求出其边长,可根据三角函数得出三角形面积.【解答】 解:•••△ ABC ADE , AB=2AD ,• .=^— , SA ASC AB 2 AB =2AD, ABC =';,如图,在△ EAF 中,过点F 作FH 丄AE 交AE 于H , •••/ EAF= / BAD=45 ° / AEF=60 ° •••/ AFH=45 ° / EFH=30 ° • AH=HF ,作CM 丄AB 交AB 于M ,•••△ ABC 是面积为 二的等边三角形,•••丄X AB X CM=:,2/ BCM=30 °设 AB=2k , BM=k , CM= ■:k , • k=1 , AB=2 ,•AE= AB=1,设 AH=HF=x ,则 EH=xtan30解得x故答案为:【点评】此题主要考查相似三角形的判定与性质和等边三角形的性质等知识点, 解得此题的关键是根据相似三角形面积比等于相似比的平方求得三角形ADE 的面积,然后问题可解.AD 22-( 2015?曲靖)若^ ADE 心 A CB ,且;亠「,DE =10,则 BC=4故答案为:15.【点评】本题考查的是相似三角形的性质, 掌握相似三角形的对应边的比相等并找准对应边是解题的关键.3. ( 2014?阜新)已知△ ABC DEF ,其中 AB=5 , BC=6 , CA=9 , DE=3,那么△ DEF 的 周长是 【考点】 【专12 .相似三角形的性质. 计算题.【分析】根据相似的性质得_工二=,即门「為,「然后利用比例的性质计算即可.【解答】 解:•••△ ABC s\ DEF , .△壮C 的周长=AB 囲 5+6+9=5...x + 'J x=1.AEF 」x 1 x3-~2 r【考点】 相似三角形的性质.【分析】 根据△ ADE ACB ,得到二-= AC二,代入已知数据计算即可.【解答】 解:•••△ ADE ACB ,=-卫,又丄,DE=10 ,AC BC AC 3.BC=15.C…二仁二….-,二上壬上=二,•••△ DEF 的周长=12 .故答案为:12.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.4. (2015?重庆)已知△ ABC DEF,若△ ABC与厶DEF的相似比为2: 3,则厶ABC与△ DEF对应边上中线的比为2: 3 .【考点】相似三角形的性质.【分析】相似三角形对应边上中线的比等于相似比,根据以上性质得出即可.【解答】解:•••△ ABC DEF , △ ABC与厶DEF的相似比为2: 3,• △ ABC与厶DEF对应边上中线的比是2:3, 故答案为:2: 3.【点评】本题考查了相似三角形的性质的应用,能理解相似三角形的性质是解此题的关键,注意:相似三角形对应边上中线的比等于相似比.5. (2015?重庆)已知△ ABC DEF, △ ABC与厶DEF的相似比为4: 1,则厶ABC与厶DEF对应边上的高之比为4: 1 .【考点】相似三角形的性质.【分析】根据相似三角形的对应边上的高之比等于相似比得出即可.【解答】解:•••△ ABC DEF , △ ABC与厶DEF的相似比为4: 1,• △ ABC与厶DEF对应边上的高之比是4: 1 ,故答案为:4: 1.【点评】本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的对应边上的高之比等于相似比.6. (2015?本溪)在厶ABC 中,AB=6cm , AC=5cm,点D、E 分别在AB、AC 上.若△ ADE 与厶ABC 相似,且S^ADE: S四边形BCED=1 : 8,则AD= 2或'_cm .3【考点】相似三角形的性质.【专题】压轴题;分类讨论.【分析】由于△ ADE与厶ABC相似,但其对应角不能确定,所以应分两种情况进行讨论.【解答】解:T S A ADE : S四边形BCED = 1 : 8,•§△ ADE : S A ABC=1 : 9,•△ ADE与厶ABC相似比为:1: 3,①若/ AED对应/ B时,则;■/ AC=5cm ,• AD= cm;3②当/ADE对应/ B时UAB_3■/ AB=6cm ,/• AD=2cm ;【点评】本题考查的是相似三角形的性质,相似三角形的对应边成比例,比等于相似比的平方,意识到有两种情况分类讨论是解决问题的关键.7. (2010?湖州)如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ ABC与厶A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是(9, 0) .【考点】位似变换.【专题】网格型.【分析】连接任意两对对应点,看连线的交点为那一点即为位似中心.【解答】解:连接BB i, A I A,易得交点为(9, 0).故答案为:(9, 0).【点评】用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.相似三角形的面积& ( 2015秋?九江期末)如图,E (- 6, 0), F (- 4, - 2),以O为位似中心按比例尺1 : 2把厶EFO缩小到第一象限,则点F的对应点F'的坐标为(2, 1).【考点】位似变换;坐标与图形性质.【分析】以O为位似中心,按比例尺1 : 2,把厶EFO缩小,结合图形得出,则点F的对应点F'的坐标是E (- 4,- 2)的坐标同时乘以- —计算即可.2【解答】解:根据题意可知,点F的对应点F'的坐标是F (- 4,- 2)的坐标同时乘以--,2所以点F'的坐标为(2,1),故答案为:(2,1).【点评】本题考查了位似变换及坐标与图形性质的知识,关于原点成位似的两个图形,若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(- kx, - ky).9. (2015秋?乐至县期末)如图,△ ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ ABC的位似图形△ A'BC,并把△ ABC 的边长放大到原来的2倍.设B的坐标是(3,- 1),则点B的坐标是(-3,丄 _.【考点】位似变换;坐标与图形性质.【分析】作BD丄x轴于D,B D '丄x轴于D 根据相似三角形的性质求出CD,BD的长,得到点B的坐标.【解答】解:作BD丄x轴于D, B'D'丄x轴于D',•••点C的坐标是(-1, 0), B的坐标是(3,- 1),••• CD =4, B'D=1 ,由题意得,△ ABC s A B C,相似比为1: 2,.BD = CD =1…匕= =:.,• CD=2 , BD=-,•点B的坐标是「3,"故答案为:(—3,」_).2【点评】本题考查的是位似变换的性质和坐标与图形的性质, 和相似三角形的性质是解题的关键.10. (2010?津南区一模)如图,△ ABC与厶DEF是位似图形,点O是位似中心,若OA=2AD , S^ ABC =8,贝V S^ DEF 等于18.【考点】位似变换.【专题】计算题.【分析】△ ABC与厶DEF是位似图形,由OA=2AD可得两个图形的位似比,面积的比等于位似比的平方.【解答】解:•••△ ABC与厶DEF是位似图形且OA=2AD .•••两位似图形的位似比为2: 3,•••两位似图形的面积比为4: 9,又•••△ ABC的面积为8,得厶A'B'C的面积为18.故答案为18.【点评】本题考查了位似图形的性质:面积的比等于位似比的平方.二.解答题(共20小题)11. (2012?金山区一模)已知(1)求一的值;(2)若:「',,求x2 3 4 z值.【考点】比例的性质;二次根式的性质与化简.【专题】计算题.【分析】(1)设x=2k, y=3k , z=4k,代入后化简即可;2(2)把x=2k, y=3k, z=4k代入得出2k+3=k,求出方程的解,注意无理方程要进行检验.【解答】解由「•…一,设x=2k , y=3k , z=4k,2 3 4掌握位似的两个图形是相似形(1)『£ - 4k (2)…厂■了化为三上上2 2••• 2k+3=k,即k - 2k—3=0,••• k=3 或k= - 1,经检验,k= - 1不符合题意,• k=3,从而x=2k=6 ,即x=6 .【点评】本题考查了比例的性质,二次根式的性质,解一元二次方程等知识点的应用, 解(1)小题的方法,解(2)小题求出k的值要进行检验.12. (2013?谯城区校级模拟)已知二一=止=二^=k,求k的值.c b a【考点】比例的性质.【专题】分类讨论.【分析】分a+b+c z 0时,利用合比性质解答即可,a+b+c=0时,用c表示出a+b,计算即可得解.【解答】解:① a+b+c z 0 时,=「- = :“" =k , c b a• k= _ _ ; ' =2;a+b+c '②a+b+c=0 时,a+b= - c, a+c= - b, b+c= - a,所以,k=——= - 1,c综上所述,k的值为2或-1.【点评】本题考查了比例的性质,主要利用了合比性质,易错点在于要分情况讨论.13. (2012秋?金安区校级月考)已知x= “■,求x的值.a+b b+c a+c【考点】比例的性质.【专题】计算题.【分析】应为a、b、c的关系不明确,所以分①a+b+c z 0时,利用合比性质列式进行计算即可得解,②a+b+c=0时,分别用两个字母表示出第三个字母,进行计算即可求解.cab a+b+c 1x=a+b b+c a+c 2 (a+b+c) 2②a+b+c=0 时,a+b= - c, b+c= - a, a+c= - b,=-1,故答案为:;或-1.【点评】本题考查了比例的性质,注意要分两种情况讨论求解, 而导致出错. 注意【解答】解:①a+b+c z 0时,…x=—a+b b+c a+cx的值为l或-1综上所述,同学们容易漏掉第二种情况14•已知」=_==:" =k,求k值.y x z【考点】比例的性质.【分析】分x+y+z=O时求解,x+y+z z 0时,利用合比性质解答.【解答】解:①x+y+z=0时,x+y= - z,所以,k= - 1,...k= [ m …「=2x+jH-z所以,k值为-1或2.【点评】本题考查了比例的性质,主要利用了合比性质,易错题,要注意分情况讨论.15. (2012?卢湾区一模)如图,已知点F在AB上,且AF : BF=1 : 2,点D是BC延长线上一点,BC: CD=2 : 1,连接FD与AC交于点N,求FN : ND的值.【考点】平行线分线段成比例.【专题】证明题.【分析】过点F作FE// BD,交AC于点E,求出工=丄,得出FE=_BC,根据已知推出BC 3 3CD=* BC,根据平行线分线段成比例定理推出—=—,代入化简即可.2 ND CD【解答】解:过点F作FE / BD,交AC于点E,• EF = AF…---- ,BC AB•/ AF : BF=1 : 2,即FE= BC,3•/ BC : CD=2 : 1,• CD=—BC,2•/ FE // BD,② x+y+z z 0 时,丄二=v;_=:匕丁=ky K z1-3 1=3一一一一AFABFE丽1-BC•『」=「二= =而 CD 1BC 3B L J即FN: ND=2 : 3.=:=' -r.u•••△ BCF s\ BDA ,•••!_=二=,/ BCF= / BDA ,AD BD 3• FC // AD , • △ CNFAND ,•空=匹=2【点评】 本题考查了平行线分线段成比例定理的应用,注意:平行线分的线段对应成比例, 此题具有一定的代表性,但是一定比较容易出错的题目.16. (2013 秋?北京校级期中) 已知:如图,△ ABC 中,DE // BC , AD + EC=9 , DB=4 , AE=5 , 求AD 的长.【考点】平行线分线段成比例. 【专题】计算题.证法二、连接 CF 、 •/ AF : BF=1 : 2, BC : CD=2 : 1 ,AD【分析】根据平行线分线段成比例定理得出厶丄二’,代入得出二= ,求出AD即可.BD EC 4 9-AD【解答】解:I DE // BC ,•匸=1 一…---- ---- ,BD EC■/ AD+EC=9, DB=4 , AE=5 ,• EC=9 - AD ,~ 9 - AD ?解得:AD=4或5,答:AD的值是4或5.【点评】本题考查了平行线分线段定理的应用,关键是得出比例式二=厂,注意:根据平DB EC行线得出的比例是对应成比例,题目比较好,难度不大.17. (2015秋?黄岛区期中)如图,一个矩形广场的长为60m,宽为40m,广场内两条纵向小路的宽均为1.5m,如果设两条横向小路的宽都为x m,那么当x为多少时,小路内外边缘所围成的两个矩形相似?【考点】相似多边形的性质.【分析】根据相似多边形的性质:对应边的比相等列出比例式,解出【解答】解:•••小路内外边缘所围成的两个矩形相似,.60 = &0 - 3•、= __三,解得,x=1m,答:当x为1m时,小路内外边缘所围成的两个矩形相似.【点评】本题考查的是相似多边形的性质,掌握相似多边形的性质:的关键.x的值即可.对应边的比相等是解题18. (2013春?武威校级月考)如图,四边形ABCD和EFGH相似,求角a B的大小和EH 的长度x.xcm H【考点】相似多边形的性质.【分析】观察图形,根据相似多边形的对应角相等可得出a= / C=83 ° / F= / B=78 °再根据四边形的内角和等于360。

北师大版九年级数学上册 第四章 相似三角形培优专题 (含答案)

北师大版九年级数学上册 第四章 相似三角形培优专题 (含答案)

北师大版九年级上册 第四章 相似三角形培优专题 (含答案)一、单选题1.如图,过点0(0,1)A 作y 轴的垂线交直线:3l y x =于点1A ,过点1A 作直线l 的垂线,交y 轴于点2A ,过点2A 作y 轴的垂线交直线l 于点3A ,…,这样依次下去,得到012A A A ∆,234A A A ∆,4564A A ∆,…,其面积分别记为1S ,2 S ,3 S ,…,则100S ( )A .1002⎛⎫ ⎪ ⎪⎝⎭B .100C .1994D .39522.如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2A D B D=,6BC =,则线段CD 的长为( )A.B .C .D .53.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③1412DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.如图,在矩形ABCD 中,AB=3,BC=6,若点E ,F 分别在AB,CD 上,且BE=2AE ,DF=2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为( )A .1B .32C .2D .45.如图,在等腰三角形ABC ∆中,AB AC =,图中所有三角形均相似,其中最小的三角形面积为1,ABC ∆的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .266.如图,矩形ABCD 中,AC 与BD 相交于点E ,:AD AB =,将ABD △沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BH CF=( )A .2B .3C .2D .327.如图,在平行四边形ABCD 中,E 为BC 的中点,BD ,AE 交于点O ,若随机向平行四边形ABCD 内投一粒米,则米粒落在图中阴影部分的概率为( )A .116B .112C .18D .168.如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .09.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =6,BD =8,P 是对角线BD 上任意一点,过点P 作EF ∥AC ,与平行四边形的两条边分别交于点E 、F .设BP =x ,EF =y ,则能大致表示y 与x 之间关系的图象为( )A .B .C .D .10.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABM FDM S S =;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④11.如图,在正方形ABCD 中,点O 是对角线,AC BD 的交点,过点O 作射线分别交,OM ON 于点,E F ,且90EOF ∠︒=,交,OC EF 于点G .给出下列结论:COE DOF V V ①≌;OGE FGC V V ②∽C ;③四边形CEOF 的面积为正方形ABCD 面积的14;22•DF BE OG OC +④=.其中正确的是( )A .①②③④B .①②③C .①②④D .③④12.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:313.矩形OABC 在平面直角坐标系中的位置如图所示,已知2)B ,点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD PC ⊥,交x 轴于点D .下列结论:①OA BC ==②当点D 运动到OA 的中点处时,227PC PD +=;③在运动过程中,CDP ∠是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.其中正确结论的个数是( )A .1个B .2个C .3个D .4个14.如图,在ABC △中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC △的面积为( )A .B .4C .D .8二、填空题 15.如图,在等腰Rt ABC ∆中, 90C =∠,15AC =,点E 在边CB 上, 2CE EB =,点D 在边AB 上,CD AE ⊥,垂足为F ,则AD 长为_____.16.如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为___.17.如图,平面直角坐标系中,矩形ABOC 的边,BO CO 分别在x 轴,y 轴上,A 点的坐标为(8,6)-,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE ∆∽CBO ∆,当APC ∆是等腰三角形时,P 点坐标为_____.18.如图,正方形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若AB =5,CF =2,则线段EP 的长是_____.19.如图,ABC ∆和CDE ∆都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是_______(写出所有正确结论的序号).①AM BN =;②ABF DNF ∆∆≌;③180FMC FNC ︒∠+∠=;④111A C N C EM =+20.如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为_______.21.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”. 由边长为ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q R 、分别与图2中的点E G 、重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是_____.22.如图,ABCD 的对角线,AC BD 交于点O ,CE 平分BCD ∠交AB 于点E ,交BD 于点F ,且60,2ABC AB BC ∠=︒=,连接OE .下列结论:①EO AC ⊥;②4AOD OCF S S =;③:7AC BD =;④2•FB OF DF =.其中正确的结论有__________(填写所有正确结论的序号)23.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点ADE ,则GE的长落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5为__________.参考答案1.D【解析】【分析】本题需先求出OA 1和OA 2的长,再根据题意得出OA n =2n ,把纵坐标代入解析式求得横坐标,然后根据三角形相似的性质即可求得S 100.【详解】∵点0A 的坐标是(0,1),∴01OA =,∵点1A 在直线3y x =上, ∴12OA =,013A A = ∴24OA =,∴38OA =,∴416OA =,得出2n n OA =, ∴12·3n n n A A +=∴1981982OA =,19819819923A A = ∵113(41)3322S =-⋅= ∵21200199A A A A ∥,∴012198199200∆∆∽A A A A A A , ∴2198100133S S ⎛=, ∴396395332332S == 故选D .【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.2.C【解析】【分析】设2AD x =,BD x =,所以3AB x =,易证ADEABC ∆∆,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆,利用相似三角形的性质即可求出得出AD AE DE AC AD CD==,从而可求出CD 的长度. 【详解】解:设2AD x =,BD x =,∴3AB x =,∵//DE BC ,∴ADEABC ∆∆, ∴DE AD AE BC AB AC==, ∴263DE x x=, ∴4DE =,23AE AC =, ∵ACD B ∠=∠,ADE B ∠=∠,∴ADE ACD ∠=∠,∵A A ∠=∠,∴ADEACD ∆∆, ∴AD AE DE AC AD CD==, 设2AE y =,3AC y =, ∴23AD y y AD=, ∴6AD =,4CD=,∴26CD=故选:C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型. 3.A【解析】【分析】①由正方形的性质可以得出AB=AD,∠BAC=∠DAC=45°,通过证明△ABE≌△ADE,就可以得出BE=DE;②在EF上取一点G,使EG=EC,连结CG,再通过条件证明△DEC≌△FGC就可以得出CE+DE=EF;③过B作BM⊥AC交于M,根据勾股定理求出AC,根据三角形的面积公式即可求出高DM,根据三角形的面积公式即可求得13412DECS∆=-;④解直角三角形求得DE,根据等边三角形性质得到CG=CE,然后通过证得△DEH∽△CGH,求得31DH DEHC CG==.【详解】证明:①∵四边形ABCD是正方形,∴AB AD=,90ABC ADC︒∠=∠=,45BAC DAC ACB ACD︒∠=∠=∠=∠=.在ABE∆和ADE∆中,AB ADBAC DACAE AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADE SAS∆≅∆,∴BE DE=,故①正确;②在EF上取一点G,使EG EC=,连结CG,∵ABE ADE∆≅∆,∴ABE ADE∠=∠.∴CBE CDE∠=∠,∵BC CF =,∴CBE F ∠=∠,∴CBE CDE F ∠=∠=∠.∵15CDE ︒∠=,∴15CBE ︒∠=,∴60CEG ︒∠=.∵CE GE =,∴CEG ∆是等边三角形.∴60CGE ︒∠=,CE GC =,∴45GCF ︒∠=,∴ECD GCF ∠=.在DEC ∆和FGC ∆中,CE GC ECD GCF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴()DEC EGC SAS ∆≅∆,∴DE GF =.∵EF EG GF =+,∴EF CE ED =+,故②正确;③过D 作DM AC ⊥交于M ,根据勾股定理求出2AC =, 由面积公式得:1122AD DC AC DM ⨯=⨯, ∴22DM =,∵45DCA ︒∠=,60AED ︒∠=, ∴22CM =,66EM =, ∴2626CE CM EM =-=- ∴1132412DEC S CE DM ∆=⨯=-,故③正确; ④在Rt DEM ∆中,623DE ME ==∵ECG ∆是等边三角形, ∴262CG CE ==- ∵60DEF EGC ︒∠=∠=,∴DE CG ∥,∴DEH CGH ∆∆∽, ∴633126DH DE HC CG ===+,故④错误; 综上,正确的结论有①②③,故选A .【点睛】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的面积,勾股定理,含30度角的直角三角形的性质等知识点的理解和掌握,综合运用这些性质进行证明是解此题的关键. 4.C【解析】【分析】如图,延长FH 交AB 于点M ,由BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点,证明EG//BC ,FH//AD ,进而证明△AEG ∽△ABC ,△CFH ∽△CAD ,进而证明四边形EHFG 为平行四边形,再根据平行四边形的面积公式求解即可.【详解】如图,延长FH 交AB 于点M ,∵BE =2AE ,DF =2FC ,AB=AE+BE ,CD=CF+DF ,∴AE :AB=1:3,CF :CD=1:3,又∵G 、H 分别是AC 的三等分点,∴AG :AC=CH :AC=1:3,∴AE :AB=AG :AC ,CF :CD=CH :CA ,∴EG//BC ,FH//AD ,∴△AEG ∽△ABC ,△CFH ∽△CDA ,BM :AB=CF :CD=1:3,∠EMH=∠B ,∴EG :BC=AE :AB=1:3,HF :AD=CF :CD=1:3,∵四边形ABCD 是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH ,∴EG //FH ,∴四边形EHFG 为平行四边形,∴S 四边形EHFG =2×1=2,故选C.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,平行四边形的判定与性质,熟练掌握和灵活运用相关内容是解题的关键.5.D【解析】【分析】利用AFH ADE ∆~∆得到2916AHF ADE S FH S DE ∆∆⎛⎫== ⎪⎝⎭,所以9,16,AFH ADE S x S x ∆∆==则1697x x -=,解得1x =,从而得到16ADE S ∆=,然后计算两个三角形的面积差得到四边形DBCE 的面积.【详解】如图,根据题意得AFH ADE ∆~∆, ∴2239416AHF ADE S FH S DE ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 设9AFH S x ∆=,则16ADE S x ∆=,∴1697x x -=,解得1x =,∴16ADE S ∆=,∴四边形DBCE 的面积421626=-=.故选D .【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.6.B【解析】【分析】设BD 与AF 交于点M .设AB=a ,3,根据矩形的性质可得△ABE 、△CDE 都是等边三角形,利用折叠的性质得到BM 垂直平分AF ,BF=AB=a ,3.解直角△BGM ,求出BM ,再表示DM ,由△ADM ∽△GBM ,求出3,再证明3B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小.建立平面直角坐标系,得出B (3,3B′(3,3E (03B′E 的解析式,得到H (1,0),然后利用两点间的距离公式求出BH=4,进而求出23BH CF ==233. 【详解】如图,设BD 与AF 交于点M .设AB=a ,3,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD=3 ADAB=∴22AB AD+,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a,∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,3,在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=12BG=1,33,∴3∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴AD DMBG BM=3233a a-=,∴3∴3,AD=BC=6,3易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴作B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小. 如图,建立平面直角坐标系,则A (3,0),B (3,3B′(3,3E (03),易求直线B′E 的解析式为33∴H (1,0),∴22(31)(230)-+-, ∴23BH CF =23 故选:B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH 、CF 的长是解题的关键.7.B【解析】【分析】根据E 为BC 的中点,可得12BO OE BE OD AO AD ===,根据边长的比值即可计算出图阴影部分的面积与平行四边形面积的比值,由此即可求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC//AD ,BC=AD ,∴△BOE ∽△DOA ,∴BO OE BE OD AO AD== 又∵E 为BC 的中点, ∴12BO OE BE OD AO AD ===, ∴13BO BD =, ∴BOE AOB 1S S 2=,AOB ABD 1S S 3=, ∴BOE ABD ABCD 11S S S 612==,∴米粒落在图中阴影部分的概率为112, 故选B .【点睛】 本题考查了平行四边形的性质,相似三角形的判定与性质,几何概率,熟练掌握相关知识是解题的关键.8.A【解析】【分析】当点M 在AB 上运动时,MN ⊥MC 交y 轴于点N ,此时点N 在y 轴的负半轴移动,定有△AMC ∽△NBM ;只要求出ON 的最小值,也就是BN 最大值时,就能确定点N 的坐标,而直线y=kx+b 与y 轴交于点N (0,b ),此时b 的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.【详解】解:连接AC ,则四边形ABOC 是矩形,90A ABO ︒∴∠=∠=,又MN MC ⊥,90CMN ︒∴∠=,AMC MNB ∴∠=∠,~AMC NBM ∴∆∆,AC AM MB BN∴=, 设,BN y AM x ==.则3,2MB x ON y =-=-, 23x x y∴=-, 即:21322y x x =+ ∴当33212222b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,21333922228y ⎛⎫=⨯+⨯= ⎪⎝⎭最大 直线y kx b =+与y 轴交于()0,N b当BN 最大,此时ON 最小,点()0,N b 越往上,b 的值最大,97288ON OB BN ∴=-=-=, 此时, 70,8N ⎛⎫- ⎪⎝⎭ b 的最大值为78-. 故选:A .【点睛】本题综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在.9.A【解析】【分析】根据图形先利用平行线的性质求出△BEF ∽△BAC ,再利用相似三角形的性质得出x 的取值范围和函数解析式即可解答【详解】当0≤x ≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴BP EFBO AC=,即46x y=,解得32y x=y,同理可得,当4<x≤8时,3(8)2y x =-.故选:A.【点睛】此题考查动点问题的函数图象,解题关键在于利用三角形的相似10.A【解析】【分析】利用正方形的性质,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再证明△ABM∽△FDM,即可解答①;根据题意可知:AF=DE=AE5得出③;作PH⊥AN于H.利用平行线的性质求出AH=24585453HN==,即可解答②;利用相似三角形的判定定理,即可解答④【详解】解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,CAD CDCDE⎧⎪=⎨⎪⎩∠ADF=∠∠DAF=∠,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴24S ABM ABS FDM DF∆⎛⎫==⎪∆⎝⎭,∴S△ABM=4S△FDM;故①正确;根据题意可知:AF =DE =AE ∵12 ×AD ×DF =12×AF ×DN , ∴DN 25 , ∴EN =355,AN =455, ∴tan ∠EAF =34EN AN =,故③正确, 作PH ⊥AN 于H .∵BE ∥AD , ∴2PA AD PE BE==, ∴P A 25 ∵PH ∥EN , ∴23AH PA AN AE ==, ∴AH =24585453HN ==, ∴2265PA AH -= ∴PN 22265PH HN +②正确, ∵PN ≠DN ,∴∠DPN ≠∠PDE ,∴△PMN 与△DPE 不相似,故④错误.故选:A .【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质11.B【解析】【分析】根据全等三角形的判定(ASA )即可得到①正确;根据相似三角形的判定可得②正确;根据全等三角形的性质可得③正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:Q ①四边形ABCD 是正方形,,OC OD AC BD ∴⊥=,45ODF OCE ∠∠︒==,90MON ∠︒Q =,COM DOF ∴∠∠=,COE DOF ASA ∴V V ≌(), 故①正确;90EOF ECF ∠∠︒Q ②==,∴点,,,O E C F 四点共圆,∴,EOG CFG OEG FCG ∠∠∠∠==,∴OGE FGC V ∽,故②正确;③COE DOF QV V ≌,COE DOF S S ∴V V =,14OCD ABCDCEOF S S S ∴==V 正方形四边形, 故③正确; COE DOF QV V ④≌,OE OF ∴=,又90EOF ∠︒Q =,EOF ∴V 是等腰直角三角形,45OEG OCE ∴∠∠︒==,EOG COE ∠∠Q =,OEG OCE ∴V V ∽,::OE OC OG OE ∴=,2•OG OC OE ∴=,122OC AC OE EF Q =,=, 2•OG AC EF ∴=,,CE DF BC CD Q ==,BE CF ∴=,又Rt CEF Q V 中,222CF CE EF +=,222BE DF EF ∴+=,22•OG AC BE DF ∴+=,故④错误,故选:B .【点睛】本题考查全等三角形的判定(ASA )和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA )和性质、相似三角形的性质和判定.12.B【解析】【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴=== 故选:B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.13.D【解析】【分析】①根据矩形的性质即可得到23OA BC ==①正确;②由点D 为OA 的中点,得到132OD OA ==2222272(3)PC PD CD OC OD +==+=+=,故②正确;③如图,过点P 作PF OA ⊥于F ,FP 的延长线交BC 于E ,PE a =,则2P F E F P E a=-=-,根据三角函数的定义得到33BE PE a ==,求得2333(2)CE BC BE a a =-==-,根据相似三角形的性质得到3FD =,根据三角函数的定义得到60PDC ︒∠=,故③正确; ④当ODP ∆为等腰三角形时,Ⅰ、OD PD =,解直角三角形得到3333OD OC ==, Ⅱ、OP =OD ,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;Ⅲ、OP PD =,根据等腰三角形的性质和四边形的内角和得到10590OCP ︒︒∠=>,故不合题意舍去;于是得到当ODP ∆为等腰三角形时,点D 的坐标为3⎛⎫ ⎪ ⎪⎝⎭.故④正确.【详解】解:①∵四边形OABC 是矩形,(23,2)B ,23OA BC ∴==①正确;②∵点D 为OA 的中点,132OD OA ∴==, 2222222237PC PD CD OC OD ∴+++===()=,故②正确;③如图,过点P 作PF OA ⊥ A 于F ,FP 的延长线交BC 于E ,PE BC ∴⊥,四边形OFEC 是矩形,2EF OC ∴==,设PE a =,则2PF EF PE a =﹣=﹣,在Rt BEP ∆中,PE OC 3BE BC 3tan CBO ∠===, 33BE PE a ∴==,2333(2)CE BC BE a a ∴=-==-,PD PC ⊥,90CPE FPD ︒∴∠∠=,90CPE PCE ︒∠+∠=,,FPD ECP ∴∠=∠,90CEP PFD ︒∠=∠=,CEP PFD ∴∆∆∽,PE CP FD PD∴=, 3(2)a a FD -∴=FD ∴=, tan 33PC a PDC a PD∴∠===, 60PDC ︒∴∠=,故③正确; ④(23,2)B ,四边形OABC 是矩形,3,2OA AB ∴==,3tan AB AOB OA ∠== 30AOB ︒∴∠=,当ODP ∆为等腰三角形时,Ⅰ、OD PD =,30DOP DPO ∴∠∠==, 60ODP ∴∠=, 60ODC ∴∠=, 3333OD ∴== Ⅱ、OP OD =75ODP OPD ∴∠∠==,90COD CPD ∠∠==,10590OCP ∴∠=>,故不合题意舍去;Ⅲ、OP PD =,30POD PDO ∴∠∠==, 15090OCP ∴∠=>故不合题意舍去,∴当ODP ∆为等腰三角形时,点D 的坐标为23⎫⎪⎪⎝⎭.故④正确,故选:D .【点睛】考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP 和PD 是解本题的关键.14.B【解析】【分析】先证CDE CBA V :V ,利用相似三角形性质得到12DC DE BC BA ==,即12DC BD DC =+,在直角三角形ABD 中易得22BD =,从而解出DC ,得到△ABC 的高,然后利用三角形面积公式进行解题即可 【详解】AB AD DE AD ∴⊥⊥,90BAD ADE ∴∠=∠=o//AB DE ∴易证CDE CBA V :V12DC DE BC BA ∴== 即12DC BD DC =+ 由题得22BD =∴解得22DC =ABC △2112422422ABC S BC ∴=⨯=⨯=V 故选B【点睛】本题主要考查相似三角形的判定和性质、等腰直角三角形的高,本题关键在于找到相似三角形求出DC 的长度15.【解析】【分析】过D 作 DH AC ⊥于H ,则∠AHD=90°由等腰直角三角形的性质可得15AC BC ==,45CAD ∠=,进而可得AH DH =,由此得CH=15-DH ,再证明~ACE DHC ∆∆,由相似三角形的对应边成比例可得DH CH AC CE=,求出CE=10,代入相关数据可求得DH=9,继而根据勾股定理即可求得AD 长.【详解】过D 作 DH AC ⊥于H ,则∠AHD=90° 在等腰Rt ABC ∆中,90C =∠,15AC =, 15AC BC ∴==,45CAD ∠=,∴∠ADH=90°-∠CAD=45°=∠CAD ,AH DH ∴=,∴CH=AC-AH=15-DH ,CF AE ⊥,90DHA DFA ∴∠=∠=,又∵∠ANH=∠DNF ,HAF HDF ∴∠=∠,~ACE DHC ∴∆∆,DH CH AC CE∴=, 2CE EB =,CE+BE=BC=15,∴10CE =, ∴151510DH DH -=, 9DH ∴=,2292AD AH DH ∴=+=, 故答案为:92.【点睛】本题考查了等腰直角三角形的性质与判定,相似三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16.2.【解析】【分析】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',由此可得PM PN MN '-≤',当,,P M N '三点共线时,取“=”,此时即PM —PN 的值最大,由正方形的性质求出AC 的长,继而可得22ON ON '==62AN '=,再证明13CM CN BM AN '='=,可得PM ∥AB ∥CD ,∠CMN '=90°,判断出△N CM '为等腰直角三角形,求得N M '长即可得答案. 【详解】如图所示,以BD 为对称轴作N 的对称点N ',连接PN ',根据对称性质可知,PN PN =',∴PM PN MN '-≤',当,,P M N '三点共线时,取“=”,∵正方形边长为8,∴282∵O 为AC 中点,∴AO=OC=2∵N 为OA 中点,∴ON=22 ∴22ON ON '== ∴62AN '=∵BM=6,∴CM=AB-BM=8-6=2, ∴13CM CN BM AN '='=, ∴PM ∥AB ∥CD ,∠CMN '=90°,∵∠N CM '=45°,∴△N CM '为等腰直角三角形,∴CM=N M '=2,故答案为:2.【点睛】本题考查了正方形的性质,平行线分线段成比例定理,等腰直角三角形的判定与性质,最值问题等,熟练掌握和灵活运用相关知识是解题的关键.17.326()55-,或(43)-, 【解析】【分析】根据题意分情况讨论:①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,根据PBE ∆∽CBO ∆求出PE ,②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,根据PBE ∆∽CBO ∆,求出PE ,BE ,则可得到OE ,故而求出点P 点坐标.【详解】解:∵点P 在矩形ABOC 的内部,且APC ∆是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上;①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示:∵PE BO ⊥,CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(8,6)-,∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE ∆∽CBO ∆,∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(4,3)P -;②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P ,过点P 作PE BO ⊥于E ,如图2所示:∵CO BO ⊥,∴//PE CO ,∴PBE ∆∽CBO ∆,∵四边形ABOC 是矩形,A 点的坐标为(-8,6),∴8AC BO ==,8CP =,6AB OC ==, ∴222208610BC BO C +=+=,∴2BP =,∵PBE ∆∽CBO ∆, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=, ∴点326()55P -,; 综上所述:点P 的坐标为:326()55-,或(43)-,; 故答案为:326()55-,或(43)-,.【点睛】此题主要考查正方形的综合,解题的关键是熟知相似三角形的判定与性质、矩形的性质及圆的性质.13218【解析】【分析】如图,作FH⊥PE于H.利用勾股定理求出EF,再证明△CEF∽△FEP,可得EF2=EC•EP,由此即可解决问题.【详解】如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=2∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF2∵CE=4AE,∴EC=2,AE2,∴EH=2在Rt△EFH中,EF2=EH2+FH2=(2)2+2)2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG =∠ECG =45°,∴∠ECF =∠EFP =135°,∵∠CEF =∠FEP ,∴△CEF ∽△FEP , ∴EF EC EP EF=, ∴EF 2=EC•EP ,∴EP 132242= 故答案为:1322. 【点睛】本题考查正方形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.19.①③④【解析】【分析】①根据等边三角形性质得出AC BC =,CE CD =,60ACB ECD ︒∠=∠=,求出BCE ACD ∠=∠,根据SAS 推出两三角形全等即可;②根据60ABC BCD ︒∠==∠,求出//AB CD ,可推出ABF DNF ∆∆∽,找不出全等的条件; ③根据角的关系可以求得60AFB ︒∠=,可求得120MFN ︒=,根据60BCD ︒∠=可解题; ④根据CM CN =,60MCN ︒∠=,可求得60CNM ︒∠=,可判定//MN AE ,可求得N DN CD CN AC CD CDM -==,可解题. 【详解】明:①∵ABC ∆和CDE ∆都是等边三角形,∴AC BC =,CE CD =,60ACB ECD ︒∠=∠=,∴ACB ACE ECD ACE ∠+∠=∠+∠,即BCE ACD ∠=∠,在BCE ∆和ACD ∆中,BC AC BCE ACD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()BCE ACD SAS ∆∆≌,∴AD BE =,ADC BEC ∠∠=,CAD CBE ∠=∠,在DMC ∆和ENC ∆中,60MDC NEC DC BCMCD NCE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴()DMC ENC ASA ∆∆≌,∴DM EN =,CM CN =,∴AD DM BE EN -=-,即AM BN =;②∵60ABC BCD ︒∠==∠,∴//AB CD ,∴BAF CDF ∠=∠,∵AFB DFN ∠=∠,∴ABF DNF ∆∆∽,找不出全等的条件;③∵180AFB ABF BAF ︒∠+∠+∠=,FBC CAF ∠=∠,∴180AFB ABC BAC ︒∠+∠+∠=,∴60AFB ︒∠=,∴120MFN ︒∠=,∵60MCN ︒∠=,∴180FMC FNC ︒∠+∠=;④∵CM CN =,60MCN ︒∠=,∴MCN ∆是等边三角形,∴60MNC ︒∠=,∵60DCE ︒∠=,∴//MN AE ,∴MN DN CD CN AC CD CD-==, ∵CD CE =,MN CN =, ∴MN CE MN AC CE-=, ∴MN MN 1AC CE =-, 两边同时除MN 得111AC MN CE=-, ∴111MN AC CE=+. 故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.20.4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒=,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BP PC CQ∴= 设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--, 整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.21.5【解析】【分析】如图3中,连接CE 交MN 于O ,先利用相似求出OM 、ON 的长,再利用勾股定理解决问题即可.【详解】如图3, 连结CE 交MN 于O .观察图1、图2可知, 4,8EN MN CM ===,90ENM CMN ∠=∠=︒.图3∴EON COM ∆∆∽, ∴12EN ON CN OM ==, ∴1428,3333ON MN OM MN ====. 在Rt ENO ∆中,224103OE ON EN =+= ,同理可求得103OG =, ∴2)2GF OE OG =+=,即“拼搏兔”所在正方形EFGH 的边长是5故答案为:5【点睛】本题考查正方形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.①③④【解析】【分析】①根据已知的条件首先证明ECB 是等边三角形,因此可得EA EB EC ==,所以可得90ACB ∠=︒,再根据O 、E 均为AC 和AB 的中点,故可得90AOE ACB ∠=∠=︒,便可证明EO AC ⊥;②首先证明OEF BCF ∽,因此可得12OE OF BC FB ==,故可得AOD S 和OCF S 的比. ③根据勾股定理可计算的AC :BD ;④根据③分别表示FB 、OF 、DF ,代入证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴,,CD AB OD OB OA OC ==∥,∴180DCB ABC ∠+∠=︒,∵60ABC ∠=︒,∴120DCB ∠=︒,∵EC 平分DCB ∠, ∴1602ECB DCB ∠=∠=︒, ∴60EBC BCE CEB ∠=∠=∠=︒,∴ECB 是等边三角形,∴EB BC =,∵2AB BC =,∴EA EB EC ==,∴90ACB ∠=︒,∵,OA OC EA EB ==,∴OE BC ∥,∴90AOE ACB ∠=∠=︒,∴EO AC ⊥,故①正确,∵OE BC ∥,∴OEF BCF ∽, ∴12OE OF BC FB ==, ∴13OF OB =, ∴3AOD BOC OCF S S S ==,故②错误,设BC BE EC a ===,则2AB a =,3AC a =,22372OD OB a a ⎛⎫==+= ⎪ ⎪⎝⎭, ∴7BD a =, ∴:37217AC BD a a ==,故③正确, ∵1736OF OB a ==, ∴73BF a =, ∴22277777,99BF a OF DF a ⎫=⋅=⋅+=⎪⎪⎝⎭, ∴2BF OF DF =⋅,故④正确,故答案为①③④.【点睛】本题是一道平行四边形的综合性题目,难度系数偏大,但是是常考点的组合,应当熟练掌握. 23.4913【解析】【分析】先根据勾股定理得出AE 的长,然后根据折叠的性质可得BF 垂直平分AG ,再根据ABM ~ADE ,求出AM 的长,从而得出AG,继而得出GE 的长【详解】解:在正方形ABCD 中,∠BAD=∠D =090,∴∠BAM+∠FAM=090在Rt ADE中,2222+1DE2315=+=A ADE∵由折叠的性质可得ABF GBF≅∴AB=BG,∠FBA=∠FBG∴BF垂直平分AG,∴AM=MG,∠AMB=090∴∠BAM+∠ABM=090∴∠ABM=∠FAM∴ABM~ADE∴AM ABDE AE=,∴12513AM=∴AM=6013, ∴AG=12013∴GE=5-12049 1313=【点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键。

北师大版九年级数学上册 第四章 图形的相似 达标检测卷 含答案

北师大版九年级数学上册  第四章 图形的相似 达标检测卷  含答案

第四章达标检测卷一、选择题(每题3分,共30分)1.已知5x =6y (y ≠0),那么下列比例式中正确的是( )A.x 5=y 6B.x 6=y 5C.x y =56D.x 5=6y2.下列各组图形中有可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形3.如图,直线a ,b ,c 被直线l 1,l 2所截,交点分别为点A ,C ,E 和点B ,D ,F .已知a ∥b ∥c ,且AC =3,CE =4,则BDBF 的值是( ) A.34B.43C.37D.47(第3题) (第4题) (第6题) (第7题)4.如图,在平面直角坐标系中,有点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( ) A .(2,1)B .(2,0)C .(3,3)D .(3,1)5.对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“等距变换”.下列变换中不一定是等距变换的是( ) A .平移B .旋转C .轴对称D .位似6.如图,为估算河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB等于( ) A .60 mB .40 mC .30 mD .20 m7.如图,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0,8),以某点为位似中心,作出△CDE ,使它与△AOB 位似,且相似比为k ,则位似中心的坐标和k 的值分别为( ) A .(0,0),2 B .(2,2),12 C .(2,2),2D .(1,1),128.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF 等于( ) A .2B .2.4C .2.5D .2.259.如图,在▱ABCD 中,E 是CD 上的一点,DE ∶EC =2∶3,连接AE ,BE ,BD ,且AE ,BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF 等于( ) A .2∶5∶25B .4∶9∶25C .2∶3∶5D .4∶10∶2510.如图,在矩形ABCD 中,点E 为AD 上一点,且AB =8,AE =3,BC =4,点P 为AB 边上一动点,连接PC ,PE ,若△P AE 与△PBC 是相似三角形,则满足条件的点P 的个数为( ) A .1个B .2个C .3个D .4个(第8题) (第9题) (第10题) (第13题) (第14题) 二、填空题(每题3分,共24分)11.假期,爸爸带小明去A 地旅游,小明想知道A 地与他所居住的城市的距离,他在比例尺为1∶500 000的地图上测得所居住的城市距A 地32 cm ,则小明所居住的城市与A 地的实际距离为________. 12.若a +b c =b +c a =c +ab =k (a +b +c ≠0),则k =________.13.如图,已知点C 是线段AB 的黄金分割点,且BC >AC .若S 1表示以BC 为边的正方形的面积,S 2表示长为AD (AD =AB )、宽为AC 的矩形的面积,则S 1与S 2的大小关系为____________.14.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=________,△ADE与△ABC的周长之比为________,△CFG与△BFD的面积之比为________.15.如图,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得到正方形A′B′C′D′,则点C的对应点C′的坐标为________.(第15题)(第16题)(第17题)(第18题)16.如图,阳光通过窗口AB照射到室内,在地面上留下4 m宽的区域DE,已知点E到窗口下的墙脚C的距离为5 m,窗口AB高2 m,那么窗口底端B 距离墙脚C________m.17.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM的长为________.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1的边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2,……,以此类推,则S n=________(用含n的式子表示,n为正整数).三、解答题(19,20题每题8分,24题14分,其余每题12分,共66分) 19.如图,矩形ABCD为一密封的长方体纸盒的纵切面的示意图,AB边上的点E处有一小孔,光线从点E处射入,经纸盒底面上的平面镜反射,恰好从点D处的小孔射出.已知AD=26 cm,AB=13 cm,AE=6 cm.(1)求证:△BEF∽△CDF;(2)求CF的长.(第19题)20.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.(第20题)21.如图,在▱ABCD中,过点A作AE⊥BC于点E,连接DE,点F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.(第21题)22.如图,某水平地面上有一建筑物AB,在点D和点F处分别竖有2米高的标杆CD和EF,两标杆相距52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,点G与建筑物顶端A和标杆顶端C在同一条直线上;从标杆EF后退4米到点H处,点H与建筑物顶端A 和标杆顶端E在同一条直线上,求建筑物AB的高度.(第22题)23.如图,在矩形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(第23题)(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论.(3)当t为何值时,以点Q,A,P为顶点的三角形与△ABC相似?24.如图①,在R t△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)当α=0°和α=180°时,求AEBD的值.(2)试判断当0°≤α<360°时,AEBD的大小有无变化?请仅就图②的情况给出证明.(3)当△EDC旋转至A,D,E三点共线时,求线段BD的长.(第24题)答案一、1.B 2.A3.C点拨:因为a∥b∥c,所以BDBF=ACAE=33+4=37.4.A 5.D6.B点拨:∵AB⊥BC,CD⊥BC,∴∠ABE=∠DCE=90°. 又∵∠AEB=∠DEC,∴△ABE∽△DCE.∴ABDC=BECE,即AB20=2010.∴AB=40 m.7.B8.B点拨:由∠A=90°,CF⊥BE,AD∥BC,易证△ABE∽△FCB.∴ABBE=CFBC.由AE=12×3=1.5,AB=2,易得BE=2.5,∴22.5=CF3.∴CF=2.4.9.D10.C点拨:设AP=x,则BP=8-x,当△P AE∽△PBC时,AE BC=P A PB,∴AE·PB=BC·P A,即3(8-x)=4x,解得x=24 7.当△P AE∽△CBP时,AEPB=P ABC,∴AE·BC=P A·PB,即3×4=x(8-x),解得x=2或6.故满足条件的点P的个数为3个.二、11.160 km点拨:设小明所居住的城市与A地的实际距离为x km,根据题意可列比例式为1500 000=32x×105,解得x=160.12.2点拨:∵a+bc=b+ca=c+ab=k,∴2a +2b +2ca +b +c=k ,故k =2.易错提醒:在运用等比性质时,注意分母的和不等于0这个条件. 13.S 1=S 2 点拨:∵点C 是线段AB 的黄金分割点,且BC >AC ,∴BC 2=AC ·AB .又∵S 1=BC 2,S 2=AC ·AD =AC ·AB ,∴S 1=S 2. 14.2;;15.(2,1)或(0,-1) 点拨:如图,以点A 为位似中心,把正方形ABCD 的各边缩小为原来的一半,得正方形A ′B ′C ′D ′,根据图形可得点C ′的坐标为(2,1)或(0,-1).(第15题)易错提醒:此类题要注意多种可能:位似图形可能位于位似中心的同侧,也可能位于位似中心的两侧,要分情况进行讨论. 16.2.5 点拨:由题意得CE =5 m ,AB =2 m ,DE =4 m.∵AD ∥BE , ∴BC AB =CE ED , ∴BC 2=54,解得BC =2.5 m ,即窗口底端B 距离墙脚C 2.5 m.17.163或3 点拨:∵∠ABC =∠FBP =90°,∴∠ABP =∠CBF .当△MBC ∽△ABP时,BM ∶AB =BC ∶BP ,得BM =4×4÷3=163;当△CBM ∽△ABP 时,BM ∶BP =CB ∶AB ,得BM =4×3÷4=3.18.32×⎝ ⎛⎭⎪⎫34n点拨:在正三角形ABC 中,AB 1⊥BC , ∴BB 1=12BC =1.在R t △ABB 1中,AB 1=AB 2-BB 21=22-12=3,根据题意可得△AB 2B 1∽△AB 1B ,记△AB 1B 的面积为S , ∴S 1S =⎝ ⎛⎭⎪⎫322.∴S 1=34S .同理可得S 2=34S 1,S 3=34S 2,S 4=34S 3,…. 又∵S =12×1×3=32, ∴S 1=34S =32×34,S 2=34S 1=32×⎝ ⎛⎭⎪⎫342,S 3=34S 2=32×⎝ ⎛⎭⎪⎫343,S 4=34S 3=32×⎝ ⎛⎭⎪⎫344,…,S n =32×⎝ ⎛⎭⎪⎫34n. 三、19.(1)证明:∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF .(2)解:设CF =x cm ,则BF =(26-x )cm , ∵AB =13 cm ,AE =6 cm , ∴BE =7 cm ,由(1)得,△BEF ∽△CDF , ∴BE CD =BF CF ,即713=26-xx , 解得x =16.9, 即CF =16.9 cm.20.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6.(第20题)21.(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠B+∠C=180°,∴∠ADE=∠DEC.又∵∠AFE=∠B,∠AFE+∠AFD=180°,∴∠AFD=∠C,∴△ADF∽△DEC.(2)解:在▱ABCD中,CD=AB=8.∵△ADF∽△DEC,∴AFCD=ADDE,即438=63DE,解得DE=12.∵AE⊥BC,AD∥BC,∴AE⊥AD.在Rt△AED中,由勾股定理,得AE=122-(63)2=6. 22.解:由题意得,CD=DG=EF=2,DF=52,FH=4.∵AB⊥BH,CD⊥BH,EF⊥BH,∴∠ABH=∠CDG=∠EFH=90°.又∵∠CGD=∠AGB,∠EHF=∠AHB,∴△CDG∽△ABG,△EFH∽△ABH,∴CDAB=DGBG,EFAB=FHBH,即CDAB=DGDG+BD,EF AB=FHFH+DF+BD,∴2AB=22+BD,2AB=44+52+BD,∴22+BD=44+52+BD,解得BD=52,∴2AB=22+52,解得AB=54.答:建筑物AB 的高度为54米.23.解:(1)由题意知AP =2t ,DQ =t ,QA =6-t ,当QA =AP 时,△QAP 是等腰直角三角形,所以6-t =2t ,解得t =2.(2)四边形QAPC 的面积=S △QAC +S △APC =12AQ ·CD +12AP ·BC =(36-6t )+6t =36(cm 2).在P ,Q 两点移动的过程中,四边形QAPC 的面积始终保持不变.(3)分两种情况:①当AQ AB =AP BC 时,△QAP ∽△ABC ,则6-t 12=2t 6,即t =1.2;②当QA BC =AP AB 时,△P AQ ∽△ABC ,则6-t 6=2t 12,即t =3.所以当t =1.2或3时,以点Q ,A ,P 为顶点的三角形与△ABC 相似.24.解:(1)当α=0°时,∵BC =2AB =8,∴AB =4.∵点D ,E 分别是边BC ,AC的中点,∴BD =4,AE =EC =12AC .∵∠B =90°,∴AC =82+42=4 5.∴AE =CE =2 5.∴AE BD =254=52.当α=180°时,如图①,易得AC =45,CE =25,CD =4,∴AE BD =AC +CE BC +CD =45+258+4=52.(第24题)(2)无变化.证明:在题图①中,∵DE 是△ABC 的中位线,∴DE ∥AB .∴CE CA =CD CB ,∠EDC =∠B =90°.在题图②中,∵△EDC 在旋转过程中形状大小不变,∴CECA=CDCB仍然成立.又∵∠ACE=∠BCD=α,∴△ACE∽△BCD.∴AEBD=ACBC.由(1)可知AC=4 5.∴ACBC=458=52.∴AEBD=52.∴AEBD的大小不变.(3)当△EDC在BC上方,且A,D,E三点共线时,四边形ABCD为矩形,如图②,∴BD=AC=45;当△EDC在BC下方,且A,E,D三点共线时,△ADC为直角三角形,如图③,由勾股定理可得AD=AC2-CD2=8.又易知DE=2,∴AE=6.∵AEBD=52,∴BD=1255.综上,BD的长为45或125 5.。

北师大版九年级上册数学第四章 图形的相似含答案(必刷题)

北师大版九年级上册数学第四章 图形的相似含答案(必刷题)

北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为()A. B. C. D.2、如图,下列四个三角形中,与相似的是()A. B. C. D.3、如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C.D.4、小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.45、如图,点D是△ABC的边BC的中点,且∠CAD=∠B,若△ABC的周长为10,则△ACD的周长是()A.5B.5C.D.6、如图,△ABC 内接于⊙ O ,AD 是△ABC 边 BC 上的高,D 为垂足.若 BD = 1,AD = 3,BC = 7,则⊙O 的半径是()A. B. C. D.7、如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是( )A. B. C. D.8、如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A.1B.2C.3D.49、如图,△ABC∽△ADE,则下列比例式正确的是()A. B. C. D.10、如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.11、已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6 cmB.4 cmC.3 cmD.2 cm12、在△ABC中,AB=12,BC=18,CA=24,另一个和它相似的△DEF最长的一边是36,则△DEF最短的一边是()A.72B.18C.12D.2013、如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是()A. B.1 C.2 D.314、如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1, S2, S3三部分,则S1:S2:S3=()A.1:2:3B.1:4:9C.1:3:5D.无法确定15、已知:如图,在中,,则下列等式成立的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线l1∥l2∥l3∥l4∥l5∥l6∥l7,且每相邻两条直线的距离相等.若直线l8分别与l1, l2, l5, l7相交于点A,B,C,D,则AB:BC:CD为________.17、在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=________.18、已知,则的值为________.19、把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为________.20、上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为________米21、如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:________.22、如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm, OB=15 cm,则火焰的长度为________.23、将矩形纸片ABCD按如下步骤进行操作:( 1 )如图1,先将纸片对折,使BC和AD重合,得到折痕EF;( 2 )如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是________.24、如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC =CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1, S2, S3,若S1+S3=20,则S1=________,S2=________.25、如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.三、解答题(共5题,共计25分)26、解方程.534%-2x=0.5627、李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.28、如图,两根电线杆相距Lm,分别在高10m的A处和15m的C处用钢索将两杆固定,求钢索AD与钢索BC的交点M离地面的高度MH.29、如图,在△PAB中,点C、D在AB上,PC=PD=CD,∠A =∠BPD,△APC 与△BPD相似吗?为什么?30、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?参考答案一、单选题(共15题,共计45分)1、B2、C4、D5、B6、C7、D8、D9、D10、B11、C12、B13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、。

北师大版九年级数学上册 第四章 图形的相似 单元测试试题(有答案)

北师大版九年级数学上册 第四章 图形的相似 单元测试试题(有答案)

北师大版九年级数学上册第四章图形的相似单元测试题一.选择题(共10小题)1.如图,△ABC中,DE∥BC分别交BA、CA的延长线于点E、D,则下列比例式正确的是()A.=B.=C.=D.=2.已知△ABC∽△DEF,若周长比为4:9,则AC:DF等于()A.4:9B.16:81C.3:5D.2:33.如果2a=5b,那么下列比例式中正确的是()A.=B.=C.=D.=4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,若AC=8,CE=12,BD=6,则BF的值是()A.14B.15C.16D.175.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形6.如图,在▱ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为()A.3:5B.2:3C.3:4D.3:27.我国古代数学著作中记载了一个问题:“今有邑方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”其大意是:一座正方形城池,西、北边正中各开一道门,从北门往正北方向走40步后刚好有一树木,若从西门往正西方向走810步后正好看到树木,则正方形城池的边长为()步.A.360B.270C.180D.908.若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是()A.1:4B.1:2C.1:16D.1:89.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A’的坐标是()A.(1,﹣2)B.(2,1)C.(﹣2,﹣1)或(2,1)D.(﹣1,2)或(1,﹣2)10.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.二.填空题(共8小题)11.在比例尺为1:100000的地图上,相距3m的两地,它们的实际距离为km.12.如图所示,矩形ABCD中,点E、F分别在边AB、CD上,且AEFD是正方形,若矩形BCFE 和矩形ABCD相似,且AD=2,则AB的长为.13.如图,l1∥l2∥l3,直绒l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知=,则=.14.已知Rt△ABC∽Rt△A′B′C′,且∠C=∠C′=90°,若AC=3,BC=4,A′B′=10,则A′C′=.15.在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(8,0),B(8,6),D (0,6),已知矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为,则点B1的坐标是.16.如图,△ABC中,DE∥BC交AB于点D,交AC于点E,BD=2,AB=6,AC=9,则AE的长为.17.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为米.18.如图,AD∥BC,∠D=90°,AD=2,BC=12,DC=10,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有个.三.解答题(共8小题)19.若x:y=3:5,y:z=2:3,求5x﹣2z的值.20.如图,已知:l1∥l2∥l3,AB=2,BC=4,DF=12.求DE的长.21.如图,已知在ABC中,AB=,AC=2,BC=3,点M为AB的中点,在线段AC上取点N,使△AMIN与△ABC相似,求线段MN的长.22.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t为何值时,△EPQ为等腰三角形?23.如图,AB与CD相交于点O,△OBD∽△OAC,=,OB=6,S=50,△AOC 求:(1)AO的长;(2)求S△BOD24.如图,在边长为1个单位长度的小正方形组成的10×10的网格中,给出了以格点(网格线的交点)为顶点的△ABC和点D.(1)过点D作△DEF,使得===,且点E、F均在格点上;(2)△ABC的面积是个平方单位,△DEF的面积是个平方单位.25.如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,1),B(2,3),C(4,2).(1)以点A(1,1)为位似中心画出△ABC的位似图形△A1B1C1,使得△A1B1C1与△ABC的位似比为2:1(2)点B1的坐标为;点C1的坐标为.26.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为m,DE=15,求△DEF的面积.参考答案与试题解析一.选择题(共10小题)1.解:∵DE∥BC,∴△ADE∽△ACB,∴,,则A,B,D不正确,故选:C.2.解:∵△ABC∽△DEF,∴==.故选:A.3.解:∵2a=5b,∴=或=或=.故选:C.4.解:∵a∥b∥c,AC=8,CE=12,BD=6,∴=,即=,解得BF=15.故选:B.5.解:两个直角三角形不一定相似;因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似;因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似;因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似;因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.6.解:∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故选:A.7.解:如图,设正方形城池的边长为x步,则AE=CE=x,∵AE∥CD,∴∠BEA=∠EDC,∴Rt△BEA∽Rt△EDC,∴,即,∴x=360,即正方形城池的边长为360步.故选:A.8.解:∵相似三角形的周长之比是1:4,∴对应边之比为1:4,∴这两个三角形的面积之比是:1:16,故选:C.9.解:以原点O为位似中心,相似比为,把△ABO缩小,点A的坐标为(﹣2,4),则点A的对应点A′的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故选:D.10.解:A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;故选:B.二.填空题(共8小题)11.解:3÷=300000(m),300000m=300km;答:它们的实际距离为300km;故答案为:300.12.解:设EB=x,∵矩形BCFE和矩形ABCD相似,∴=,∵四边形AEFD是正方形,∴AD=BC=2,∴=,解得:x=﹣1±(负数不合题意舍去),∴BE=﹣1+,故AB=2﹣1+=1+,故答案为:1+.13.解:∵l1∥l2∥l3,∴AC∥BD,∴△ACE∽△BDE,∴=,故答案为:.14.解:∵AC=3,BC=4,∠C=90°,∴AB===5,∵Rt△ABC∽Rt△A′B′C′,∴∴A'C'==6,故答案为6.15.解:∵矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为,∴点B1的坐标是:(4,3)或(﹣4,﹣3).故答案为:(4,3)或(﹣4,﹣3).16.解:∵DE∥BC,∴,即,即,解得:AE=6.故答案为:617.解:∵AB∥CD,∴△EBA∽△ECD,∴,即,∴AB=13.5(米).故答案为:13.518.解:∵AD∥BC,∠D=90°∴∠C=∠D=90°∵AD=2,BC=12,DC=10.设PD=x,则PC=10﹣x;①若PD:PC=AD:BC,则△PAD∽△PBC∴x:(10﹣x)=2:12,解得x=,即PD=;②若PD:BC=AD:PC,则△PAD∽△CBP∴x:12=2:(10﹣x),解得:x=4或x=6,即PD=4或PD=6.∴这样的点P存在的个数有3个.故答案为3.三.解答题(共8小题)19.解:∵x:y=3:5,y:z=2:3,∴x=y,z=y,∴5x﹣2z=5×y﹣2×y=3y﹣3y=0.20.解:∵l1∥l2∥l3,AB=2,BC=4,DF=12,∴=,即=,解得DE=4.21.解:当△AMN∽△ABC时,∵点M为AB的中点,AB=,AC=2,BC=3,∴,∴,即,解得MN=;当△ANM∽△ABC时,∵,即,解得MN=.22.解:(1)如图1中,在Rt△ABC中,AC=12cm,BC=16cm,∴AB==20cm.∵D、E分别是AC、AB的中点.AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=BC=8cm,①PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴,由题意得:PE=8﹣2t,QE=4t﹣10,即,解得t=;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴,∴,∴t=,∴当t为s或s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.如图5中,当点Q在线段AE上时,由EQ=QP,可得(8﹣2t):(4t﹣10)=4:5,解得t =.如图6中,当点Q在线段AE上时,由PQ=EP,可得(4t﹣10):(8﹣2t)=4:5,解得t =.综上所述,t=1或3或或秒时,△PQE是等腰三角形.23.解:(1)∵△OBD∽△OAC,∴==,∵BO=6,∴AO=10;(2)∵△OBD∽△OAC,=,∴=,∵S=50,△AOC=18.∴S△BOD24.解:(1)如图所示,△DEF即为所求:(2)△ABC的面积==4个平方单位,△DEF的面积==8个平方单位,故答案为:4;825.解:(1)如图所示:△A1B1C1,即为所求;(2)点B1的坐标为(3,5);点C1的坐标为(7,3).故答案为:(3,5);(7,3).26.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵=,=,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴==,同理===,∴DF=9,EF=12,∴△DEF的面积为:×9×12=54.。

北师大版九年级数学上学期期末培优训练第四章:图形的相似(含答案)

九年级数学上学期期末培优训练:图形的相似1.如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BFC.2.在Rt△ABC中,∠ACB=90°,AB=5,AC=3.矩形DEFG的顶点D、G分别在边AC、BC上,EF在边AB上.(1)点C到AB的距离为.(2)如图①,若DE=DG,求矩形DEFG的周长.(3)如图②,若矩形DEFG的周长是DE长的8倍,则矩形DEFG的周长为.3.已知:如图,在△ABC中,AB=AC,AD是边BC上的中线,BE⊥AC于点E,AD与BE交于点H.(1)求证:BD2=DH•DA;(2)过点C作CF∥AB交BE的延长线于点F.求证:HB2=HE•HF.4.在平行四边形ABCD中,AD=BD,E为AB的中点,F为CD上一点,连接EF交BD 于G.(1)如图1,若DF=DG=2,AB=8,求EF的长;(2)如图2,∠ADB=90°,点P为平行四边形ABCD外部一点,且AP=AD,连接BP、DP、EP,DP交EF于点Q,若BP⊥DP,EF⊥EP,求证:DQ=PQ.5.已知,如图,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)求▱DEFG对角线DF的长;(2)求▱DEFG周长的最小值;(3)当▱DEFG为矩形时,连接BG,交EF,CD于点P,Q,求BP:QG的值.6.如图,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE⊥AC,交BD的延长线于点E,交AD的延长线于点F,且满足∠DCE=∠ACB.(1)求证:四边形ABCD是矩形;(2)求证:.7.如图,正方形ABCD的边长为1.对角线AC、BD相交于点O,P是BC延长线上的一点,AP交BD于点E,交CD于点H,OP交CD于点F,且EF与AC平行.(1)求证:EF⊥BD.(2)求证:四边形ACPD为平行四边形.(3)求OF的长度.8.如图,在正方形ABCD中,边长为4,∠MDN=90°,将∠MDN绕点D旋转,其中DM 边分别与射线BA、直线AC交于E、Q两点,DN边与射线BC交于点F;连接EF,且EF与直线AC交于点P.(1)如图1,点E在线段AB上时,①求证:AE=CF;②求证:DP垂直平分EF;(2)当AE=1时,求PQ的长.9.如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF 交AD于点G.(1)求证:AD2=AB•AE;(2)若AB=3,AE=2,求的值.10.如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?11.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.12.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA 边向点A以1厘米/秒的速度移动.:点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB相似?13.在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在射线BC上.猜想:如图①,点D在BC边上,BD:BC=2:3,AD与BE相交于点P,过点A作AF∥BC,交BE的延长线于点F,则的值为.探究:如图②,点D在BC的延长线上,AD与BE的延长线交于点P,CD:BC=1:2,求的值.应用:在探究的条件下,若CD=2,AC=6,则BP=.14.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.15.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.参考答案1.(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BFC.2.解:(1)过C作CM⊥AB于M,交DG于点N,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,由勾股定理得:BC==4,=,∵由三角形的面积公式得:S△ACB∴3×4=5CM,解得:CM=,故答案为:;(2)如图,∵四边形DEFG是矩形,∴DG∥AB.∴MN=DE,CN⊥DG,∴△CDG∽△CAB,∴=,设DE=DG=x,则=,解得:x=,∴矩形DEFG的周长为4×=;(3)∵矩形DEFG的周长是DE长的8倍,∴设DE=MN=x,则DG=EF=×((8x﹣x﹣x)=3x,∵由(2)知:=,∴=,解得:x=,即DE=,∵矩形DEFG的周长是DE长的8倍,∴矩形DEFG的周长是8×=,故答案为:.3.解:(1)证明:∵在△ABC中,AB=AC,AD是边BC上的中线∴AD⊥BC,∠BAD=∠CAD∴∠ADB=90°∵BE⊥AC于点E∴∠HEA=90°又∵∠AHE=∠BHD∴∠CAD=∠DBH∴∠BAD=∠DBH∴△BAD∽△DBH∴=∴BD2=DH•DA;(2)证明:连接HC,如图,∵AD⊥BC,AD是边BC上的中线∴AD垂直平分BC∴HB=HC∴∠HBC=∠HCB∵AB=AC∴∠ABC=∠ACB∵∠BEC=90°∴∠HBC+∠ACB=90°∴∠HCB+∠ABC=90°∵CF∥AB∴∠ABC+∠∠HCB+∠HCF=180°∴∠HCF=90°∵∠HCF=∠HEC=90°,∠FHC=∠CHE ∴△FHC∽△CHE∴=∴=∴HB2=HE•HF.4.解:(1)如图1中,∵DA =DB ,AE =EB , ∴DE ⊥AB ,∵四边形ABCD 是平行四边形, ∴CD ∥AB , ∴DE ⊥CD , ∵DF ∥EB ,∴=,∴=,∴BG =4,在Rt △DEB 中,∵∠DEB =90°,EB =4,DB =6,∴DE ==2,在Rt △DEF 中,则有EF ==2.(2)如图2中,设AB 交PD 于点O .∵EF ⊥PE ,∴∠PEF =∠DEB =90°, ∴∠DEQ =∠BEP , ∵DP ⊥PB ,∴∠DEO=∠OPB=90°,∵∠DOE=∠BOP,∴∠EDQ=∠EBP,∵△ADB是等腰直角三角形,AE=EB,∴DE=AE=EB,∴△DEQ≌△BEP(ASA),∴EQ=EP,DQ=PB,∵∠PEQ=90°,∴PQ=PE,∵△ADE∽△ABD,可得AD2=AE•AB,∵AD=AP,∴AP2=AE•AB,∴=,∵∠EAP=∠BAP,∴△EAP∽△P AB,∴===,∴PB=PE,∴DQ=PE,∴DQ=PQ.5.解:(1)如图1所示:连接DF,∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;故▱DEFG对角线DF的长.(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l▱DEFG=2(NF+DF)=6;(3)设AE=x,则BE=3﹣x,∵▱DEFG为矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF(AA)∴,∴,解得:x=1,或x=2①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵▱DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中有,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF~△FHB,∴,HF=,在△BPH和△GPF中有:,∴△BPH∽△GPF(AA),∴∴PF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴.②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED===2,EF===,∴∠ADE=45°,又∵四边形DEFG是矩形,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∴△HGQ∽△BCQ(AA),∴,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,综合所述,BP:QG的值为或.6.解:(1)证明∵AD∥BC,∴,∵DO=BO,∴AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AC,∵∠DCE=∠ACB,∴∠ACB+∠ACD=90°,即∠BCD=90°,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴AC=BD,∠ADC=90°,∵AD∥BC,∴,∴∴,∵∠ADC=∠ACF=90°,∴,∴.7.(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵EF∥AC,∴EF⊥BD;(2)证明:∵EF∥AC,∴=,=,∵四边形ABCD是正方形,∴AD∥CP,OA=OC,∴=,即=,∴AO∥DP,∵AD∥CP,∴四边形ACPD为平行四边形;(3)解:由勾股定理得:AC=BD==,∵四边形ACPD为平行四边形,∴CP=AD=BC,∴=,∵AD∥BP,∴==,∴DE=BD=,OE=OD﹣DE=﹣=,∵DO=BD=,∵∠DEF=∠DOC=90°﹣∠EDF=45°,∴∠DFE=45°,∴EF=DE=,在Rt△OEF中,由勾股定理得:OF===.8.(1)①证明:∵四边形ABCD是正方形,∴DA=DC,∠ADC=∠DAE=∠DCF=90°,∴∠ADC=∠MDN=90°,∴∠ADE=∠CDF,∴△ADE≌△CDE(ASA),∴AE=CF.②∵△ADE≌△CDE(ASA),∴DE=DF,∵∠MDN=90°,∴∠DEF=45°,∵∠DAC=45°,∴∠DAQ=∠PEQ,∵∠AQD=∠EQP,∴△AQD∽△EQP,∴=,∴=,∵∠AQE=∠PQD,∴△AQE∽△DQP,∴∠QDP=∠QAE=45°,∴∠DPE=90°,∴DP⊥EF,∵DE=DF,∴PE=PF,∴DP垂直平分线段EF.(2)解:①当点E在线段AB上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=A H=AG,设QH=x,∵×4×x+×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.②当点E在BA的延长线上时,作QH⊥AD于H,QG⊥AB于G.在Rt△ADE中,DE==,∵∠QAH=∠QAG=45°,∴HQ=QG=AH=AG,设QH=x,∵×4×x﹣×1×x=×1×4,∵x=,∴AQ=,DQ==,EQ=,∵△AQD∽△EQP,∴AQ•PQ=DQ•EQ,∴PQ==.综上所述,PQ的长为或.9.(1)证明:∵AD⊥BC于D,作DE⊥AC于E,∴∠ADC=∠AED=90°,∵∠DAE=∠DAC,∴△DAE∽△CAD,∴=,∴AD2=AC•AE,∵AC=AB,∴AD2=AB•AE.(2)解:如图,连接DF.∵AB=3,∠ADB=90°,BF=AF,∴DF=AB=,∵AB=AC,AD⊥BC,∴BD=DC,∴DF∥AC,∴===,∴=.10.解:(1)当∠AEF=∠BFC时,要使△AEF∽△BFC,需=,即=,解得AF=1或3;当∠AEF=∠B CF时,要使△AEF∽△BCF,需=,即=,解得AF=1;综上所述AF=1或3.(2)延长DA,作点E关于AB的对称点E′,连结CE′,交AB于点F1;连结CE,以CE为直径作圆交AB于点F2、F3.(3)当1<m<4且m≠3时,有3个;当m=3时,有2个;当m=4时,有2个;当m>4时,有1个.11.证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.12.解:①若△POQ∽△AOB时,=,即=,整理得:12﹣2t=t,解得:t=4.②若△POQ∽△BOA时,=,即=,整理得:6﹣t=2t,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.13.解:猜想:如图①∵BE是AC边上的中线,∴AE=CE,∵AF∥BC,∴△AEF∽△CEB,∴===1,∵BD:BC=2:3,∴BD:AF=2:3,∵AF∥BD,∴△APF∽△DPB,∴==;探究:过点A作作AF∥BC,交BE的延长线于点F,如图②,设DC=k,则BC=2k,∵AF∥BC,∴△AEF∽△CEB,∴==1,即AF =BC =2k ,∵A F ∥BD ,∴△APF ∽△DPB ,∴===;应用:CE =AC =3,BC =2CD =4,在Rt △BCE 中,BE ==5,∴BF =2BE =10,∵AF ∥BD ,∴△APF ∽△DPB ,∴==,∴BP =BF =×10=6.故答案为,6.14.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠B +∠C =180°,∠ADF =∠DEC ,∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC ;(2)∵AE ⊥BC ,AD =3,AE =3,∴在Rt △DAE 中,DE ===6,由(1)知△ADF ∽△DEC ,得=,∴AF ===2. 15.(1)证明:∵PQ ⊥AQ ,∴∠AQP =90°=∠ABC ,在△APQ 与△ABC 中,∵∠AQP =90°=∠ABC ,∠A =∠A ,∴△AQP ∽△ABC .(2)解:在Rt △ABC 中, AB =3,BC =4,由勾股定理得:AC =5. ∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,①当点P 在线段AB 上时,如题图1所示.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC ,∴=,即=,解得:PB =,∴AP =AB ﹣PB =3﹣=;(II )当点P 在线段AB 的延长线上时,如题图2所示.∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为或6.。

北师版九年级数学上册 第4章 图形的相似 综合测试卷(含答案)

北师版九年级数学上册 第四章 图形的相似综合测试卷第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30) 1.下面不是相似图形的是( )A B C D2.如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,点O 为位似中心,若OD =12OD′,则A′B′∶AB 为( )A .2∶3B .3∶2C .1∶2D .2∶13.如图,在△ABC 中,DE ∥BC ,AD AB =35,则S △ADE S 梯形DBCE 的值是( ) A.35 B.916 C.53 D.16254.如图,在△ABC 中,DE ∥BC ,AD DB =12,则下列结论中正确的是( ) A.AE AC =12B.DE BC =12C.△ADE 的周长△ABC 的周长=13D.△ADE 的面积△ABC 的面积=135.点C 为线段AB 的黄金分割点,且AC>BC.下列说法中正确的有( ) ①AC =5-12AB ;②AC =3-52AB ;③AB ∶AC =AC ∶BC ;④AC≈0.618AB. A .1个 B .2个 C .3个 D .4个6.在平面直角坐标系中,点P(m ,n)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2m ,2n)B .(2m ,2n)或(-2m ,-2n)C .(12m ,12n)D .(12m ,12n)或(-12m ,-12n)7.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于( ) A .1 B .2 C .3 D .48.如图,在△ABC 中,D ,E 两点分别在边BC ,AD 上,且AD 为∠BAC 的平分线.若∠ABE =∠C ,AE ∶ED =2∶1,则△BDE 与△ABC 的面积比为( ) A .1∶6 B .1∶9 C .2∶13 D .2∶159.如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HFBG 的值为( ) A.23 B.712 C.12 D.51210.(2018·达州)如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC.连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则S △ADGS △BGH 的值为( ) A.12 B.23 C.34 D .1第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在△ABC 中,AB =12 cm ,BC =18 cm ,AC =24 cm ,另一个与它相似的△A′B′C′的周长为18 cm ,则△A′B′C′各边长分别为________cm ,________cm ,________cm. 12. 如图,已知AB ∥CD ,若AB CD =14,则OAOC=________.13.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BE ,BD ,且AE ,BD 交于点F ,已知S △DEF ∶S △ABF =4∶25,则DE ∶EC =________.14.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE =________.15.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB =________.16.如图,阳光通过窗口AB 照到室内,在地面上留下一个亮区ED ,已知亮区一边到窗下的墙脚距离CE =2.7 m ,窗高AB =0.8 m ,窗口底边离地面的高度BC =1 m ,则亮区宽度ED =________.17.如图,梯形ABCD 中,AB ∥CD ,BE ∥AD ,且BE 交CD 于点E ,∠AEB =∠C.如果AB =3,CD =8,那么AD 的长是________.18.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,在Rt △MPN 中,∠MPN =90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE =2PF 时,AP =________.三.解答题(共7小题, 46分)19.(6分) 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DF CG .(1)求证:△ADF ∽△ACG ;(2)若AD AC =12,求AFFG的值.20. (6分) 如图,点D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.21. (6分) 如图,在△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.22.(6分) ) 如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.23.(6分) 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.24.(8分) 如图,为测量山峰AB的高度,在相距50 m的D处和F处分别竖立高均为2 m的标杆DC 和FE,且AB,CD和EF在同一平面内,从标杆DC退后2 m到G处可以看到山峰A和标杆顶点C 在同一直线上,从标杆FE退后4 m到H处可以看到山峰A和标杆顶点E在同一直线上,求山峰AB 的高度及山峰与标杆CD之间的水平距离BD的长.25.(8分) 如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD BC =DEAC;(2)当点E 为CD 的中点时,求证:AE 2CE 2=ABCD.参考答案1-5 ADBCC 6-10 BBDBC 11. 4,6 ,8 12. 1413. 2∶3 14. 4.5 15. 4 16. 1.2m 17. 15 18. 319. 解:(1)证明:∵∠AED =∠B ,∠DAE =∠DAE ,∴∠ADF =∠C. 又∵AD AC =DFCG ,∴△ADF ∽△ACG(2)∵△ADF ∽△ACG ,∴AD AC =AFAG .又∵AD AC =12,∴AF AG =12,∴AF FG=120. 解:在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A , ∴△ABD ∽△ACB ,∴AB AC =AD AB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=521. 证明:∵AD 是中线,∴BD =CD , 又CD 2=BE·BA ,∴BD 2=BE·BA , 即BE BD =BDAB, 又∠B =∠B ,∴△BED ∽△BDA , ∴ED AD =BDAB,∴ED·AB =AD·BD 22. 解:(1)∵AB =AC ,BD =CD ,∴AD ⊥BC ,∠B =∠C , ∵DE ⊥AB ,∴∠DEB =∠ADC ,∴△BDE ∽△CAD (2)∵AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ADB 中,AD =AB 2-BD 2=12, ∵12AD·BD =12AB·DE ,∴DE =601323. 解:(1)如图所示,线段A 1B 1即为所求(2)如图所示,线段A 2B 1即为所求(3)由图可得,四边形AA 1B 1A 2为正方形,∴四边形AA 1B 1A 2的面积是(22+42)2=(20)2=20 24. 解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF , ∴△CDG ∽△ABG ,△EFH ∽△ABH , ∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD. 又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m , ∴2AB =22+BD ,2AB =450+4+BD , ∴22+BD =44+50+BD, 解得BD =50 m , ∴2AB =22+50, 解得AB =52 m25. 证明:(1)∵∠ACD =∠B =∠BAE ,∠BAC =∠BAE +∠CAE ,∠AED =∠ACD +∠CAE , ∴∠AED =△BAC.又∵∠DAE =∠B , ∴△AED ∽△BAC ,∴AD BC =DEAC(2)∵∠ADE =∠CDA ,∠DAE =∠ACD ,∴△DAE ∽△DCA ,∴AE AC =DEAD .又∵DE =EC ,∴AE CE =AC AD ,∴AE 2CE 2=AC 2AD 2.又∵∠DAC =∠BAC ,∠ACD =∠B , ∴△ACD ∽△ABC ,∴AC 2=AD·AB , ∴AE 2CE 2=AD·AB AD 2=ABAD。

北师大版九上数学第四章图形的相似单元检测卷(解析版).docx

第四章《图形的相似》单元测试一•选择题:(每小题3分,共36分)如果4a = 5b (“#)),那么下列比例式变形正确的是(如图,在厶ABC 中,D 、E 分别是43、AC 上的点,且DE 〃BC ,如果AD=2cr?h DB=\cm.AE=\.Scm,则 EC=()①所有等腰直角三角形都相似;②所有等边三角形都相似; ③所冇正方形都相似;④所冇菱形都相似. 其中真命题有()6.如图在4x4的方格纸(每小方格的血积为1)上有一个格点三角形ABC (图甲),请在图 乙、图丙、图丁中画出与三角形ABC 相似(不全等)的格点三角形.班级:姓名: 得分:1. 2. 3. A- 0.9cmB. 在下列四个命题屮:\cmD. 0.2cm4. 5. A. 4个 B. 3个 C. 2个 D.如图,已知AB//CD//EF,那么下列结论屮,正确的是A.如=竺B.竺=竺C.竺=匹 DF CE CE ADEF BE如图,无法保证厶ADE 与△ABC 相似的条件是()A. Z1=ZCB. ZA=ZCC. Z2=ZBD.D.CE AD ~EF~~AFAD^AEAC^AB(第2题)(第4题)似比畤把△伽缩小,则点A 的对应点的坐标是(10・下面四组线段屮不能成比例线段的是(11.如图,在口ABCD 中,对角线AC 、BD 相交于点O 过点O 与AD 1.的一点E 作直线OE,交84的延长线于点F.若AD=4, DC=3, AF=2,D-i 12.如图所示,在正方形ABCD 中,E 为CD 的中点,作3E 的中垂线GH,垂足为M,则GMx MH的值为()8.9. 若厶ABCs 'DEF, 'ABC 与△DEF 旳相似比为2: A. 2:B. 4: 9C ・ V2: V3在△ABC 屮,两条屮线BE 、CD 相交于点O,3,则 S MBC : S^DEF 为D. 3: 2则 S 辺OE : ^ACOB在平面直角坐标系中,已知点A (・4, 2), B (-2),以原点O 为位似中心,相A. ( - 2, 1)B. (-8, 4)C.(・ 8, 4)或(8, -4)D. (-2, 1)或(2, - 1)A- 3、6、2、4 B. 4、 6、 5、 10 C. 1、忑、V6> V3D. 2晶、V15> 2忑、4则AE 的长是()A ,I7. 如图, 3D. 1: 2(第11题)(第12题)C. 1: 3A. 4: 1B- 3: 1 C. 3: 2D- 5: 2二•填空题:(每小题3分,共12分)13•如果线段AB=\O,点C 是AB 上靠近点3的黄金分割点,则AC 的值约是 如图,在△ABC 中,DE//BC, AD : DB=1: 2, DE=2,则 BC 的长是△ADC 相似.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y = -x 的图象上,从左向右第3个正方形屮的一个顶点A 的坐标为(27, 9), 阴影三角形部分的面积从左向右依次记为Si 、S2、S3 .......... S 〃,则第4个正方形的边长三•解答题:(共52分)17. (6 分)如图,£> 是 AC 上一点,DE//AB. ZB 二ZDAE.求证:/\ABC^/\DAE.14.15.如图,已知:ZACB=ZADC=90Q, AD=2, CD=2,当 AB 的长为 时,ZXACB 与16. (第15题) 是 ___ ! S3的值为20. (7分)如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于点F.已BE 2知 --- =—,S BEl ; = 3 ,求△CDF 的血积・AB 3 曲18- “分)已呻2x + 2y + z 3y-z19. (8 分) 如图,在RAABC 中, ZACB=90Q, CD 是边43上的高.(1)求证:AABC^ACBD ; (2)如果 AC = 4,BC=3, 求BD 的长.C21.(8分)如图所示,在矩形ABCD中,E是BC上一点,AF丄DE于点F.(1)求证:DF・CD二AF・CE.(2)若AF=4DF, CD=12,求CE 的长.22.(8 分)如图,在△ABC 中,ZABC=90°, BC=6, D 为AC 延长线上一点,AO3CD,过点D作DH//AB,交BC的延长线于点H.(1)求的长;(2)若AB=\2,试判断ZCBD与ZA的数量关系,请说明理由.23. (9 分)如图,在Rt/XABC中,ZACB二90。

2019北师大版数学九上第四章:图形的相似 测试和答案

北师大版数学九上第四章:图形的相似 测试及答案一.选择题:(每小题3分共36分)1.已知52x y =,则x y y-的值为( ) A .35 B .32C .23D .35-【答案】B解设5x k =,2(0)y k k =≠, 则52322x y k k y k --==, 故选:B .2.若线段 ,且点C 是AB 的黄金分割点,则BC 等于( ) A. B. C. 或 D. 或 【答案】D解:当AC <BC 时,BC=AB= ,当AC >BC 时,BC= = , 故选:D .3.如图,AD AE 2DB EC ==,则ABDB=( )A .12B .2C .13D .3【答案】D解:∵AD AE2DB EC==, 故设BD =k ,AD =2k ∴AB =3k ,∴AB 3k3DB k== 故选:D .4.如图,已知一组平行线a//b//c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB=2,BC=3,DE=l.6,则EF=( )A .2.4B .1.8C .2.6D .2.8【答案】A 解:∵a ∥b ∥c ,∴AB DEBC EF=, 即2 1.63EF=, ∴EF=2.4. 故选:A .5.如图ABC △中,点D 为BC 边上一点,点E 在AD 上,过点E 作//EF BD 交AB 于点F ,过点E 作//EG AC 交CD 于G , 下列结论错误的是( )A .EF CGBD GD= B .AC ADEG DE= C .BF DGAF GC= D .1EG EFAC BD+= 【答案】A解根据三角形的平行线定理,可得A 选项,EF AE CGBD AD CD==,错误; B 选项,AC ADEG DE=,正确; C 选项,BF DGAF GC=,正确; D 选项,1EG EF DE AE DE AE ADAC BD AD AD AD AD++=+===,正确; 故答案为A.6.如图,E ,F 是平行四边形ABCD 对角线BD 上的两点,DE =EF =BF ,连接CE 并延长交AD 于点G ,连接CF 并延长交AB 于点H ,连接CH ,设△CDG 的面积为S 1,△CHG 的面积为S 2,则S 1与S 2的关系正确的是( )A .12S S =B .1213S S =C .1223S S =D .1212S S =【答案】C 解∵DE=EF=BF ,∴DF=2BF,BE=2DE∵四边形ABCD是平行四边形∴AD∥BC,AB∥CD,AB=CD,AD=BC∴21DC DFHB FB==,DE1BE2DGBC==∴CD=2HB,BC=2DG∴点G,H分别是AD,AB的中点,∴S1=S△CDG=S△BCH=14S▱ABCD,GH∥DB∵GH∥DB∴△AGH∽△ADB∴214 AGHABDS AHS AB⎛⎫==⎪⎝⎭∴S△AGH=14S△ABC=18S▱ABCD,∵S△CHG=S▱ABCD-S△AGH-S△CDG-S△BCH,∴S2=S△CHG=38S▱ABCD,∴S1=23S2,故选:C.7.如图所示,一般书本的纸张是由原纸张多次对开得到的.矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依此类推,若各种开本的矩形都相似,则()A. B. C. D.2【答案】B解:∵矩形ABCD与矩形BFEA相似,∴,∴.又∵,∴,∴,故选B.8.在矩形ABCD中,BC=10cm、DC=6cm,点E、F分别为边AB、BC上的两个动点,E从点A 出发以每秒5cm的速度向B运动,F从点B出发以每秒3cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值为()A1B.0.5 C.23D.1【答案】C解如图,根据题意知,AE=5t,BF=3t,∵BC=10cm,DC=6cm,∴53,10262 AE t t BF t t AD AB====,∴AE BF AD AB=,又∵∠DAE=∠ABF=90°,∴△ADE∽△BAF,∴∠2=∠3,∵AD∥BC,∴∠3=∠4,∴∠2=∠4,∵∠1=∠2,∴∠1=∠4,∴DF=DA,即DF²=AD²,∵BF=3t,BC=10,∴CF=10−3t,∴DF²=DC²+CF²,即DF²=6²+(10−3t)²,∴6²+(10−3t)²=10²,解得:t=23或t=6,∵0⩽5t⩽6且0⩽3t⩽10,∴0⩽t⩽65,∴t=23,故选:C.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25【答案】C解∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴,∴.故选:C.10.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,已知亮区DE到窗口下的墙脚的距离CE=5米,窗口高米,那么窗口底部离地面的高度BC为()A.2米B.2.5米C.3米D.4米【答案】B解由题意知,可得,∴,∵(米),米,∴,∴米,故选B.11.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②=;③=;④=.其中正确的个数为( )A.1 B.2 C.3 D.4【答案】C解:①∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=BC,即=,故①正确;②∵DE是△ABC的中位线,∴DE∥BC,∴△DOE∽△COB,∴=()2=()2=,故②错误;③∵DE∥BC,∴△ADE∽△ABC∴=,△DOE∽△COB,∴=,∴=,故③正确;④∵DE是△ABC的中位线,∴DE∥BC,2DE=BC,∴△DOE∽△COB,∴OC:OD=BC:DE=2,∴DC=3OD,∴3S△BOD=S△BDC,∴=,故④正确.综上所述:①③④正确.故选C.12.如图,正方形ABCD中,E为BC中点连接AE,DF⊥AE于点F,连接CF,FG⊥CF交AD 于点G,下列结论:①CF=CD;②G为AD中点;③△DCF∽△AGF;④,其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】D解如图,作CM⊥DF于M.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∴DAB=∠B=∠ADC=90°,∵∠ADF+∠CDF=90°,∠CDF+∠DCM=90°,∴∠ADF=∠DCM,∵DF⊥AE,CM⊥DF,∴∠AFD=∠CMD=90°,∴△DAF≌△CDM,∴CM=DF,DM=AF,∵∠ADF+∠DAE=90°,∠DAE+∠BAE=90°,∴∠BAE=∠ADF,∵BE=CE,∴tan∠BAE=tan∠ADF=,∴,∴DM=MF,∵CM⊥DF,∴CD=CF,故①正确,∴∠CDF=∠CFD,∵∠CDG=∠CFG=90°,∴∠GFD=∠GDF,∴GF=GD,∵∠GDF+∠DAF=90°,∠GFD+∠AFG=90°,∴∠GAF=∠GFA,∴GF=GA,∴GD=GA,∴G是AD中点,故②正确,∵∠AFD=∠GFC,∴∠AFG=∠CFD,∠GAF=∠CDF,∴△DCF∽△AGF,故③正确,设AF=a,则DF=2a,AB=a,BE=a,∴AE=a,EF=a,∴,故④正确,二、填空题:(每小题3分共18分)13.已知在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F,S =5,BC=10,则DE为____.【答案】解过点A作AM⊥BC于M,由于∠B=∠ECD,且∠ADC=∠ACD,得△ABC与△FCD相似,那么 = =4,又S =5,那么S =20,由于S = BC⋅AM,BC=10,得AM=4,此时BD=DC=5,M为DC中点,BM=7.5,由于 ,所以DE= .故答案为:.14.如图,以为位似中心将四边形放大后得到四边形′′′′,若,′,则四边形和四边形′′′′的周长的比为________.【答案】解∵以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,OA=4,OA′=8,∴四边形ABCD和四边形A′B′C′D′的位似比为:OA:OA′=4:8=1:2,∴四边形ABCD和四边形A′B′C′D′的周长的比为:1:2.故答案为:1:2.15.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=________.【答案】4:9.解:设大正方形的边长为x,根据图形可得,∵,∴,∴正方形,∴正方形,∴,∵,∴正方形,∴正方形,∴,∴ : = : =4:9. 故答案为:4:9.16.如图,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④3OD =;其中正确的结论是 _____.(填写所有正确结论的序号)【答案】①③解如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M ,在OABC 中,(80)(34)(114)A C B OB ∴=,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= , ,CB OF ODF BDC ∴∆~∆ , 111222OF OD OF BC OA BC BD ∴==∴==, , F ∴ 是OA 的中点,故①正确;(34)5C OC OA ∴=≠,, ,OABC ∴不是菱形,,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠,(40),F CF CFO COF ∴=∴∠∠,,,DFO EBG ∴∠≠∠,故OFD ∆ 和BEG ∆ 不相似,故②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线,1,2FG OB FG OB ∴==D E 、 是OB 的三等分点,3DE ∴=, 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯=, ∴1162AN OB= , DF FG ,∴四边形DEGH 是梯形,()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 , 故③正确;13OD OB == ,故④错误, 综上:①③正确,故答案为:①③.三、解答题:(共52分)17.如图,将矩形沿折叠,使点恰好落在边的中点′上,点落在′处,′′交于点.若,,求线段的长.【答案】.解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,设BF=x,则FC=FC′=9-x,∵BF2+BC′2=FC′2,∴x2+32=(9-x)2,解得:x=4,即BF=4,∵∠FC′M=90°,∴∠AC′M+∠BC′F=90°,又∵∠BFC′+BC′F=90°,∴∠AC′M=∠BFC′,∵∠A=∠B=90°,∴△AMC′∽△BC′F,′,′∵BC′=AC′=3,∴AM=.18.如图,等腰中,,∠°,,点D在边AC上且BD平分∠,设.(1)求证:.(2)求x的值.【答案】(1)证明见解析;(2)解:(1)∵等腰中,,∠°,∴∠∠°,∵BD平分∠,∴∠∠°,∵∠∠°,∴∠∠,∴;(2)∵∠∠°,∴,∠∠°,∴,∴,设,则有,∵,∴,即,整理得,解得,(负值,舍去),则,经检验为方程的解,∴.19.如图,已知点P是边长为4的正方形ABCD内一点,且,,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与相似,则BM的长为多少?【答案】或3.解:∵∠∠°,即∠∠∠∠,∴∠∠,当时,,得,当时,,得.20.如图,晚上小明由路灯走向路灯,当他行至点P处时,发现他在路灯BC下的影长为,且影子的顶端恰好在A点,接着他又走了至点Q处,此时他在路灯AD下的影子的顶端恰好在B点,已知小明的身高为,路灯BC的高度为.(1)计算小明站在点Q处时在路灯AD下影子的长度;(2)计算路灯AD的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版九年级数学上册第四章图形的相似培优测试卷一、选择题(共10题;共30分)1.下列各组线段中,能成比例的是()A. 1 cm,3 cm,4 cm,6 cmB. 2 cm,1 cm,4 cm,1.5 cmC. 0.1 cm,0.2 cm,0.3 cm,0.4 cmD. 3 cm,4 cm,6 cm,8 cm2.已知两数x ,y ,且3x=2y ,则下列结论一定正确的是()A. x=2,y=3B. x3=y2C. x+yy=53D. x+2y+3=233.如图,直线a //b //c,AB=45BC,若DF=9,则EF的长度为( )A. 9B. 5C. 4D. 34.如图所示,在长为8 cm,宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm25.如图,为估算学校的旗杆的高度,身高1.8米的小明同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m, BC=8m,则旗杆的高度是( )A. 6.4mB. 7mC. 8m.D. 9m6.已知△ABC∽△DEF ,若△ABC与△DEF的相似比为2:3,△ABC的面积为40,则△DEF的面积为()A. 60B. 70C. 80D. 907.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A. (-2,3)B. (2,-3)C. (3,-2)或(-2,3)D. (-2,3)或(2,-3)8.如图,在△ABC 中,点D 在BC 边上,连接AD , 点G 在线段AD 上,GE//BD , 且交AB 于点E , GF//AC , 且交CD 于点F , 则下列结论一定正确的是( )A. AB AE =AG ADB. DF CF =DG ADC. FG AC =EG BDD. AE BE =CF DF 9.如图,矩形 ABCD 的对角线 AC , BD 交于点 O , AB =6 , BC =8 ,过点 O 作 OE ⊥AC ,交 AD 于点 E ,过点 E 作 EF ⊥BD ,垂足为 F ,则 OE +EF 的值为( )A. 485B. 325C. 245D. 12510.在正方形ABCD 中,点E 为BC 边的中点,把△ABE 沿直线AE 折叠,B 点落在点B ′处,B ′B 与AE 交于点F ,连接AB ′,DB ′,FC.下列结论:①AB ′=AD ;②△FCB ′为等腰直角三角形;③∠CB ′D=135°;④BB ′=BC ;⑤ AB 2=AE ⋅AF .其中正确的个数为( ).A. 2B. 3C. 4D. 5二、填空题(共8题;共24分)11.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE 不行于BC ,添加一条件能使△ABC ∽△ADE 的是________.12.如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为________.13.若x∶y∶z=2∶3∶4,则2x+3y−z的值为________.x−y+2z14.如图,点D、E分别在△ABC的边AB,AC上,DE∥BC,点G在边BC上,AG交DE于点H,点O是线段AG的中点,若AD:DB=3:1,则AO:OH=________.15.如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,则电线杆AB的高为________米.16.如图已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的BC边上的高是3,那么这个正方形的边长是________.17.如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF翻折,使点D落在BC上的点M处,过点E作EH//AB交BC于点H,过点F作FG//BC交AB于点G .若四边形ABHE与四边形BCFG的面积相等,则CF的长为________.18.如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC,ED分别交于点M ,N .已知AB=4,BC=6,则MN的长为________.三、解答题(共8题;共66分)19.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD ,CD⊥BD ,测得AB=2米,BP=3米,PD=12米,求该古城墙的高度CD .20.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.21.图①、图②、图③都是6×6的网格,每个小正方形的顶点为格点,△ABC的顶点A、B、C均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求作图,不要求写出画法.(1)在图①中画出△ABC边BC上的中线AD,则S△ABD=________.(2)在图②中画出△BEF,点E、F分别在边AB、BC上,满足△BEF~△BAC,且S△BEF:S△BAC= 1:4;(3)在图③中画出△BMN,点MN分别在边AB、BC上,使得△BMN与△BAC是位似图形,且(保留作图痕迹)点B为位似中心,位似比为1322.如图,在△ABC中,BC=3,D为AC延长线上一点,AC=3CD ,∠CBD=∠A ,过D作DH∥AB ,交BC的延长线于点H .(1)求证:△HCD∽△HDB .(2)求DH长度.23.如图,△ABC 中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点C 移动,同时动点Q从C出发以1cm/s的速度向点A 移动,设它们的运动时间为t.(1)根据题意知:CQ=________,CP=________;(用含t 的代数式表示);(2)t为何值时,△CPQ 的面积等于1?(3)运动几秒时,△CPQ 与△CBA 相似?24.如图,在△ABC中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且AD⋅OC=AB⋅OD,AF是∠BAC的平分线,交BC于点F,交DE于点G.(1)求证:CE⊥AB.(2)求证:AF⋅DE=AG⋅BC .25.如图1,四边形ABCD的对角线AC,BD相交于点O,OA=OC,OB=OD+CD.图1 图2(1)过点A作AE//DC交BD于点E,求证:AE=BE;(2)如图2,将△ABD沿AB翻折得到△ABD′.①求证:BD′//CD;②若AD′//BC,求证:CD2=2OD⋅BD.26.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点P从点A出发,沿线段AB以每秒5个单位长度的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB,交折线AC−CB 于点Q,过点P、Q分别平行于BC、BA的直线相交于点R.设点P运动的时间为t秒,△PQR与△ABC 重叠部分的面积为S.(1)直接写出线段PQ的长.(用含t的代数式表示)(2)当点R落在边AC上时,求t的值.(3)当△PQR与△ABC重叠部分图形为三角形时,求S与t之间的函数关系式.(4)直接写出AQ或PC平分△PQR面积时t的值.答案一、选择题1.解:A、1×6≠3×4,故不符合题意;B、1×4≠2×1.5,故不符合题意;C、0.1×0.4≠0.2×0.3,故不符合题意;D、3×8=4×6,故符合题意.故答案为:D.2.解:A、当x=2时,y=3,但不是x一定等于2,y一定等于3,故A不符合题意;B、3x=2y,则x3=y2,故B不符合题意;C、由3x=2y,得xy =23,则x+yy=53,故C符合题意;D、由3x=2y,得xy =23,不能得到x+2y+3=23,故D不符合题意.故答案为:C.3.解:∵l1//l2//l3,根据平行线分线段成比例可知,AB BC =DEEF=45,设DE=4t,EF=5t,又∵DF=9,其中DF=DE+EF=9t=9,解得:t=1,∴EF=5t=5,故答案为:B.4.解:设留下矩形的宽为xcm,∵留下的矩形(图中阴影部分)与原矩形相似,∴x4=48,解得x=2则留下矩形的面积为2×4=8(cm2) . 故答案为:C.5.解:设旗杆高度为h,由题意得 1.8h =22+8,解得:h=9米.故答案为:D.6.解:∵△ABC与△DEF相似,相似比为2:3,∴面积比为4:9,∵△ABC的面积为40,∴△DEF的面积为90,故答案为:D .7.如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

把一个图形变换成与之位似的图形是位似变换。

∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC。

∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴位似比为:12。

∵点B的坐标为(-4,6),∴点B′的坐标是:(-2,3)或(2,-3)。

故答案为:D。

8.解:∵GE//BD∴∆AEG~∆ABD∴AEAB =AGAD∴∆DFG~∆DCA ∴A不符合题意,∵GF//AC,∴DFCF =DGAG,∴B不符合题意,∵∆DFG~∆DCA,∆AEG~∆ABD,∴FGAC =DGDA,EGBD=AGAD,∴FGAC ⋅EGBD=1,∴C不符合题意,∵GE//BD,GF//AC,∴AEBE =AGGD=CFDF,∴D符合题意,故答案为:D.9.∵四边形ABCD是矩形,∴AC=BD,∠ABC=∠BCD=∠ADC=∠BAD=90°∵AB=6,BC=8∴AD=BC=8,DC=AB=6∴AC=√AB2+BC2=10,BD=10,∴OA=12AC=5,∵OE⊥AC,∴∠AOE=90°∴∠AOE=∠ADC,又∠CAD=∠DAC,∴△AOE∼△ADC,∴AOAD =AEAC=EOCD,∴58=AE10=EO6,∴AE=254,OE=154,∴DE=74,同理可证,△DEF∼△DBA,∴DEBD =EFBA,∴7410=FF6,∴EF=2120,∴OE+EF=154+2120=245,故答案为:C.10.解:①∵点B′与点B关于AE对称∴△ABF与△AB′F关于AE对称∴AB=AB′∵AB=AD∴AB′=AD故①项正确;②如图,连接EB′则BE=B′E=EC, ∠FBE=∠FB′E, ∠EB′C=∠ECB′∴∠FB′E+∠EB′C=∠FBE+∠ECB′=90°即△BB′C为直角三角形∵FE为△BCB′的中位线∴B′C=2FE∵△B′EF∼△AB′F∴FEFB′=EBAB=12故FB′=2FE∴B′C=FB′∴△FCB′为等腰直角三角形故②项正确;③设∠ABB′=∠AB′B=x°,∠AB′D=∠ADB′=y°则在四边形ABB′D中,2x+2y+90°=360°即x+y=135°又∵∠FB′C=90°∴∠DB′C=360°−135°−90°=135°故③正确;④∵∠BB′C=90°∴BB′<BC故④错误;⑤∵∠ABE=90°,BF⊥AE∴∠ABE=∠AFB=90°∵∠BAF=∠BAF∴△ABF∼△AEB∴ABAE=AFAB∴AB2=AE⋅AF故⑤正确.故答案为:C.二、填空题11.解:∵∠A=∠A,∴添加∠AED=∠B或∠ADE=∠C或ADAE =ACAB,∴△ABC∽△ADE,故答案为:∠AED=∠B或∠ADE=∠C或ADAE =ACAB.12.解:∵AE∥BC∴△AEG∽△BFG∴BG:GA=3:1=BF:AE∵D为AC边上的中点∴AE:CF=1:1∴AE=CF∴BF:AE=(CF+BC):AE=3:1∴(AE+10):AE=3:1解得:AE=5.故答案为:5.13.解:因为y:z=2:3:4,可设x=2k,y=3k,z=4k,所以2x+3y−zx−y+2z =2×2k+3×3k−4k2k−3k+2×4k=97.故答案为:97.14.解:∵AD:DB=3:1 ∴AD=3DB∴AB=AD+BD=4DB ∵DE∥BC∴AHAG =ADAB=ADAD+BD=3DB4DB=34∴AH=34AG又∵AO=12AG∴OH=AH-AO=14AG∴AO:OH=2:1.15.解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米,∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴MNAG =MFGC,∴AG=MN⋅GCMF =1×30.5=6,∴AB=AG+GB=6+2=8(米),故电线杆AB的高为8米故答案为8.16.解:如图,过点A作AM⊥BC于M,∵△ABC的BC边上的高是3,∴AM=3,∵四边形DEFG是正方形,∴GD=FG,GF∥BC,GD∥AM,∴△AGF∽△ABC,△BGD∽△BAM,∴AGAB =GFBC,BGAB=DGAM.∴AGAB +BGAB=GF4+GF3=1.∴GF= 127.故答案为:127.17.解:∵四边形ABCD为矩形∴CD=AB=1,AD=BC=2,AD//BC,AB//CD,∠A=∠D=∠B=∠C=90°设CF=x,则DF=1−x,又∵EH//AB,AE//BH,∠A=90°∴四边形ABHE是矩形,同理可得四边形BCFG是矩形∴矩形BCFG的面积=BC⋅CF=2x,矩形ABHE的面积=AB⋅AE=AE,且EH=AB=1,∠EHM= 90°∵四边形ABHE与四边形BCFG的面积相等∴AE=2x∴DE=2−2x由翻折得ME=DE=2−2x,MF=DF=1−x,∠EMF=90°在Rt△MCF中,由勾股定理得MC=√(1−x)2−x2=√1−2x∵∠HEM+∠HME=90°,∠HME+∠FMC=90°∴∠HEM=∠FMC又∵∠EHM=∠C=90°∴△EHM∼△MCF∴EHMC =EMMF,即√1−2x=2−2x1−x,化简得1−2x=14解得x=38所以CF的长为38.故答案为:38.18.解:过点E作EH∥AD,交点BF于点G,交CD于点H,由题意可知:EH∥BC,∴△BEG∽△BAF,∴BEAB =EGAF=BGGF,∵AB=4,BC=6,点E为AB中点,F为AD中点,∴BE=2,AF=3,∴24=EG3,∴EG= 32,∵EH∥BC,∴△EGN∽△DFN,△EGM∽△CBM,∴EGDF =NGNF=ENDN,EGBC=MGMB=EMCM,∴323=NGNF,326=MGMB,即NGNF =12,MGMB=14,∴2NG=NF,4MG=MB,∵E为AB中点,EH∥BC,∴G为BF中点,∴BG=GF= 12BF= 12√AB2+AF2=52,∴NG= 13GF= 56,MG= 15BG= 12,∴MN=NG+MG= 43,故答案为:43.三、解答题19. 解:由题意知:∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP,∴ABCD = BPDP,得:2CD = 312,解得:CD=8.答:该古城墙CD的高度为8米.故答案为CD=8米.20.解:∵AB⊥OC′,OS⊥OC′,∴SO∥AB,∴△ABC∽△SOC,∴BCBC+OB =ABOS,即11+OB=1.5h,解得OB = 23 h ﹣1①,同理,∵A ′B ′⊥OC ′,∴△A ′B ′C ′∽△SOC ′,∴ B ′C ′B ′C ′+BB ′+OB =A ′B ′OS , 1.81.8+4+OB =1.5h ②,把①代入②得, 1.85.8+23h−1=1.5h ,解得:h =9(米).答:路灯离地面的高度是9米.21. (1)解:如图所示, AD 即为所求, S ΔABD =12×3×4=6 ;(2)解:由 △BEF~△BAC ,且 S △BEF :S △BAC =1:4 可知,点E 、F 分别是BA 、BC 的中点,如图所示, ΔBEF 即为所求;(3)解:如图所示, ΔBMN 即为所求..22.(1)证明:∵DH ∥AB ,∴∠A=∠HDC ,∵∠CBD=∠A ,∴∠HDC=∠CBD ,又∠H=∠H ,∴△HCD ∽△HDB ;(2)解:∵DH ∥AB ,∴ CD AC =CHBC ,∵AC=3CD ,∴13=CH3,∴CH=1,∴BH=BC+CH=3+1=4,由(1)知△HCD∽△HDB,∴DHBH =CHDH,∴DH2=4×1=4,∴DH=2(负值舍去).答:DH的长度为2.23. (1)t;4−2t(2)解:∵S△CPQ=1∴12(4−2t)⋅t=1(2−t)⋅t=1t2−2t+1=0t1=t2=1(3)解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则CPCQ =CBCA,即4−2tt=43,解得t=1.2;②若Rt△ABC∽Rt△PQC则CPCQ =CACB,即4−2tt=34,解得t= 1611;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.答:要使△CPQ与△CBA相似,运动的时间为1.2或1611秒.解:(1)经过t秒后,PC=4-2t,CQ=t;24. (1)证明:∵AD⋅OC=AB⋅OD,∴ADOD =ABOC.∵BD是AC边上的高,∴∠BDC = 90°,△ADB和△ODC是直角三角形.∴Rt△ADB∽Rt△ODC.∴∠ABD =∠OCD.又∵∠EOB=∠DOC,∠DOC+∠OCD+∠ODC=180°,∠EOB +∠ABD+∠OEB =180°.∴∠OEB = 90°.∴CE⊥AB.(2)证明:在△ADB和△AEC中,∵∠BAD=∠CAE,∠ABD =∠OCD,∴△ADB∽△AEC.∴ADAE =ABAC,即ADAB=AEAC.在△DAE和△BAC中∵∠DAE =∠BAC,ADAB =AEAC.∴△DAE∽△BAC.∵AF是∠BAC的平分线,∴AGAF =DEBC,即AF⋅DE=AG⋅BC .25. (1)解:连接CE,∵AE//DC,∴∠OAE=∠OCD,∵∠OAE=∠OCD,OA=OC,∠AOE=∠COD,∴△OAE≌△OCD,∴AE=CD,∴四边形AECD为平行四边形,∴AE=CD,OE=OD,∵OB=OD+CD=OE+BE,∴CD=BE,∴AE=BE(2)解:①过A作AE∥CD交BD于E,交BC于F,连接CE,由(1)得,AE=BE,∴∠ABE=∠BAE,由翻折的性质得∠D′BA=∠ABE,∴∠D′BA=∠BAE,∴BD′//AF,∴BD′//CD;②∵AD′//BC,BD′//AF,∴四边形AFBD′为平行四边形,∴∠D′=∠AFB,BD′=AF,∴AF=BD,∵AE=BE,∴EF=DE,∵四边形AECD是平行四边形,∴CD=AE=BE,∵AF∥CD,∴∠BEF=∠CDE,∵EF=DE,CD=BE,∠BEF=∠CDE,∴△BEF≌△CDE(SAS),∴∠BFE=∠CED,∵∠BFE=∠BCD,∴∠CED=∠BCD,又∵∠BDC=∠CDE,∴△BCD∽△CDE,∴CDBD =DECD,即CD2=BD×DE,∵DE=2OD,∴CD2=2OD⋅BD.26. (1)PQ={203t(0<t≤1825)15 2−154t(1825<t<2)(2)解:当R落在边AC上时,得到下图∵PQ⊥AB,∠ACB=90°,且∠PBQ=∠CBA,∴△BPQ∼△BCA,又PQ∥AB,∴∠PQR=90°,∴△CQR∽△CBA,∵PR∥BC,∴△ARP∽△ABC,∵AP=5t,∴PR=4t,又PQ∥AB,∴∠PQR=90°,∴△CQR∽△CBA,∴PQ= 125t,又PQ= 152−154t,∴152−154t=125t,解得:t=5041;故答案为:t=5041.(3)解:当△PQR与△ABC重叠部分图形为三角形时,由(2)可知,当5041≤t<2时满足要求,故此时QR= 43PQ;∴S= 12×QR×PQ=12×43PQ×PQ=23PQ2=23×(152−154t)2=752t2−752t+752,故答案为:S= 752t2−752t+752.(4)t= 94或t= 3425解:(1)作CD⊥AB交AB于D点,在Rt△ABC中,AB=√AC2+BC2=10∵S△ABC=12AC·BC=12AB·CD∴CD=245,AD=√AC2−CD2=185∴当P和D重合时,t=185÷5=1825①当0<t≤1825时,AP=5t,如下图所示∵PQ⊥AB∴PQ//CD∴△APQ∼△ACD∴APAD =PQCD∴PQ=203t②当1825<t<2时,AP=5t,如下图所示∵PQ⊥AB∴PQ//CD∴△BPQ∼△BDC∴BPBD =PQCD∴PQ=BP·CDBD =(10−5t)·24510−185=152−154t综上所述,PQ={203t(0<t≤1825)15 2−154t(1825<t<2);故答案为:PQ={203t(0<t≤1825)15 2−154t(1825<t<2).(4)直接写出AQ或PC平分△PQR面积时t的值①当AQ平分△PQR面积时,令AQ交PR于点M,连接AR,如下图所示,则根据三角形等面积可知此时PM=RM,∴四边形BQPR为平行四边形,四边形ARQP时矩形,∴QM=PM= 12BQ= 12×54×(10−5t)= 12×54×(10−5t),∴AQ=BQ= 54BP= 54×(10−5t)= 252−254t,CQ=BC-BQ= 254t−92,故根据勾股定理可得(25 4t−92)2+62=(252−254t)2,解得:t= 94;②当PC平分△PQR面积时,令PC交QR于点N,此时R在CD上,如下图所示,则根据三角形等面积可知此时QN=RN,∴四边形PQRD为矩形,四边形CQPR为平行四边形,∴DR=PQ,CE=PQ,∴CD=2PQ= 15−152t,又CD= 245,即15−152t=245,解得:t= 3425;故答案为:t= 94或t= 3425.。

相关文档
最新文档