发动机的工作原理及特性
固液混合发动机原理

固液混合发动机原理
固液混合发动机是一种特殊类型的发动机,它结合了固体燃料
和液体氧化剂的特点。
其工作原理主要涉及到燃料的燃烧和推进力
的产生。
首先,固液混合发动机的燃料是固体燃料,通常是固体推进剂,如固体火箭燃料。
而液体氧化剂一般是液氧。
这种组合的优势在于
固体燃料具有高能量密度和较长的保存寿命,而液体氧化剂则提供
了高氧化性能和可调控的供氧能力。
其次,当固液混合发动机启动时,液体氧化剂被喷射到固体燃
料上。
液体氧化剂的喷射可以通过喷嘴或者其他喷射装置来实现。
液氧与固体燃料接触后,会引发燃烧反应。
在燃烧过程中,固体燃料发生氧化反应,产生高温高压的气体。
这些气体通过喷嘴或其他出口被排出,产生推力。
推力的大小取决
于燃料的燃烧速度、燃烧温度和喷射速度等因素。
固液混合发动机的工作原理类似于固体火箭发动机,但与之不
同的是,固液混合发动机可以在运行过程中调整液体氧化剂的供应
量,从而实现推力的调节。
这种可调节的特性使得固液混合发动机在航天器的姿态控制和轨道调整中具有较大的灵活性。
总结来说,固液混合发动机通过将液体氧化剂喷射到固体燃料上,实现燃烧反应并产生推力。
其工作原理基于固体燃料的高能量密度和液体氧化剂的高氧化性能,以及可调节液体氧化剂供应量的特性。
这种发动机在航天器和导弹等领域具有广泛应用。
涡喷发动机的工作原理

1.涡喷发动机的工作原理?涡喷发动机以空气为介质,进气道将所需的的外界空气以最小的流动损失送到压气机;压气机通过高速旋转的叶片对空气压缩做功,提高空气的压力;空气在燃烧室内和燃油混合燃烧,将燃料化学能转变成热能,生成高温高压燃气;燃气在涡轮内膨胀,将热能转为机械能,驱动涡轮旋转,带动压气机;燃气在喷管内继续膨胀,加速燃气,燃气以较高速度排出,产生推力。
2.涡轮发动机的特征,什么是燃气涡轮发动机的特性?发动机特性分哪几种?特征:发动机作为一个热机,它将燃料的热能转变为机械能,同时作为一个推进器,它利用所产生的机械能使发动机获得推力。
发动机的特性:燃气涡轮发动机的推力和燃油消耗率随发动机转速、飞行高度和飞行速度的变化规律叫发动机特性。
发动机特性分为:保持飞机高度和飞机速度不变的情况下,发动机推力和燃油消耗率随发动机转速的变化规律叫发动机转速特性。
在给定的调节规律下,保持发动机的转速和飞机速度不变时,发动机的推力和燃油消耗率随飞机的高度的变化规律叫高度特性。
在给定的调节规律下,保持发动机的转速和飞行高度不变时,发动机的推力和燃油消耗量随飞机速度(或马赫数)的变化规律叫速度特性。
3.净推力和总推力根据牛顿第2,第3定律,气流进入发动机和离开发动机的动量发生变化,产生推力。
净推力:取决于离开发动机的燃气动量与进来的空气动量加进来的燃油动量。
净推力还包括喷管出口的静压超过周围空气的静压产生的推力。
Fn=Qma(Vj-Va)+Aj(Pj-Pam)总推力:是指当飞机静止时发动机排气产生的推力,包括排气动量产生的推力和喷口静压和环境空气静压之差产生的附加推力。
Fg=Qma(Vj)+Aj(Pj-Pam)。
正常飞行时,压气机、扩压器、燃烧室、排气锥产生向前推力,涡轮、尾喷口产生向后的推力。
4.影响热效率的因素?热效率表明,在循环中加入的热量有多少变为机械功。
影响因素有:加热比(涡轮前燃气总温),压气机增压比,压气机效率和涡轮效率。
火箭发动机的工作原理

火箭发动机的工作原理火箭发动机的工作原理是基于牛顿第三定律,也称为反冲原理。
这个原理是指,当一个物体施加力去改变自己的动量时,会产生一个等大、方向相反的力作用在施力物体上。
火箭发动机利用这个原理,通过排出大量高速燃气来产生向前的推力,实现火箭的运动。
火箭发动机主要由燃料和氧化剂组成,常用的燃料有液体燃料和固体燃料两种。
液体燃料主要是石油燃料或液氢,而氧化剂则是液氧。
固体燃料以铝作为主要成分,氧化剂则为含氧化合物。
当燃料和氧化剂混合后,发生反应,产生大量的燃烧产物,其中主要是气体。
火箭发动机一般分为燃烧室、喷管和涡轮泵等部分。
燃烧室是一种密闭的环境,内部有能抵御高温和高压的材料构成。
在燃烧室内,燃料和氧化剂经过一系列的喷嘴和供气管道进入,在高温高压的环境下燃烧发生。
燃烧产生的高温气体在燃烧室内膨胀,使燃烧室内的压力大增。
同时,燃烧产生的高温气体也使燃烧室内的空气扩张,产生向外的推力。
喷管是火箭发动机的关键构造之一。
通过喷管,高温高压的燃烧产物被加速排出,产生推力。
喷管通道较窄,呈喇叭形,从燃烧室向喇叭形的喷嘴方向逐渐加宽。
这种设计有效地利用了燃烧产物的高速运动,使其通过喇叭形喷嘴时,速度进一步增加。
涡轮泵是用来将燃料和氧化剂送入燃烧室的设备。
涡轮泵与燃烧室相连,通过一个涡轮驱动的气体发生器提供动力。
气体发生器内有两个涡轮,其中一个与燃烧室连接,另一个与涡轮泵连接。
当涡轮泵旋转时,由其驱动的涡轮会通过一根轴将燃料和氧化剂压入燃烧室。
火箭发动机的工作过程大致是这样的:首先,燃料和氧化剂通过涡轮泵被送入燃烧室,形成混合物。
然后,在燃烧室内燃烧产生大量的燃烧产物,包括高温气体和燃烧残渣。
这些燃烧产物被排入喷管,在喷管内部加速流动。
最后,高速的燃烧产物通过喷嘴喷出,产生向后的推力。
根据牛顿第三定律,这个推力会使火箭向前移动。
正是由于火箭发动机工作原理的存在,才使得火箭能够在太空中运动和飞行。
火箭发动机的推力大小取决于燃烧产物的质量流量和流速,并且与喷嘴的形状和气体的特性有关。
第一章.汽车发动机工作原理与总体构造

9. 工况:内燃机在某一时刻的运行状况简
称工况,以该时刻内燃机输出的有效功率和 曲轴转速表示。曲轴转速即为内燃机的转速。
10.负荷率: 内燃机在某一转速下发出的有
效功率及相同转速下发出的最大有效功率的 比值成为负荷率,以百分数表示。负荷率通 常简称为负荷。
第十三页,共39页。
三、四冲程汽油机的工作原理 1、进气行程
第一章.汽车发动机工作原理与总 体构造
第一页,共39页。
第一节.汽车发动机的定义及类型
一.汽车发动机的定义及其类型
(一)定义:
1) 发动机:将某一种形式的能量转换为机 械能的机器。 2) 热力发动机(热机):将热能转换为机 械能的机器。包括内燃机和外燃机两种。 3) 内燃机:燃料(气、液体)燃烧的热气 直接将所含热能转变为机械能的一种机器。
压缩终了压力:pco=0.8~1.5 Mpa 压缩终了温度:Tco=600~750 K
第十五页,共39页。
进气门关闭
压缩行程
压缩比:
ε=Va/Vc
排气门关闭
下止点 上止点
温度600~800K, 压力600~1500 kPa
P
c 大气压力线 r
第十六页,共39页。
示功图
a V
3.作功行程
活塞:从上止点移动到下止点 气门:进气门关闭,排气门关闭 曲轴:旋转从360℃A~540℃A 最高压力:pmax=3.0~6.5 Mpa 最高温度:Tmax=2200~2800 K 膨胀终了压力:pex=0.35~0.5Mpa 膨胀终了温度:Tex=1200~1500 K
• 发动机外廓体积及其标定功率的比值称为比容积。
2.比质量
• 发动机的干质量与其标定功率的比值称为比质量。干质 量是指未加注燃油、机油和冷却液的发动机质量。比容 积和比质量越小,发动机结构越紧凑。
第一节汽车发动机的类型及工作原理

发动机冷却水循坏方式动感视图
(3) 按照气缸数目分类
发动机按照气缸数目不同可以分为单缸发动机和多缸发 动机。仅有一个气缸的发动机称为单缸发动机;有两个 以上气缸的发动机称为多缸发动机。如双缸、三缸、四 缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现 代车用发动机多采用四缸、六缸、八缸发动机。
大众系列
W型发动机的特性?
优点:结构更紧凑,可以容纳更多的汽缸数,有更大的排 量。
缺点:结构太复杂,运转平衡性也不好。
由于专利的原因,这种发动机只在大众和奥迪,布加迪等 少量车上可以见到,在欧版大众高尔夫、欧版大众帕萨特 以及奥迪A8上,分别装备着W6,W8和W12发动机。
转子发动机
转子发动机全称为三角活塞转子发动机。
2.发动机基本术语
发动机汽缸工作术语动感视图
1.上止点
活塞离曲轴回转中 心最远处,一般指 活塞上行到最高位 置,一般用英文缩 写 词 TDC 表 示 。
2.下止点
活塞离曲轴回转 中心最近处,一般指 活塞下行到最低位置, 一般用英文缩写词 BDC 表 示 。
3.活塞行程(S)
上、下止点间的距离。
1
L型发动机
2
V型发动机
3
H型发动机
4
W发动机
5
转子发动机
6
水平对置发动机
7
转子发动机
什么是L型发动机呢?
又称“直列”(LineEngine)发动机,是指汽缸是按直线排 列的,它所有的汽缸均按同一角度并排成一个平面。“直 列”一般用L代表,后面加上汽缸数就是发动机代号。
思考L3、L4、L5、L6代表的含义? L3:表示直列3缸发动机。 L4:表示直列4缸发动机。 L5:表示直列5缸发动机。 L6:表示直列6缸发动机。
汽车发动机、变速箱基本工作原理(图文版)

汽车发动机、变速箱基本工作原理(图文版)-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII发动机基本工作原理一、基本理论汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。
因此,汽车发动机是内燃机----燃烧在发动机内部发生。
有两点需注意:1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。
2.同样也有外燃机。
在早期的火车和轮船上用的蒸汽机就是典型的外燃机。
燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。
内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。
所以,现代汽车不用蒸汽机。
相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。
这些优点使得大部分现代汽车都使用往复式的内燃机。
二、燃烧是关键汽车的发动机一般都采用4冲程。
(马自达的转子发动机在此不讨论,汽车画报曾做过介绍) /leonhou4冲程分别是:进气、压缩、燃烧、排气。
完成这4个过程,发动机完成一个周期(2圈)。
理解4冲程活塞,它由一个活塞杆和曲轴相联,过程如下1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。
3.当活塞到达顶部时,火花塞放出火花来点燃油气混合气,爆炸使得活塞再次向下运动。
4.活塞到达底部,排气阀打开,活塞往上运动,尾气从汽缸由排气管排出。
注意:内燃机最终产生的运动是转动的,活塞的直线往复运动最终由曲轴转化为转动,这样才能驱动汽车轮胎。
/leonhou三、汽缸数发动机的核心部件是汽缸,活塞在汽缸内进行往复运动,上面所描述的是单汽缸的运动过程,而实际应用中的发动机都是有多个汽缸的(4缸、6缸、8缸比较常见)。
我们通常通过汽缸的排列方式对发动机分类:直列、V或水平对置(当然现在还有大众集团的W型,实际上是两个V组成)。
v8发动机的工作原理
v8发动机的工作原理V8发动机是一种内燃机,具有8个气缸呈V型排列的设计。
以下是V8发动机基本工作原理的概述:1. 气缸排列:- V8发动机的8个气缸分为两排,通常呈90°角(但也有其他角度设计如60°或72°等),左右两边各4个气缸,形成V字形结构。
这样的布局可以有效减少发动机整体长度,同时保持平衡性。
2. 工作循环:-每个气缸按照四冲程内燃机的工作原理运行:吸气、压缩、做功(燃烧)、排气。
-吸气行程:当活塞向下运动时,进气门打开,新鲜的燃油空气混合气被吸入气缸。
-压缩行程:活塞向上运动,进气门关闭,混合气被压缩到上止点附近。
-做功行程:接近上止点时,火花塞点燃气缸内的压缩混合气,爆炸产生的高压气体推动活塞向下运动,通过连杆传递给曲轴旋转,从而产生动力输出。
-排气行程:活塞再次上行,此时排气门打开,将燃烧后的废气排出气缸。
3. 点火顺序与平衡:-V8发动机的8个气缸不是同时进行这些冲程,而是按照特定的点火顺序进行交替工作,以确保发动机平稳运行。
这种交错的点火和功率输出有助于抵消振动并提供平滑的动力输出。
4. 动力输出:-所有的8个气缸依次完成工作循环后,连续不断地为曲轴提供动力,使得曲轴持续旋转,最终驱动汽车的传动系统。
5. 进排气和冷却系统:-在整个过程中,进气系统负责供应足够的新鲜混合气,而排气系统则负责及时排出废气。
同时,冷却系统保证发动机在高强度工作下不会过热。
综上所述,V8发动机因其独特的汽缸排列方式和多缸协同工作的特性,能够在不增大发动机体积的前提下提供较大的动力输出和平稳运转性能,因此常用于高性能和豪华车型上。
涡轮发动机基础知识—发动机推力原理
F m(
a c5 c)
空气流量
进排气速度差值
高压 、高温
二 推力原理
讨论
超高速飞行器上会使用喷气发动机吗
高速飞行器(M>3)会采用涡轮喷气发动机吗
A
会采用
B
不会采用
提交
小 结
航空发动机推力产生原理
发动机特性
一、发动机工作状态
飞行中不同的飞行阶段对发动机的推力(功率)有不同要求,因而发
速一致。
2)流量连续:
对于压气机设有放气装置的发动机来说,流过涡轮的燃气流量等于流
过压气机的空气流量与在燃烧室内加入的燃料流量之和,再扣除由压气机
引往其他部分(如对涡轮进行冷却)的空气量。一般认为加入的燃料流量
与扣除的空气流量近似相等。所以,可以认为流过涡轮的燃气流量与流过
4.巡航状态:飞机作巡航飞行时所使用的发动机状态。连续使用时间不受
限制,发动机转速为最大转速的85%。
巡航状态用于飞机巡航飞行,连续使用时间不受限制。
5.慢车状态:发动机稳定、连续工作的最小转速工作状态。连续使用时间
不受限制。发动机推力约为最大推力的5%,转速为最大转速的20~35%。这
一状态下涡轮前总温较高,连续工作时间限制在30~60min。
由热能转换成气体动能增量过程中的能量损失大小,评定涡轮喷气发动机作为
热机的经济性。目前燃气涡轮发动机的热效率为25%~40%。
燃料的理论放热量,不可能全部转换成气体动能增量,其中损失的能量有:
(1)高温燃气自喷管喷出时所带走的热量;
(2)发动机表面的散热损失和滑油所带走的热量;
(3)燃烧室中不完全燃烧和燃烧产物的离解损失,因未释放出热能的燃料及
➢ 推力相等的发动机,可以用燃油消耗量来比较经济性;
发动机的工作原理和总体构造
三角活塞转子发动机
转子发动机又称为米勒循环发动机,采用三角转子旋转 运动来控制压缩和排放,由德国人菲加士·汪克尔发明。
60年初在德国生产出第一辆装配了转子发动机的小跑 车。
1964年,日内瓦的德法合资企业COMOBIL公司,首次 把转子发动机装在轿车上成为正式产品。
1967年,马自达公司投巨资从汪克尔公司买下了这项 技术。将转子发动机装在马自达轿车上开始成批生产。
进关 排关 活塞 上→下 压缩终了时 点火 压力 ↗ ↗ 3~5MPa 温度 ↗ ↗ 2200~2800K 体积 ↗ ↗ 曲轴 360°~540° 做功终了
压力↘ ↘ 0.3~0.5MPa
温度 ↘ 1300~1600K
进关 排开 活塞 下→上 压力 0.105~0.115MPa 温度 900~1200K 曲轴 540°~720° 残余废气:因燃烧室容 积,废气不能排尽。
第一节 发动机的分类
一、发动机的定义、分类及特点
发动机-将某种能量直接转换为机械能并拖动 某些机械进行工作的机器。
将热能转变为机械能的发动机,称为热力发动 机(热机)。
燃料和空气混合后在机器内部燃烧而产生热能, 然后再转变为机械能的,称为内燃机。
内燃机与外燃机相比,具有热效率高、体积小、 便于移动和起动性能好等优点。
第五节 发动机主要性能指标与特性
发动机的性能指标是用来衡量发动机性能好坏的标准
动力性能指标:有效转矩、有效功率、转速 经济性能指标:燃油消耗率 运转性能指标:排气品质、噪声、起动性能
一、动力性能指标
a. 有效转矩:指发动机通过曲轴或飞轮对外输出的扭矩,通常用Ttq表示, 单位为N·m。有效转矩是作用在活塞顶部的气体压力通过连杆、传给曲 轴产生的扭矩,并克服了摩擦,驱动附件等损失之后从曲轴对外输出的 净转矩。 b. 有效功率:指发动机通过曲轴或飞轮对外输出的功率,通常用Pe表示 ,单位为kW。有效功率同样是曲轴对外输出的净功率。它等于有效扭矩 和曲轴转速的乘积。发动机的有效功率可以在专用的试验台上用测功器 测定,测出有效扭矩和曲轴转速,然后计算出有效功率。
航空发动机的工作原理
航空发动机的工作原理
航空发动机是飞机的动力装置,它的工作原理可以大致分为以下几个部分:
1. 压缩空气:航空发动机通过高速旋转的压气机将外部空气吸入并压缩,增加空气的密度和压力。
2. 燃烧燃料:在压缩空气中注入适量的燃料,形成可燃混合物。
这个过程由燃烧室中的喷嘴和点火系统来完成。
3. 燃烧并膨胀:点燃可燃混合物后,燃料燃烧产生高温高压的燃气,使燃气在燃烧室内膨胀。
这一过程释放出大量的热能,推动航空发动机的转子运转。
4. 排放废气:燃料燃烧后产生的废气通过喷嘴排出。
这些废气中含有大量的热能,可以通过喷口喷出,产生推力。
5. 引擎运转稳定:航空发动机通过一系列复杂的系统来调节燃料供应、进气量等参数,保证发动机能够稳定运转,并根据需要提供足够的推力。
总的来说,航空发动机的工作原理主要是通过压缩空气、燃烧燃料、膨胀释能以及排放废气这一连续循环过程来不断产生推力,驱动飞机进行运动。
它的设计和运行技术高度复杂,需要精准的控制和维护,以确保飞机的安全和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机的工作原理及特性
发动机是汽车的心脏,它的功效直接影响着汽车性能的好坏。
因此,了解发动机的工作原理及特性对于开车人来说非常重要。
一、发动机的工作原理
发动机是通过燃油燃烧产生能量,驱动活塞运动,从而带动汽
车轮胎转动的一种装置。
发动机的工作原理可以分为四个步骤:
进气、压缩、爆炸和排气。
进气过程:发动机进气过程是通过进气道将空气和燃油混合物
输入发动机内部的气缸中。
压缩过程:气缸内的活塞会将进气过来的空气和燃油混合物压
缩到一个极高的压力,这样做是为了准备燃油的点火。
爆炸过程:点火系统会在适当时机点燃混合物,这将引起爆炸,推动活塞向下或向上运动,并为下一次循环提供能量。
排气过程:作为这一段过程的一部分,气缸内的废气被强制排出汽车进气系统,这将允许发动机准备下一次能量循环。
二、发动机的特性
1. 动力性
发动机的功率直接决定汽车的动力性能。
发动机的动力性能与它的构造设计、气门关闭时间、燃油喷射方式和火花塞点火时机等因素有关。
2. 燃油效率
汽车的燃油效率与发动机的性能和效率有直接关系。
高效的发动机能够更有效地利用燃料,从而为汽车提供更好的燃油效率。
3. 发动机噪音
发动机噪音是汽车运行时最明显的声音。
发动机的噪音水平与发动机设计、气门关闭时间和间隙等因素有关。
4. 处理能力
处理能力是指发动机在不同负载和转速下的表现。
发动机的转速和负载可以影响汽车的性能和燃油效率。
总之,了解发动机的工作原理及特性有助于我们更好地理解汽车的机械结构、工作原理和构造,从而能够更好地照顾汽车并正确地维护和使用它们。