(扩散炉)结构功能原理情况说明OK

合集下载

光伏扩散炉真空系统工作原理

光伏扩散炉真空系统工作原理

光伏扩散炉真空系统工作原理光伏扩散炉是太阳能光伏电池制造中的重要设备,其真空系统起着至关重要的作用。

本文将重点介绍光伏扩散炉真空系统的工作原理。

一、真空系统的作用光伏扩散炉真空系统的主要作用是在光伏电池制造过程中,通过建立良好的真空环境,减少气体分子的碰撞和扩散,以降低反应物与杂质的相互作用,从而提高电池的性能和质量。

二、真空系统的组成光伏扩散炉真空系统主要由真空室、真空泵、真空计和控制系统等组成。

真空室是容纳扩散反应的空间,通常由不锈钢等材料制成,并通过密封结构确保真空度。

真空泵负责抽取真空室中的气体,常见的有机械泵、分子泵和扩散泵等。

真空计用于测量真空度,常见的有热阴极离子计、热阴极电子计和扩散计等。

控制系统则用于监测和控制真空度的稳定性和精度。

三、真空系统的工作原理光伏扩散炉真空系统的工作原理主要包括抽气过程和保持真空过程两个阶段。

1. 抽气过程在抽气过程中,真空泵会启动并通过管道将真空室内的气体抽出。

首先是机械泵的工作,它通过叶片的旋转产生机械力,将气体推入泵体,并排出。

当气体的压力降低到一定程度时,分子泵开始工作,它通过高速旋转的转子将气体分子击打到壁面,使其停止运动并凝聚成固体。

最后是扩散泵的工作,它通过喷嘴和喷嘴间隙的形状和大小差异,使气体分子在喷嘴间隙中扩散,从而实现抽气的目的。

2. 保持真空过程在抽气过程结束后,真空泵会停止工作,真空室内的气体压力会逐渐回升。

为了保持真空度,需要使用吸附剂吸附残余气体,如活性炭、分子筛等。

此外,还可以加热真空室以提高气体分子的扩散速率,加快气体的排除。

四、真空系统的优化措施为了提高光伏扩散炉真空系统的工作效率和稳定性,可以采取以下优化措施:1. 选择合适的真空泵:根据工艺要求和真空度要求,选择合适的真空泵,如机械泵和分子泵的组合使用,以提高抽气速度和真空度。

2. 优化真空室结构:合理设计真空室的内部结构,减少死角,提高气体的扩散速率和排除效率。

扩散炉原理

扩散炉原理

扩散炉原理
扩散炉是一种重要的核反应堆,它利用核裂变产生的中子来维持链式反应,从
而产生热能。

扩散炉原理主要涉及中子的产生、中子的传输与中子的吸收三个方面。

首先,让我们来了解中子的产生。

中子是一种无电荷的粒子,它可以通过核裂
变或核衰变的方式产生。

在扩散炉中,通常采用铀-235或钚-239等核燃料作为裂
变材料,当这些核燃料受到中子轰击时,会发生核裂变反应,释放出大量的中子。

这些中子将成为维持链式反应的“火种”。

接下来,让我们来看中子的传输。

中子在核反应堆中的传输过程中,会与反应
堆结构材料发生碰撞,从而失去能量。

为了提高中子的传输效率,通常会在反应堆中填充一些中子减速剂,如重水、轻水或石墨等,通过与中子的碰撞来减慢中子的速度,从而增加中子与核燃料发生裂变反应的几率。

最后,让我们来探讨中子的吸收。

在扩散炉中,中子与核燃料发生裂变反应后,会释放出大量的能量,同时产生新的中子。

除此之外,部分中子也会被反应产物或其他核素吸收,从而减少中子的数量,控制核反应的速率。

这种吸收作用是扩散炉实现稳定运行的重要机制。

总的来说,扩散炉的原理涉及中子的产生、传输和吸收三个方面。

通过合理设
计反应堆结构和控制中子的数量,可以实现扩散炉的稳定运行,并产生大量的热能。

这种热能可以用于发电、供暖等多种领域,对人类社会的发展具有重要意义。

Ct扩散炉结构简介

Ct扩散炉结构简介

4. Cell controller 其中包含用于创建和管理recipe的软件 CCC-RM(Centrotherm Cell Control Recipe Manager),用于 对CESAR电脑进行集中遥控。
5. Temperature controller 采用REG97温度控制器,硬件部分由 controller,transducer,pulse skipping unit组成。
bubbler放尾气瓶放置区气体控制bubbler放置区冷却水及净化装置尾气瓶放置区冷却水及净化装置气体控制尾气瓶放置区和尾气瓶工艺气体氧气大小氮进气口paddletc尾气管炉体位通向酸排尾气瓶放凝结器沉淀收集防漏盘bubbler放置区进气管出气管bubbler放置区内部情况外部情况气体控制区mfc气动阀气体冷却水系统酸排热排系统气源柜上的cmi计算机每个机台一个用于控制装卸系统并显示cms和cesar电脑cmscentralmachinesafety错误监视单元用于监视炉内炉外炉体及电路的温度和冷却系统的工作状况并将结果显示在cmi电脑用户界面上系统对偏差的响应可设置
CMS
CCC电脑
CESAR 控制电脑(每个炉管有一个):
其作用为:创建或更改recipe, 定义recipe变量(工艺时间,温度,压力,气流),start, stop and cancel recipe,数字控制温度,控制气流,装载机组参数设置,与装卸系统进行通讯, 监视报警/中断状况(气流,温度,压力),通过级联控制器控制温度,通过级联温度控制进行自 动拉温,存储一定数量的recipe,记录用户定义的工艺数据,对正在运行的工艺进行测试(执行 工艺步骤,更改变量,设置/重置停止点等)
6. PLC(Programmable Logic Controls) 设备中装有三个PLC 一个用于控制整个机台的气体流量 一个用于控制整个机台的装卸机组 一个用于控制升降系统即lift

扩散炉工作原理

扩散炉工作原理
太阳电池制造工艺中,磷扩散一般有三种方 法,一是三氯氧磷(POCl3)液态源扩散,二是 喷涂磷酸水溶液后链式扩散,三是丝网印刷磷浆 料后链式扩散,本公司目前采用的是第一种方法。
POCl3液态源磷扩散系统示意图
• 用保护性气体,通过恒温的液态源瓶(鼓 泡或吹过表面),把杂质源蒸汽带入高温 扩散炉中,经高温热分解同硅片表面反应, 还原出杂质原子,并向硅片内扩散。
• 电控柜的前面板相应层,各安装一台触摸 液晶显示器和各管独立的控制按钮。
电 气 控 制 部 分
控 制 柜
推舟净化部分
加热炉体部分
气 源 控 制 部 分
气 源 控 制 部 分
扩散炉软件界面图
谢谢大家!
扩散炉主要性能参数
• 炉膛有效内径: Ф320mm • 温度控制范围: 600~1100℃ • 恒温区长度及精度:
≤±0.5℃/1080mm (801~1100℃) ≤±1.0℃/1080mm (400~800℃) • 单点温度稳定性: ≤±1℃/4h (880℃时) • 升降温速率可控范围:
爬升率: 15℃/min (最大) 下降率: 5℃/ min (最大)
扩散炉主要性能参数(续)
• 具有超温、断偶、短路报警和保护功能。 • 具有自动斜率升降温及恒温功能。 • 送片方式:
采用SiC桨悬臂自动送片机构,舟速20~ 500mm/min连续可调;
定位精度:≤±2mm,SiC桨最大载片承 重:16Kg,建议不超过14Kg。 • 炉门当悬臂完全进入炉管,达到极限位置的时候 会自动关闭。 • 工艺过程由工控计算机全自动控制,直接在触摸 屏上操作。
扩散炉简介
CUC 扩散炉简介Fra bibliotek• • • •
扩扩扩扩

高温氧化扩散炉的工作原理

高温氧化扩散炉的工作原理

高温氧化扩散炉的工作原理高温氧化扩散炉是一种用于集成电路(IC)制造过程中的重要设备,它主要用于在硅片上形成氧化层、掺杂杂质和扩散杂质等工艺步骤。

下面将详细介绍高温氧化扩散炉的工作原理。

高温氧化扩散炉由炉膛、加热装置、气氛调节系统、控制系统和监测系统等组成。

其工作原理可分为三个主要步骤:预热、氧化和冷却。

首先,预热阶段。

在使用高温氧化扩散炉之前,需要对炉膛进行预热,使其达到工作温度。

预热一般分为两个阶段,首先是室温到400C之间的低温预热,其目的是预防因温度快速升高造成的炉膛损坏;然后是400C左右到工作温度的高温预热,这个阶段主要是为了使炉膛的温度稳定在工作温度。

其次,氧化阶段。

这个阶段是在工作温度下进行的,目的是在硅片表面形成一层氧化层。

工作温度一般在800C到1200C之间,具体温度取决于所需的氧化层厚度。

通常情况下,氧化阶段会持续一段时间,以确保氧化层的稳定性和质量。

在氧化过程中,氧气和惰性气体(如氮气)被搅拌并送入炉膛,氧气与硅片表面发生化学反应,生成二氧化硅(SiO2)薄膜。

氮气的作用是稀释氧气,防止氧气浓度过高,避免氧化层产生缺陷。

最后,冷却阶段。

在完成氧化过程后,炉膛需要冷却至室温,以便取出硅片。

冷却过程一般是逐渐降温,以避免快速温度变化对硅片的影响。

炉膛内部会通过风扇或其他冷却装置进行散热,以加快冷却速度。

冷却完毕后,可打开炉门取出硅片,经过下一步工艺处理。

在高温氧化扩散炉的工作过程中,温度、气氛和时间是三个主要的工艺参数。

温度控制是通过加热装置,如电阻丝或加热器等,将炉膛体系加热至设定温度,并通过温度传感器进行实时监测和控制。

气氛调节系统则通过气流控制和阀门调节,确保氧化过程中气氛的稳定性。

时间控制则是通过控制系统中的定时器或计时器实现,根据工艺要求设定氧化时间。

总结来说,高温氧化扩散炉的工作原理是通过施加高温、控制气氛和时间,实现在硅片表面形成氧化层,并完成杂质掺杂和扩散等工艺。

扩散炉工作原理

扩散炉工作原理

扩散炉工作原理
扩散炉是一种用于制备半导体器件的设备,其工作原理主要包括以下几个步骤:
1. 清洗:首先,需要将待处理的硅片(半导体基片)经过清洗,以去除表面的杂质和污染物。

2. 热处理:清洗后的硅片被放入扩散炉内,在高温下进行热处理。

通常,使用的气氛是氮气或氧气,温度可达到数百度。

3. 扩散:在热处理的过程中,经过扩散源产生的待扩散物质,如磷、硼、砷等,会在气氛中通过气相扩散的方式渗入到硅片表面。

4. 形成PN结:扩散结束后,待扩散物质会与硅片内部的杂质
相互作用,形成PN结。

这个结构是半导体器件中的基本单元,用于制备晶体管、二极管等。

5. 退火:最后,硅片经过扩散后,需要进行退火处理。

通过加热硅片,并持续加热一段时间来消除应力、改善晶片结晶性能,提高设备的性能和效果。

扩散炉的工作原理可以帮助实现对材料中杂质的控制和改变,以制备出特定性能和结构的半导体器件。

扩散炉体工作原理

扩散炉体工作原理

扩散炉体工作原理
扩散炉是一种用于在半导体工艺中进行扩散过程的设备。

它通过控制温度和浓度梯度,使材料中的杂质扩散到所需深度,从而改变材料的电学性质。

扩散炉的工作原理可以分为以下几个步骤:
1. 温度控制:首先,扩散炉通过加热器将炉体内的温度提高到所需的操作温度。

扩散过程通常需要高温,因为高温有利于杂质在晶格中的扩散。

2. 杂质供应:在扩散炉的某个位置,通常是在炉底的特定区域,添加杂质源。

杂质源可以是液体、气体或固体态的物质,根据材料的不同选取不同的杂质源。

杂质源中的杂质会在高温下挥发或溶解,并通过炉体内的气流传递到待处理的材料表面。

3. 扩散过程:一旦杂质被供应到待处理材料的表面,扩散过程将开始。

在高温下,杂质原子会从高浓度(杂质源)向低浓度(待处理材料)的区域扩散。

扩散的速度取决于杂质和材料的性质,以及温度和时间等因素。

4. 控制参数:在整个扩散过程中,控制温度是非常重要的。

温度的控制可以通过炉体内的加热器和传感器来实现。

此外,炉体内的气氛也需要控制,以保持适当的氧化还原性。

这些参数的控制是为了确保扩散过程的准确性和一致性。

通过控制温度、时间和杂质浓度等参数,扩散炉可以实现不同
类型的扩散过程,如掺杂-扩散(Doping-Diffusion)、氧化、
化学气相沉积等。

扩散炉在半导体器件制造中起着重要的作用,可用于制备各种器件,如晶体管、太阳能电池和传感器等。

扩散炉使用说明

扩散炉使用说明

高温扩散炉使用说明书北京中联科利技术股份有限公司目录1.概述 (2)1.1产品特点 (2)1.2主要用途及适用范围 (2)1.3品种、规格 (2)1.4型号的组成及其代表意义 (2)2.结构特征与工作原理 (3)2.1总体结构 (3)2.2分部件结构 (3)2.3系统控制原理 (7)2.4系统各主要单元功能结构及工作原理 (7)3.主要性能指标 (10)4.安装、调试 (11)4.1安装条件 (11)4.2安装程序及注意事项 (11)4.3调试程序及注意事项 (12)4.4 SiC桨及石英炉门的装调 (13)4.5调试恒温区的方法及验收判据 (14)4.6工艺试运行 (15)5.使用、操作 (15)5.1温控仪的使用 (15)5.2恒温槽的操作使用 (16)5.3计算机的操作使用 (16)5.4操作过程中应注意事项 (16)6.常见故障分析与排除 (17)7.安全 (19)1.概述1.1产品特点本设备加热部分选用进口炉丝以及耐高温保温材料,炉体使用寿命长,保温性能好。

送片系统采用丝杠、导轨及SiC桨悬臂式推拉舟机构,可确保进出舟运行平稳,同时能有效地防止因磨擦而产生的粉尘污染。

温控部分采用了内外联合的控温方式,炉体内置5段控温热电偶,实时实地检测和控制炉内温度,从根本上保证了恒温区的精度和稳定性,彻底改变了常规扩散炉(炉外单控模式)必须靠不断拉恒温区,校准炉外温控仪与炉内实际温度的偏差来保证恒温区的控温方式。

气路部分的关键件均采用进口件,并具有完善的安全保护措施,可靠性好。

整机由计算机控制,各部分软、硬件联锁;操作部分采用先进的触摸屏技术,工艺参数的设置及运行均可在触摸屏上直接进行;自动化程度高、操作简便、可靠性好。

1.2主要用途及适用范围本设备主要用于6英寸、8英寸太阳能晶体硅电池片的扩散、氧化工艺;也可用于半导体器件制造中的扩散、氧化、退火及合金工艺,同时还适用于对其他材料的特殊温度处理。

1.3使用环境要求1.3.1 环境温度5~40℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

产品结构功能情况说明
扩散炉4 STACK FURN(旧),具体情况如下:
一、结构用途
扩散炉4 STACK FURN是纳米半导体元器件研制中的工艺之一,主要是由高温炉反应室、温度控制系统及进排气系统组成,其用各种于各种化学气相沉积工艺将氧化剂以扩散方式在高温炉腔内制备高度稳定性的化学性和电绝缘性的二氧化硅等材料,所以将其归在“氧化、扩散、退火及其他热处理设备(制造半导体器件或集成电路用的)”(HS编码:8486201000)。

二、功能:
扩散炉4 STACK FURN,其主要功能是将反应气体在高温炉管内和硅片表面发生化学反应,从而生成二氧化硅材料,也是用于制备各种特种纳米半导体工艺器件之一。

三、工作原理:
扩散炉4 STACK FURN,由于二氧化硅被广泛用于半导体元器件的保护层和钝化层,以及电性能的隔离、绝缘材料和电容器的介质膜等。

当硅置于含洋气的环境下,氧分子将通过一层边界层达到硅的表面,并与硅原子反应生成二氧化硅,以形成的二氧化硅层阻止了氧化剂与Si表面的直接接触。

与此同时氧化剂以扩散的方式通过二氧化硅层到达SiO2—Si界面与硅原子反应,生成新的SiO2层,从而使SiO2膜不断生成增厚。

四、工艺流程:
将反应气体由气相传输至硅表面生成SiO2,然后将位于SiO2表面的氧化剂穿透已经生成的SiO2膜扩散到SiO2—Si界面,最后将到达的SiO2—Si界面与硅原子反应,进而最终生成新的SiO2层。

五、品牌型号:
品牌:SVG 型号:5200
六、动力情况:
因为设备运行需要完整的水电气等动力条件,该设备已经拆机并存放在仓库中,不具备通电检查的条件,故进口后会在现场准备完整的动力条件后恢复设备的正常功能。

苏州赛森电子科技有限公司
2017年4月。

相关文档
最新文档