轮对轴承跑合试验台技术部分

轮对轴承跑合试验台技术部分
轮对轴承跑合试验台技术部分

液体动压滑动轴承实验汇总

CQH-A液体动压滑动轴承实验台 使用说明书 本实验台用于液体动压滑动轴承实验,主要用它来观察滑动轴承的结构,测量其径向油膜压力分布和轴向油膜压力分布,测定其摩擦特征曲线和承载量。 该实验台结构简单、重量轻、体积小、外形美观大方,测量直观准确,运行稳定可靠。 一、实验台结构简介 1. 该实验台主要结构见图1所示: 图1 滑动轴承试验台结构图 1. 操纵面板 2. 电机 3. V带 4. 轴油压表接头 5. 螺旋加载杆 6. 百分表测力计装置 7. 径向油压表(7只) 8. 传感器支承板 9. 主轴10. 主轴瓦11. 主轴箱 2. 结构特点 该实验台主轴9由两个高精度的单列向心球轴承支承。 直流电机2通过V带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。 主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加

载大小由负载传感器传出,由面板上右数码管显示。 主轴瓦上装有测力杆,通过测力计装置可由百分表6读出摩擦力值。 主轴瓦前端装有7只测径向压力的油压表7,油的进口在轴瓦长度的1/2处。 在轴瓦全长的1/4处装有一个轴向油压表的接头,需要时可用内六角扳手将堵油塞旋出,再装上备用的轴向油压表。 3. 实验中如需拆下主轴瓦观察,需按下列步骤进行: a. 旋出外加载传感器插头。 b. 用内六角扳手将传感器支承板8上的两个内六角螺钉卸下,拿出传感器支承板即可将主轴瓦卸下。 二、主要技术参数 实验轴瓦:内直径d=60mm 有效长度B=125mm 表面粗糙度?7) 材料ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0~1000N(0~100kg?f) 百分表精度0.01 量程0—10mm 油压表精度 2.5% 量程0~0.6Mpa 测力杆上测力点与轴承中心距离L=120mm 测力计标定值k=0.098N/格 电机功率:355W 调速范围:2~400rpm 实验台总量:52kg 三、电气工作原理 5 4 3 图二 1—主轴转速数码管:主轴转速传感器采集的实时数据。

ZCS-Ⅱ液体动压轴承实验台指导书

ZCS -II 型 液体动压轴承实验台实验指导书 一、实验目的 该实验台用于机械设计中液体动压滑动轴承实验。主要利用它来观察滑动轴 承的结构、测量其径向油膜压力分布、测定其摩擦特征曲线。使用该实验系统可 以方便地完成以下实验: 1、液体动压轴承油膜压力径向分布的测试分析 2、液体动压轴承油膜压力径向分布的仿真分析 3、液体动压轴承摩擦特征曲线的测定 4、液体动压轴承实验的其他重要参数测定:如轴承平均压力值、轴承PV 值、偏心率、最小油膜厚度等 二、实验系统 1、实验系统组成 轴承实验台的系统框图如图1所示,它由以下设备组成: ⑴ 轴承实验台——轴承实验台的机械结构 ⑵ 压力传感器——共7个,用于测量轴瓦上油膜压力分布值 ⑶ 力传感器——共1个,测量外加载荷值 ⑷ 转速传感器——测量主轴转速 ⑸ 力矩传感器——共1个,测量摩擦力矩 ⑹ 单片机 ⑺ PC 机 ⑻ 打印机 2、实验系统结构 该实验机构中滑动轴承部分的结构简图如图2 轴承实验台 力 传感器 力矩传感器 数据采集器 计 算 机 CRT 显示器 打 印 转速传感器 压力传感器

1、电机 2、皮带 3、摩擦力传感器 4、压力传感器:测量轴承表面油膜压力,共7个F1~ F7, 5、轴瓦 6、加载传感器:测量外加载荷值 7、主轴 9、油槽 10、底座 11、面板 12、调速旋钮:控制电机转速 试验台启动后,由电机1通过皮带带动主轴7在油槽9中转动,在油膜粘力作用下通过摩擦力传感器3测出主轴旋转时受到的摩擦力矩;当润滑油充满整个轴瓦内壁后轴瓦上的7个压力传感器可分别测出分布在其上的油膜压力值;待稳定工作后由温度传感器t1测出入油口的油温,t2测出出油口的油温。 3、实验系统主要技术参数 (1) 实验轴瓦:内径d=70mm 长度L=125mm (2) 加载范围:0~1800 N (3) 摩擦力传感器量程:50 N (4) 压力传感器量程:0~1.0 MPa (5) 加载传感器量程:0~2000 N (6) 直流电机功率:355 W (7) 主轴调速范围:2~500 rpm

实验三 动压滑动轴承实验

实验三动压滑动轴承实验 一、实验目的 1.验证动压滑动轴承油膜压力分布规律,了解影响油膜压力分布规律的因素,并根据油膜压力分布曲线确定端泄影响系数K b; 2.测定动压滑动轴承的摩擦特征曲线,并考察影响摩擦系数的因素。 二、实验设备及仪器 1.HZS-1型动压滑动轴承试验台 图1 HZS-1型动压滑动轴承实验台 图1为试验台总体布置,图中件号1为试验的轴承箱,通过联轴器与变速箱7相联,6为液压箱,装于底座9的内部,12为调速电动机,通过三角带与变速箱输入轴相联,8为调速电机控制旋钮,5为加载油腔压力表,由減压阀4控制油腔压力,2为轴承供油压力表,由减压阀控制其压力,油泵电机开关为10,主电机开关为11,试验台的总开关在其正面下方。 图2为试验轴承箱,件号31为主轴,由一对D级滚动轴承支承,32为试验轴承,空套在主轴上,轴承内径d=60mm,有效宽度=60mm。在轴承中间横剖面上,沿周向开7个测压孔,在120°范围内的均匀分布,测压表21~27通过管路分别与测压孔相联。距轴承中间剖面L/4(15mm)处,轴承上端有一个测压孔,表头28与其相联,件号33为加载盖板,固定在箱体上,加载油腔在水平面上的投影面积为60cm2在轴承外圆左侧装有测杆35,环34装在测杆上以供测量摩擦力矩用,环34与轴承中心的距离为150mm,轴承外圆上装有两个平衡锤36,用以在轴承安装前做静平衡。

图2 实验轴承箱 箱体左侧装有一个重锤式拉力计如图3所示,测量摩擦力矩时,将拉力计上的吊钩与环34联接,即可测得摩擦力矩。测杆通过环34作用在拉力计上的力F,由重锤予以平衡,其 数值可由 α sin 1 R WL F= 求得。式中R为圆盘半径,W为重锤之重量,L1为重锤重心到轴 心之距离,α为圆盘之转角,圆盘转角α通过齿轮放大,可使表头指针转角放大10倍,表头刻度即为F的实际值,单位为克。 JZT型调速电动机的可靠调速范围为120~1200转/分,为了扩大调速范围,试验台传动系统中有一个两级变速箱,当手柄向右倾斜,主轴与电机转速相同;当手柄向右倾斜,主轴为电机转速的1/6。因此主轴的可靠调速范围为20~1200转/分。 图3 重锤式拉力计工作原理图 2.测速仪表及温度计 三、实验步骤 1. 测定动压滑动轴承的油膜压力分布,确定轴承端泄影响系数K b

轮对电机跑合试验台操作使用说明书

文件编号:RW-T23-LDDJ-1101大功率交流传动机车驱动 单元磨合试验台 软件使用说明书 编制:____________ 审核:____________ 批准:____________ 长沙润伟机电科技有限责任公司 湖南·长沙 2011年4月

[为保证安全使用] 使用前请详细阅读本说明书,遵守注意事项,正确使用。有关注意事项记载的说明 对产品的注意事项 其他的注意事项

目录 一目的 (5) 二试验前的准备 (5) 三启动软件 (5) 3.1 登陆界面 (5) 3.2 功能主界面 (6) 3.3 参数设置界面 (7) 3.3.1 试验参数设置 (8) 3.3.2 速度参数的设置 (9) 3.4 1#跑合试验界面 (10) 3.4.1 具体试验操作 (11) 3.4.3 试验报表 (12) 3.5 2#轮对试验界面 (15) 3.6 数据管理界面 (15) 3.7 用户管理界面 (17) 3.8 密码修改界面 (19) 四试验结束 (19) 五软件的安装 (19) 六维护保养 (20)

一目的 本说明书介绍试验台软件操作方法及注意事项,请在使用试验台前仔细阅读本说明书。 二试验前的准备 试验准备工作包括试验轮对的机械安装、各设备的电源连接等。 一定要确认被试品的状态,不要贸然给电源柜通电,以免造成人身伤害以及被试品或电源柜的损坏,本设备可以同时进行2台轮对电机跑合,也可单独控制1台或2台轮对电机跑合,1#、2#电源柜与软件上1#试验、2#试验是一一对应。 2.1 试验轮对的机械安装 将轮对吊入对应的试验工位,使用相应的安装固定螺丝固定牢靠。 2.2 试验选择和设备的通电 选择好试验类型(自动/手动),检查无误后,合上试验台面板上和电源柜上的相关开关,给相关设备送电。 三启动软件 双击桌面上图标,系统自动进入轮对跑合试验台测试系统登录界面(界面01)。 3.1 登陆界面

国内外轴承试验方法

国内外轴承试验方法,目前。主要有四种:一、摩擦磨损试验,二、试验,三、试验室( 试验场) 模拟试验,四、实际工况运行试验。国外对上述几种试验方法均有使用,但应用目的不一样,例如,开发一种全新的产品,首先须做摩擦磨损试验。但如果磨擦磨损形式无多大变化,仅产品尺寸、受载工况变化,则仅需做台架、模拟或实际运行试验即可。国外对一些关键部位的新产品( 如轿车轮毂轴承等) 考核极为严格,必需经实际运行试验,才干获准进行配套使用。 瑞典SKF 日本NTN 新近研究轴承仿真试验技术、只能替代台架、模拟或实验,以缩短产品设计的时间,加快产品开发的进度,但距实际运行情况还有所差距。现在国轴承行业已开展摩擦磨损试验的只有一家;已开展轴承的有、上海轴研所、杭州轴承试验中心和瓦房店、哈尔滨等20 余家国有轴承企业;可以展开模拟试验的有、杭州轴承试验中心以及洛轴、襄轴等企业。而要实际进行试验,只有在配套主机企业提出此方面要求时轴承生产企业才予以进行,如铁路客车轮对轴承及小轿车的轮毂轴承等。总之,国内在开展模拟和实际运行试验方面还不广泛,应进一步扩大主机范围或实际工况范围,为仿真试验早日提到日程作好充分的软、硬件准备。 主要研究内容和目标: 需先对一些代表性类型的典型产品进行台架或模拟试验,为了进行仿真试验。找出寿命与承载、工况之间的函数关系,而后利用这种关系,通过计算机进行轴承设计和试验工作,这通常只是针对那些极为重要的产品才进行的试验。根据我国现有能力,今后十年主要目标是对轴承、以及高速度磨床主轴轴承进行仿真试验研究,并逐渐具备一定的仿真试验条件。研究内容如下: 一、润滑技术: 技术概要: 润滑脂( 油) 和润滑方式的不同,在运动中由于阻力使轴承不断磨损而失效。对降低轴承摩擦磨损效果不同。因此润滑技术已成为轴承技术研究的重要组成局部。有人把润滑脂( 油) 称为“ 轴承的第五个零件” 其他为内圈、外圈、滚动体、坚持架) 使其轴承阻力最小,阻碍旋转的阻力由滚动磨擦、滑动磨擦和润滑剂磨擦组成。当滚动体在滚道上滚动时会出现滚动磨擦;滑动磨擦呈现在坚持架中滚动体的引导面上、坚持架的挡边引导面上以及滚子轴承中滚子端面和套圈挡边上。润滑剂磨擦则由润滑剂在接触处的内部磨擦以及润滑剂的搅拌和挤压所组成。一套轴承的总磨擦即滚动磨擦、滑动磨擦和润滑剂磨擦的总和就是阻抗轴承运动的阻力。研究润滑技术的任务就是开发不同润滑脂( 油) 及其润滑方式。寿命最长。 国内外发展趋势: 对常见工况下的( 油) 技术和生产上已完全过关,国外先进工业国家。已形成系列品种和批量生产能力,当前主要趋势是研究提高一些特殊情况下润滑脂的性能,如正在研究提高宇航用全氟醚润滑脂的真空稳定性,爬移性以及粘温性能等;又如低温脂,虽在应用中有较好效果,但其润滑机理未能有很好的理论论述。再如,研究在高温( 200-4000C 下使用气态润滑剂的研究等。国当前轴承润滑的研究任务极重,如果经费允许,应重点解决以下

3动压滑动轴承实验

实验三 动压滑动轴承实验 实验仪器:HS-B 型液体动压轴承试验台、计算机、绘图工具等 一、实验目的: 1、观察滑动轴承的结构; 2、测量及仿真其径向油膜压力分布和轴向压力分布; 3、测定及仿真其摩擦特性曲线 二、实验内容: 1、 测出某工况下的流体动压油膜压力分布和不同工况下的摩擦系数。 2、 整理计算实验数据,按比例绘制出油膜压力P 周向和轴向的分布曲线和轴承摩擦特性曲线。 三. 液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面时,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于完全液体摩擦润滑状态。因此这种轴承摩擦小,寿命长,具有一定吸震能力。 液体动压润滑油膜形成过程及油膜压力分布形状如图3-1所示。 滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度 (Pa s)、轴的转速n (r/min)和轴承压力p (MPa)有关,令 (1) 式中:λ — 轴承特性数 观察滑动轴承形成液体动压润滑的过程,摩擦系数f 随轴承特性数 λ 的变化如图8-2所示。图中相应于f 值最低点的轴承特性数 λc 称为临界特性数,且 λc 以右为液体摩擦润滑区,λc 以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f 值随 λ 减小而急剧增加。不同的轴颈和轴瓦材料,加工情况、轴承相对间隙等,f —λ曲线不同,λc 也随之不同。 λη=n p (b) 启动时 F F (a) 静止时(n=0) h min F φ e (c) 形成动压油膜 图 3-1 液体动压润滑油膜形成过程及油膜压力分布 0 λc λ f 非液体摩擦润滑区 液体摩擦润滑区 图 3-2 f —λ 特性曲线

多工位轴承跑合试验机设计方案

多工位轴承跑合试验机设计方案 1.设备技术要求及技术指标 1.1设备技术要求 该试验机用于特种轴承跑合工艺,是特种轴承进行轴承跑合工艺的专用设备,能够实现单多套轴承多工位、变参数轴承跑合,做到拆装方便、操作简单,也可以进行轴承组建的跑合测试。 1.2主要技术指标 (1)跑合工位:8个; (2)驱动主轴可承受双向轴向负荷,承载能力≥500N; (3)驱动主轴径向跳动≤5μm; (4)驱动主轴转速范围:100~3000rpm,可无级调速; (5)轴向加载范围:0~150N,可无级调速; (6)加载范围:0~2min可调; (7)轴承摩擦力测量范围:0~0.5N,精度优于±0.5%。 2设计基本方案 2.1设备设计基本思路 为实现多工位、全自动、变参数进行轴承工艺跑合,采取集中与分散相结合的原则,八个轴承跑合工位总体布置按照每两个轴承跑合工位共用一个基座,全部共有四个基座(共八个轴承跑合工位),依次放置;八个轴承跑合工位由一台计算机进行控制。试验机的控制有轴承跑合工位的选择、电机转速、电机转动时间设置、转动方向、加载力的监测和加载时间设置等;另外还可以进行摩擦力矩测试和记录。 2.2设备主要组成 多工位轴承跑合试验机主要组成部分有:驱动系统、轴承支撑系统、轴承加载系统、计算机控制系统和轴承运转检测系统等,具体如下图所示。

试验机系统组成示意图 2.3试验机各子系统设计 2.3.1 驱动系统设计 驱动系统由伺服电机(750W)、电机控制器、齿形带轮(5M-60T)及齿形带、主轴箱(125SP04)及输出轴组成(主轴直径125mm,最高转速4000rpm,径向跳动0.005mm),功能是驱动试验机主轴按照设定的工作方式和运转速度(1000rpm-3000rpm)运转,同时驱动主轴能够承受双向轴向负载。 2.3.2 轴承支撑装置 轴承支撑装置由试验机底座(不锈钢500x2000)、支架导轨(35型)、主轴锥孔变径套、支撑轴芯(与试验件配合)组成;主要是进行单轴承或者轴承组件的支撑、固定。 2.3.3 轴承加载系统 轴承加载系统由伺服减速电机(400W)、丝杠螺母副(2005)、弹簧机构、加载头及压力传感器(0~150N)等组成,如下图所示。轴承加载系统按照设定的加载力对轴承进行轴向加载,加载量可调,加载时间可调,能够实现在一定范围内对轴承进行周期性变负荷无级加载,满足轴承变载荷跑合的要求。

滑动轴承实验报告

液体动压滑动轴承实验报告 一、实验目的 1、测量轴承的径向和轴向油膜压力分布曲线。 2、观察径向滑动轴承液体动压润滑油膜的形成过程和现象。 3、观察载荷和转速改变时的油膜压力的变化情况。 4、观察径向滑动轴承油膜的轴向压力分布情况。 5、测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。 6、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线λ的绘制方法。 二、实验设备及工具滑动轴承实验台 三、实验原理 1、油膜压力的测量 轴承实验台结构如图1所示,它主要包括:调速电动机、传动系统、液压系统和实验轴承箱等部分组成。 在轴承承载区的中央平面上,沿径向钻有8个直径为1mm 的小孔。各孔间隔为 22.50,每个小孔分别联接一个压力表。在承载区内的径向压力可通过相应的压力表直接读出。 将轴径直径(d=60mm )按比例绘在纸上,将1~8个压力表读数按比例相应标出。(建议压力以1cm 代表5kgf/cm 2)将压力向量连成一条光滑曲线,即得到轴承中央剖面油膜压力分布曲线)。 同理,读出第4和第8个压力表示数,由于轴向两端端泄影响,两端压力为零。光滑连结0‘,8’,4‘,8’和0‘各点,即得到轴向油膜压力分布曲线。 图1 轴承实验台结构图 1、操纵面板 2、电机 3、三角带 4、轴向油压传感器接头 5、外加载荷传感器 6、螺旋加载杆 7、摩擦力传感器测力装置 8、径向油压传感器(8只) 9、传感器 支撑板 10、主轴 11、主轴瓦 12、主轴箱 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆、电气课件中调试资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到

滑动轴承设计

滑动轴承的设计准则,是根据其工作方式及特点确定的。对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。 1.非流体润滑状态滑动轴承的设计准则 对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。此设计条件也可作为流体润滑轴承的初步设计计算条件。 (1)轴承承载面平均压强的设计计算 由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足: 其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。 对于径向轴承,一般只能承担径向载荷: 其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。DB是承载面在F方向上的投影面积。 推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承: 其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。 (2) 轴承摩擦热效应的限制性计算 滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。滑动轴承设计中,用限制 pv值的办法,控制其工作温升,其设计准则为: 其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。这样,上式也可写为: (3) 轴承最大滑动速度的条件性计算 非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。设计准则为: 其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。 (4) 滑动轴承的几何参数 滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示: 其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。滑动轴承设计时,ψ常在0.004~0.012范围取值。 滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。 2. 流体润滑状态滑动轴承的设计 流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。 (1) 滑动轴承形成流体动力润滑的条件 实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。 条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。 条件2:有充足的流体供给,且其具有一定的粘度;

轮对磨合试验台

轮对磨合试验台 DC600V/110V便携式转换电源 文件 周聚天下管理

报价成本分析表 投标单位名称:株洲铭山科技有限公司招标编号:上铁物招(2014)-156号)标段号2 序号项目单位数量单价(元) 金额(元)备注/厂家/品牌/型号 一材料费小计 1机械主体套193800 2工控机套17500研华 3PLC套17500西门子 4软件套128000 5液压系统套125500北京华德 6电气及信号采集 套148564施耐德/朗斯 部份 二人工费小计 三机械加工费小计 1 设备折旧费 2 设备维护费 四水电费小计 生产成本合计 五管理费小计 1 生产管理费 2 销售费 3 服务费 4 财务费 成本合计 六利税小计 1 税收 2 税后利润 出厂单价 七运杂费小计Km 汽运 到站单价 备注:1、投标人按物资品种做成本分析。表中各大项目内容及顺序固定不变,细目不限于上述内容,可根据不同物资品种实际需要增减。2、不同品种的物资单独列表,标出其主要单价,不少于3个。3、写明运输方式(火车、汽车等)和运输里程。

序号项目单位数量单价(元) 金额(元)备注/厂家/品牌/型号 一材料费小计 1机壳套11200 2电子元件及 套19200SPT/IXYS/时代 PCB板 3散热器2004 4电气及信号采 套16600施耐德/时代电气 集部份 二人工费小计 三机械加工费小 计 1 设备折旧费 2 设备维护费 四水电费小计 生产成本合计 五管理费小计 1 生产管理费 2 销售费 3 服务费 4 财务费 成本合计 六利税小计 1 税收 2 税后利润 出厂单价 七运杂费小计Km 汽运 到站单价 备注:1、投标人按物资品种做成本分析。表中各大项目内容及顺序固定不变,细目不限于上述内容,可根据不同物资品种实际需要增减。2、不同品种的物资单独列表,标出其主要单价,不少于3个。3、写明运输方式(火车、汽车等)和运输里程。

滚动轴承实验

滚动轴承实验报告 一、实验目的 1、测定和绘制滑动轴承径向油膜压力曲线,求轴承的承载能力。 2、观察载荷和转速改变时油膜压力的变化情况。 3、观察径向滑动轴承油膜的轴向压力分布情况。 4、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线的绘制原理及方法。 二、实验原理 1.左、右滚动轴承座可轴向移动,各装有轴向载荷传感器,可通过电脑或数显测试并计算单个滚动轴承轴向载荷与总轴向载荷的关系; 2.右滚动轴承上装有8 个径向载荷传感器,可通过计算机或操作面板显示测绘滚动轴承在轴向、径向载荷作用下轴承径向载荷分布变化情况; 3.通过电脑直接测量滚子对外圈的压力及变化情况,绘制滚动体受载荷变化曲线。 三、实验设备 1.ZQ-GZ滚动轴承实验台 2.滚动轴承:圆锥滚子轴承30310 深沟球轴承 6310 3.可移动的滚动轴承座:1对; 4.滚动轴承、径向加载装置:1套;(作用点位置可在0~180mm内任意调节); 5.滚动轴承径向载荷传感器:精度等级:0.05 量程:10000N,1个/台; 6.轴向载荷传感器:量程:5000N,2个/台; 四、实验内容及注意事项 1.滚动轴承径向载荷分布及变化实验;测试在总轴向和径向载荷作用下,滚动轴承径向载荷分布及变化情况,并作出载荷分布曲线。 2.注意事项 a)选定一对实验轴承,本实验装置提供向心球轴承和圆锥滚子轴承,每一种 轴承有大小型号各一种出厂已装配好可任选一台. b)实验前首先调整好左右轴向受力支撑(称重传感器支座)位置,使端盖 外伸与传感器刚好接触. c)静态实验需调节加载支座,使加载力的方向保持在一定角度,并保持空载。

d)将测力及传感器的检测点一一接至检测系统对应的接口 e)打开电源,使检测系统处于工作状态. f)将检测系统与PC 机串行口相连,并打开分析界面. g)以上准备工作完成后,打开操作面板上的电源开关然后调零: i.通过系统软件测试界面上的“置零”,使得设备传感器调零 注意:测试前请一定置零 h)当17 个通道全部置零后,用手转动手轮加载到100Kg 以上,观察并记 录 各测量点数据.(记录滚动体经过弹片中点时的力值)。 i)改变加载力和加载角度,重复上述过程。 j)实验完成,卸下载荷并关闭电源。 五、实验数据记录 1.静态数据记录 (实验的时候自动生成的实验报告中有相关的数据表格和图像,放进来。并将一些需要的计算完成。) 2、应力分布图

滑动轴承实验指导书(更新并附实验报告)

滑动轴承实验 一、概述 滑动轴承用于支承转动零件,是一种在机械中被广泛应用的重要零部件。根据轴承的工作原理,滑动轴承属于滑动摩擦类型。滑动轴承中的润滑油若能形成一定的油膜厚度而将作相对转动的轴承与轴颈表面分开,则运动副表面就不发生接触,从而降低摩擦、减少磨损,延长轴承的使用寿命。 根据流体润滑形成原理的不同,润滑油膜分为流体静压润滑(外部供压式)及流体动压润滑(内部自生式),本章讨论流体动压轴承实验。 流体动压润滑轴承其工作原理是通过韧颈旋转,借助流体粘性将润滑油带人轴颈与轴瓦配合表面的收敛楔形间隙内,由于润滑油由大端人口至小端出口的流动过程中必须满足流体流动连续性条件,从而润滑油在间隙内就自然形成周向油膜压力(见图1),在油膜压力作用下,轴颈由图l(a)所示的位置被推向图1(b)所示的位置。 图1 动压油膜的形成 当动压油膜的压力p 在载荷F 方向分力的合力与载荷F 平衡时,轴颈中心处于某一相应稳定的平衡位置O 1,O 1位置的坐标为O 1(e ,Φ)。其中e =OO 1,称为偏心距;Φ为偏位角(轴承中心O 与轴颈中心O 1连线与外载荷F 作用线间的夹角)。 随着轴承载荷、转速、润滑油种类等参数的变化以及轴承几何参数(如宽径比、相对间隙)的不同.轴颈中心的位置也随之发生变化。对处于工况参数随时间变化下工作的非稳态滑动轴承,轴心的轨迹将形成一条轴心轨迹图。 为了保证形成完全的液体摩擦状态,对于实际的工程表面,最小油膜厚度必须满足下列条件: ()21min Z z R R S h += (1) 式中,S 为安全系数,通常取S ≥2;R z1,R Z2分别为轴颈和铀瓦孔表面粗糙度的十点高度。 滑动轴承实验是分析滑动轴承承载机理的基本实验,它是分析与研究轴承的润滑特性以及进行滑动轴承创新性设计的重要实践基础。 根据要求不同,滑动轴承实验分为基本型、综合设计型和研究创新型三种类型。

液体动压滑动轴承实验指导书

实验四 液体动压滑动轴承实验指导书 一、实验目的 1、了解实验台的构造和工作原理,通过实验进一步了解动压润滑的形成,加深对动 压原理的认识。 2、学习动压轴承油膜压力分布的测定方法,绘制油膜压力径向和轴向分布图,验证 理论分布曲线。 3、掌握动压轴承摩擦特征曲线的测定方法,绘制f —n 曲线,加深对润滑状态与各参 数间关系的理解。 二、实验原理及装置 1.概述 此项实验是径向加载的液体动压滑动轴承实验。其目的是测量轴承与转轴间隙中的 油膜在圆周方向的压力分布值(见图1),并验证径向油膜压力最大值批P MAX 不在外载荷F R 的垂线位置,而是在最小油膜厚度附近,即0=??X P 处。该实验还可以测试下列几项内容。(1)测量轴承与转轴间隙中的油膜在轴线方向的压力分布值,并验证轴向压力分布曲线呈抛物线分布,即轴向油膜最大压力值在轴承宽度的中间位置(见图2)。 图1 周向油膜压力分布曲线 图2轴向油膜压力分布曲线 (2)测量径向液体动压滑动轴承在不同转速、不同载荷、不同粘度润滑油情况下的摩 擦系数f 值,根据取得的一系列f 值,可以做出滑动轴承的摩擦特性曲线,进而分析液体动压的形成过程,并找出非液体摩擦到液体摩擦的临界点,以便确定一定载荷、一定粘度润滑油情况下形成液体动压的最低转速,或一定转速、一定粘度润滑油情况下保证液体动压状态的最大载荷(见图3)。

图3 轴承摩擦特性曲线 2.实验装置及原理 本实验使用湖南长庆科教仪器有限公司生产的HS-B型液体动压轴承实验台如图4所示,它由传动装置、加载装置、摩擦系数测量装置、油膜压力测量装置和被试验轴承等组成。 图4 滑动轴承试验台 1.操纵面板2.电机3.三角带4.轴向油压传感器接头5.外加载荷传感器6.螺旋加载杆7.摩擦力传感器测力装置8.径向油压传感器(7只)9.传感器支撑板10.主轴11.主轴瓦12.主轴箱 1)传动装置 由直流电机2通过三角带3带动主轴顺时针旋转,由无级调速器实现无级调速。本实验台主轴的转速范围为3~375rpm,主轴的转速由装在面板1上的数码管直接读出。2)加载装置

滑动轴承实验台的设计

滑动轴承实验台的设计 1、引言 滑动轴承是一种最基本的机械部件,其正常工作时轴颈和轴瓦间的润滑液体在一定条件下形成动压油膜,处于液体润滑状态,且动压油膜形成后具有一定的承载能力,也是滑动轴承性能的主要因素。一般高等工科院校的相关专业所开设的机械设计课程中,都会讲解滑动轴承的原理及设计方法,为了配合学生更好的理解滑动轴承动压油膜形成原理,以及滑动轴承承载特性曲线,利用专门的滑动轴承教学实验台,开设滑动轴承实验课。以前使用的仪器设备,结构已老化严重,实验手段落后。为此我们设计出一种新型的滑动轴承实验台,可以大大提高实验台的工作性能。 2、实验台的主体设计 新型滑动轴承实验台的主体由几个部分组成,各部分的功能设计与实现如图1所示,系统将7路采集来的信号通过多路开关送入A/D转换电路进行模数转换,然后通过译码器译码,通过 数字显示板显示;主轴速度经过放大整形之后,通过数字显示板显示;步进电机、直流电机分别用在加载机构和调速电路上,实现自动连续加载,直流电机速度可调。 图1滑动轴承实验台的组成框图 2.1步进电机驱动杠杆放大加载机构设计 加载机构的设计是本实验系统的主要部分,步进电机驱动杠杆放大加载机构示意图如图2所示,为了保证能够在轴承的轴瓦上加上足够的连续变化的载荷,采用步进电机带动丝杆转动再带动螺母做直线运动,通过杠杆放大机构把载荷连续均匀地加到轴瓦上。 1.托板 2.螺母 3.支架 4.杠杆放大机构 5.丝杆 6.销轴座 7.步进电机 8.称重传感器 图2步进电机驱动杠杆加载机构 2.2 轴瓦及传感器的安装方案的设计

原实验台轴瓦结构为半瓦,为了减少端泄改为全瓦结构使轴承动压油膜曲线能更符合雷诺曲线。轴瓦及传感器的安装示意图如图3所示,轴瓦包角3600度,由青铜材料制成,与轴承间的配合为间隙配合。在轴瓦径向上按周向每隔22.50钻一个1mm的小孔,每个小孔都连接有压力传感器,将传感器安装在轴瓦边上而不是中部,是兼顾滑动轴承实验台整体结构设计而定的,轴承内形成动压油膜后,每点的油膜压力可以通过压力传感器测出并通过放大,并将数据经过转换显示出来。 图3 轴瓦及传感器的安装示意图 3、实验台的电路设计 3.1 实验台的硬件电路系统 实验台的硬件电路组成如图4所示,包含有7路压力传感器信号、1路承载力传感器信号、1路摩擦转矩传感器信号、传感器放大电路、多路转换电路、A/D转换电路、直流电机调速、测速系统、步进电机驱动系统等。7路传感器信号从实验台的后面板输入,接入放大板,放大板上有传感器共桥电源调零电路和信号放大电路。双端输入的传感器信号经过放大电路放大成单端输出0-5V的信号,通过拨码开关与数据采集板相连。数据采集板上的A/D转换电路可通过拨码开关控制,测量电机转速的光电开关从后面板接入,通过整形电路在前面板的电机转速显示电路显示。 图4 硬件电路组成 3.2 多路转换电路 由于只对手动控制进行设计,因此只需将7路放大电路直接接入拨码开关SW-DIP9,手动控制采集通道的切换,即通过手动控制开关来决定哪路放大电路接通,每次只能有一路电路接通并显示压力值。 3.3 A/D 转换电路

齿轮箱试验台

齿轮箱试验台 摘要:随着科学技术的不断进步,机械设备向着高性能、高效率、高自动化和高可靠性的方向发展。齿轮箱由于具有传动比固定、传动转矩大、结构紧凑等优点,被用于改变转速和传递动力的传动部件中,它是机械设备的一个重要组成部分,本论文采用锥度轮轴连接和注油压装技术设计制造的机电相结合的齿轮箱试验台,具有结构简单、性能可靠、使用安全、迁移方便等优点,对机械制造行业具有重要的使用价值。 主要词:齿轮传动装置试验台结构分析原理设计 1 用途 本试验台适用于各种机型齿轮箱、轴承箱运行空运转试验。在不使用变速箱和皮带轮及中心距不变的条件,能实现三级变速,完成其运转状态、机油压力、噪音及温升上网测试工作,根据测试数据,可对轴承、齿轮紧固件的装配质量作出判断,并确定齿轮箱和轴承箱的运转可靠性。 2 结构 齿轮箱试验台的构建见图1,又由电气控柜(件1)、塔式皮带轮组(件2)、传动轴承箱(件3)、电机座(件4)、安全栏(件5)、电机(件6)万向节传动轴(件7)、连接法兰(件8)、T形槽平台(件9)、齿轮箱(件10)、螺旋千斤顶(件11)、齿轮箱固定座(件12)

组成。 齿轮箱固定座是根据所实验的齿轮箱的待定几何形状而设计的,不同类型的齿轮箱,要有各自的专用固定座。也能住实验室,固定座通过螺栓和螺母固定在T形槽平台上,齿轮箱通过螺栓固定在固定座上。 3 工作原理 齿轮箱试验台的电源为380V、50Hz,电动机的启动方式为Y-△降压启动,控制路中采用时间继电器,用延时方法实现Y-△转换,动作时间可按公式计算,其中tq代表电动机正常启动时间(S),PN代表电动机额定功率(KM)。tq也可根据实验调整确定,一般按15s—20s控制。 电动机运转后,其动力传递方向为:电动机→塔式皮带轮组→传动轴承箱→万向节传动轴→连接法兰→齿轮箱。 螺旋千斤顶的作用是:抵挡齿轮箱运转时作用在万向节传动轴上的反扭矩,使齿轮箱平稳运转。在试运转过程中,若遇到齿轮箱颤动,

滑动轴承实验

滑动轴承实验 实验项目性质:验证性 实验计划学时:1 一、实验目的 1.观察径向滑动轴承液体动压油膜的形成过程与现象; 2.观察载荷和转速改变时,径向和轴向油膜压力的变化情况; 3.测定和绘制径向滑动轴承径向油膜压力分布曲线; 4.测定径向滑动轴承的摩擦系数f和绘制摩擦特性曲线。 二、实验台的构造与工作原理 (一)滑动轴承实验台 1.实验台的构造 实验台的构造如图所示。实验台的传动装置由直流电机1通过v带传动2驱动轴4沿顺时针方向转动,由无级调速器实现轴4的无级调速,轴的转的转速由数码管直接读出。 图4-1 滑动轴承实验台 2.轴与轴瓦间油膜压力测量装置 轴由流动轴承支承在箱体3上,轴的下阗部泡浸在润滑油中。在轴瓦5的一径向平面内沿周向钻有7个小孔,彼此相隔20每个小孔联接一个压力表6,用来测量该相应点的油膜压力,由此可以绘出径向油膜压力分布曲线。沿轴瓦的一个轴瓦的一个轴向剖面内装有两个压力表,用来观察有限长度内滑动轴承沿轴向的油膜压力分布情况。 3.加载装置 油膜的径向压力分布曲线是在一定的载荷和一定的转带下绘制的。当载荷改变或轴的转速改变时测出的油膜压力值就不同,所绘出的压力分布曲线的形状也不同。 本实验台采用螺旋加载,转动螺杆7可改变载荷的大小,所加载荷之值通过传咸器用数码管数字显示,直接在实验台的操纵面板上读出(取中间值)。 4.实验台主要参数

(1)轴的直径d=70mm (2)轴瓦的宽度B=125mm (3)测力杆长度(测力点到轴承中心距离)L=120 (4)测力计(百分表)标定值K=0.098N/格 (5)加载系统初始载荷W=40N(轴瓦重量) (6)加载系统的加载范围0~1000N;调速范围3~500r/min (7)油压表量程0~0.6Mpa(0.025Mpa/格) (8)润滑油,夏季用L---AN46(30号机油)、动力粘度n40=0.04lPa.S:冬季用L---AN22(15号机油),动力粘度n40=0.020Pa.S. 5.摩擦系数f测量装置 径向滑动轴承的摩擦系数f随轴承的特性数?n/p值的改变而改变。其中?---油的动力粘度 PaS,n---轴的轴速 r/S, p----压力MPa, 而p=w/Bd,W-----轴瓦的宽度mm,d----轴的直径mm。在边界摩擦时,f随轴承的特性数?n/p的增大而变化很小。进入混合摩擦后,?n/p改变引起f的急剧变化,在刚形成液体摩擦时,f达到最小值,此后随?n/p的增大而油膜随之增大,因而f亦有所增大,如图5—2所示。 摩擦系数f之值可通过测量轴承的摩擦力矩而得到。 轴转动时,轴对轴瓦产生周向摩擦力F,其摩擦力矩为Fd/2,它使轴瓦5翻转,其翻转力矩通过固定在弹簧片上的百分表9测出。弹簧片的变形呈△形,并经以下计算可得磨擦系数f之值。 根据力矩平衡条件得:Fd/2=LQ。 其中,L---测力杆的长度,Q----作用在A处的反力。 而Q=K△,K---测力计的标定值(刚度系数),N/格:△一百分表读数,格。设作用在轴上的外载荷为W.则f=F/W=2LQ/Wd 摩擦状态指示装置指示装置的原理如图:5-3所示。当轴不转动时,可看到灯泡很亮。当轴在很低的转速下转动时,轴将润滑油带入轴与轴瓦收敛性间隙之间,但由于此时油膜厚度很薄,轴与轴瓦之间部分微观不平度的凸峰处仍有接触,故灯忽亮忽暗。当轴的转速达到一定值时,轴与轴瓦之间形成的压力油膜厚度大于两表面之间微观不平度的的凸峰高度,完全将轴与轴瓦隔开,灯泡就不亮了。 6.使用注意事项: (1)为了保持轴与轴瓦的精度,试验机应在卸载下启动或停止。开机前面板上调速旋钮应置“0”(逆时钟旋到底)。 (2)通电后,面板两组数码管迒(左为转带,右为负载),调节调零旋钮,使负载数码管清零。 (3)旋转调速旋钮,电机在100~200r/min运行,此时油膜指示灯应熄来,待主轴稳定运转3~4分钟后,可按有关实验步骤进行操作

轴承试验台

滚动轴承试验台总体方案设计 1、轴承试验台作用与设计要求 实验台作用:在轴承产品开发阶段,轴承试验主要是针对轴承结构的试验,看试验产品能否满足使用工况要求;产品定型后,轴承试验的主要目的就是对轴承质量进行考核,鉴别轴承产品的质量等级,促进质量的提高,从而找到轴承结构、材料、制造工艺等某些环节存在的问题,进而加以控制。 试验台的设计要求: 一般情况下,滚动轴承实验台应具有如下设计要求:1)必须易于拆卸,能对轴承的不同故障类型进行监测;2)试验台必须能够改变轴承所受轴向力和径向力的大小,以方便研究轴承在不同载荷作用下的运行状态;3)轴承转速应可调;4)试验台的设计必须方便的安装各种传感装置;5)试验台的扩展性也应考虑。 2、轴承试验台具体设计方案 轴承试验系统应该包括机械装置、液压部分、控制系统、以及测试系统四部分组成。 2.1轴承试验机机械装置设计 设计机械结构时主要考虑问题:1)轴承如何在轴上固定,以保证方便的施加轴向和径向载荷;2)整个试验台采用何种布置形式,如卧室还是立式;3)如何实现试验机对尽可能多的不同种类轴承(如轴承内径不同、型号不同等)进行试验;4)轴的设计。 围绕以上几个关键问题,讨论试验机机械结构总体设计。 1)轴承在轴上的安装方式 为了方便施加轴向和径向力,轴承的安装方式如下图1所示。之所以考虑把轴承安装在轴端,一方面便于轴承安装与固定,另一方面由于试验机要适用于不同内径的轴承,因此不同内径轴承只需跟换与之相配合的轴端就可以,不需要改变试验机的其他结构,降低试验机制造成本,拓宽了使用范围。 图1 轴承的安装方式 2)试验台的布置形式 目前,轴承试验台的总体布置可分为卧式与立式两种,其中卧式结构占绝大多数。如下图2所示铁路轴承试验台,即为典型的卧式结构。

滑动轴承实验之一

实验16 滑动轴承实验之一 滑动轴承的工作原理是通过轴颈将润滑油带入轴承摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时,油就被带入轴与轴瓦配合面间的楔形间隙内形成流体动压效应,即在承载区内的油层中产生压力。当压力能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜。这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦之间处于完全液体摩擦润滑状态。因此这种轴承摩擦小,轴承寿命长,具有一定吸振能力。本实验就是让学生直观地了解滑动轴承的动压油膜形成过程与现象,通过绘制出滑动轴承径向油膜压力分布曲线与承载量曲线,深刻理解滑动轴承的工作原理。 一、实验目的 1.观察滑动轴承的动压油膜形成过程与现象。 2.通过实验,绘出滑动轴承的特性曲线。 3.了解摩擦系数、转速等数据的测量方法。 4.通过实验数据处理,绘制出滑动轴承径向油膜压力分布曲线与承载量曲线。 二、设备和工具 图16-1 滑动轴承实验台结构 滑动轴承实验台结构如图16-1所示:它由底座1,箱体2,轴3,轴瓦4,压力表5,加载砝码6,加载杠杆7、8,测力百分表9,测距杠杆14,测力弹簧片10,控制面板11,Ⅴ型传送带12,直流电机13等组成。 实验台有关数据: 1.轴瓦:材料—ZQAL9—4 表面粗糙度—1.6 宽度—B=75mm 2.轴:材料—45# 表面粗糙度—0.8 直径—d=60mm 3.电动机:型号—130SZO2 额定功率—P=355W

额定转速—n =1500rpm 4.V 带传动:型号—O 型 内周长—L =l120mm 根数—Z =2 中心距—a =350mm 传动比—i =3.175 5.润滑油:牌号—45号机油 粘度—η=0.34(s Pa ?) 6.加力杠杆比:42.627 7.测矩杠杆力臂长—L =160mm 测力弹簧片刚度系数—K = N /格(见实验机上标牌,每个实验机均不相同) 三、实验原理 轴瓦4与测矩杠杆14联成一体,压在轴上,直流电动机13通过V 型传动带12驱动轴3旋转。箱体内装有足够的润滑油,轴将润滑油带到轴与轴瓦之间。当轴不转时,轴与轴瓦之间是直接接触的。开始启动时,当轴转速很低,轴与轴瓦之间处于半干摩擦状态,当轴的转速达到足够高时,在轴与轴瓦之间形成动压油膜,将它们完全隔开。 ??=K Q (N ) 当轴旋转时,由于摩擦力矩的作用,在测矩杠杆14与测力弹簧片10的触点处产生作用力Q,其大小可由测力表(百分表)测出: 式中:K —弹簧片刚度系数 (N/格) Δ—测力表读数 (格) (1格=0.01mm) L K L Q d F ???=?=?2 )(mm N ? (1) 设轴与轴瓦之间的摩擦力为 F ,根据力矩平衡条件,可得: ???= d K L F 2 (N ) 式中: d —轴的直径(60mm ) L —测力杠杆的力臂长(160mm)(轴中心至测距杠触头一端的距离) 而作用于轴瓦上的载荷W 是由砝码通过加载杠杆系统7、8加上去的,它还包括加载系统和轴瓦的自重,故有: W=iG+G 0=42.627G+342(N) 式中:G —砝玛6的重力(N) G 0—轴瓦、压力计等自重力,为342N i —加载系统杠杆比,为42.627 W F f = (2) 因此轴与轴瓦之间的摩擦系数f 可用下式计算: 而单位压力q 可用下式计算: 式中:B ——轴瓦宽度(mm) B d W q ?= (MPa ) 在轴瓦宽度的中间,沿圆周均布钻有7个直径为φ1mm 的小孔(图16-2),每个小孔联接一个压力表。当轴的转速达到一定数值,在杠杆系统上加适当的砝码重量,轴与轴瓦间就会形成动压油膜,呈液体摩擦状态。此时,从压力表上就可看到滑动轴承沿圆周各点的径向油

相关文档
最新文档