2018-2019学年山西省太原市高二上学期期中考试数学试题
山西省太原市高二上学期数学期末检测试卷

山西省太原市高二上学期数学期末检测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法正确的是()A . 任意三点可确定一个平面B . 四边形一定是平面图形C . 梯形一定是平面图形D . 一条直线和一个点确定一个平面2. (2分) (2017高一下·石家庄期末) 若实数a、b满足条件a>b,则下列不等式一定成立的是()A . <B . a2>b2C . ab>b2D . a3>b33. (2分)如图,在三棱锥V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,则下列结论中不一定成立的是()A . AC=BCB . VC⊥VDC . AB⊥VCD . S△VCD·AB=S△ABC·VO4. (2分) (2016高一下·大同期末) 已知向量 =(x,﹣1), =(y﹣1,1)(x>0,y>0),若∥,则t=x+ +y+ 的最小值是()A . 4B . 5C . 6D . 85. (2分)已知{a,b,c}是空间一个基底,则下列向量可以与向量=+,=﹣构成空间的另一个基底的是()A .B .C .D . +26. (2分)如图甲所示,在正方形ABCD中,EF分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF 把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图乙所示,那么,在四面体A﹣EFH 中必有()A . AH⊥△EFH所在平面B . AG⊥△EFH所在平面C . HF⊥△AEF所在平面D . HG⊥△AEF所在平面7. (2分)如图,为了测量某障碍物两侧A,B间的距离(此障碍物阻挡了A,B之间的视线),给定下列四组数据,测量时应当用数据A .B .C .D .8. (2分)(2018·河北模拟) 长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是()A .B .C . 8D .9. (2分)若max{s1 , s2 ,…,sn}表示实数s1 , s2 ,…,sn中的最大者.设A=(a1 , a2 , a3),B=,记A⊗B=max{a1b1 , a2b2 , a3b3}.设A=(x﹣1,x+1,1),B=,若A⊗B=x﹣1,则x的取值范围为()A . [1-,1]B . [1,1+]C . [1-,1]D .10. (2分)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A . 平面ABD⊥平面ABCB . 平面ADC⊥平面BDCC . 平面ABC⊥平面BDCD . 平面ADC⊥平面ABC二、填空题 (共8题;共9分)11. (1分) (2019高一上·上海月考) 命题“ ”的否命题是________.12. (1分) (2018高二上·寻乌期末) 若,则________.13. (2分) (2017高二下·嘉兴期末) 某三棱锥的三视图如图所示,则该三棱锥的4个面中,直角三角形的个数是________个,它的表面积是________.14. (1分)已知,,与随机变量相关的三个概率的值分别是、和,则的最大值为________.15. (1分) (2016高二上·平阳期中) 如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC 的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________16. (1分)(2018·枣庄模拟) 已知圆和圆,若点在两圆的公共弦上,则的最小值为________.17. (1分) 16、如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论:①直线AM与直线CC1相交;②直线AM与直线BN平行;③直线AM与直线DD1异面;④直线BN与直线MB1异面.其中正确结论的序号为________(注:把你认为正确的结论序号都填上)18. (1分)(2018·南京模拟) 若不等式对任意都成立,则实数的最小值为________.三、解答题 (共4题;共30分)19. (5分)已知函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数,x∈[0,9]的值域为集合B,(1)求A∩B;(2)若C={x|3x<2m﹣1},且(A∩B)⊆C,求实数m的取值范围.20. (5分)如图,三棱柱ABC﹣A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.(I)求证:平面AA1B1B⊥平面BB1C1C;(II)求二面角B﹣AC﹣A1的余弦值.21. (10分)(2019·武汉模拟) 已知函数.(1)若函数在区间上单调递减,求实数的取值范围;(2)设的两个极值点为,证明:当时,.(附注:)22. (10分) (2020高二上·黄陵期末) 如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC 交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.(1)求证:EF⊥PB.(2)试问:当点E在线段AB上移动时,二面角PFCB的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共4题;共30分) 19-1、20-1、21-1、21-2、22-1、。
2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。
2021-2022学年山西省太原市外国语学校高二年级上册学期期中数学试题【含答案】

2021-2022学年山西省太原市外国语学校高二上学期期中数学试题一、单选题1.若直线经过两点,且其倾斜角为,则的值为( )()()2,,,12A m B m m -45︒m A .0B .C .D .12-1234【答案】D【分析】根据直线的斜率公式即可求解.【详解】经过两点的直线的斜率为,()()2,,,12A m B m m -()123122m m m k m m ---==--又直线的倾斜角为,解得.3145,12m m -︒∴=-34m =故选:D.2.如图,在棱长为1的正方体中,设,则的值1111ABCD A B C D -1,,AB a AD b AA c ===()23a b c ⋅- 为( )A .1B .0C .D .1-2-【答案】B【分析】利用空间向量的运算法则即可求解.【详解】由正方体的性质可得,,故1,AB AD AB AA ⊥⊥ ,.110,0,,,AB AD AB AA AB a AD b AA c ⋅=⋅==== ()23230a b c a b a c ∴⋅-=⋅-⋅= 故选:B3.椭圆的焦点坐标为( )22194x y +=A .B .C .D .()(0,()(0,【答案】C【分析】根据椭圆的标准方程,求出,则可求出,写出焦点坐标即可.22a b ,c【详解】由题意知,又该椭圆焦点在轴上,故焦点坐标为.222945c a b =-=-=x ()故选:.C 4.已知是双曲线的两个焦点,点在上,且轴,则( )12,F F 22:12y C x -=P C 2PF x ⊥12PF F ∠=A .B .C .D .π6π4π3π2【答案】A【分析】计算,,计算得到答案.22PF=21212tan PF PF F F F ∠==【详解】由题,故半通径.1,a b c ===x =2y =±22PF =,.12F F =12tan PF F ∠12π0,2PF F ⎛⎫∈ ⎪⎝⎭∠12π6PF F ∠=故选:A5.圆上到直线的距离为1的点有( )224640x y x y +-++=34160x y ++=A .1个B .2个C .3个D .0个【答案】C【详解】化为,得圆心坐标为,半径为圆224640x y xy +-++=22(2)(3)9x y -++=()2,3-3,r = 心到直线的距离直线与圆相交.注意到,可知圆上有334160x y ++=2,d ∴1r d =+个点到直线的距离为1.故选:C .34160x y ++=6.已知抛物线与直线相切,为上任意一点,到的准线的2:2(0)C y px p =>1y x =+()0,1,A P CP C 距离为,则的最小值为( )d PA d+A B C .2D 【答案】A【分析】联立直线与抛物线的方程,由直线与抛物线相切,求得抛物线,再利用抛物线的定义求解.【详解】解:联立,得221y pxy x ⎧=⎨=+⎩()22110,x p x +-+=,解得舍()2Δ4140p =--=2(0p p ==),,其焦点为,2:4C y x ∴=()1,0F由题,PA d PA PF AF +=+= 当且仅当为线段与抛物线的交点时取等号,P AF C故.PA d+故选:A.7.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的母线长均为 4.记过两个圆锥轴的截面为,平面与两个圆锥的交线为.已知平αα,AC BD 面平行于平面,平面与两个圆锥侧面的交线为双曲线的一部分,且的两条渐近线分别平βαβE E 行于,若双曲线的两顶点恰为其所在母线的中点,则建立恰当的坐标系后,双曲线的,AC BD E E 方程可以为( )A .B .2214y x -=2214x y -=C .D .221y x -=22144-=y x 【答案】C【分析】确定为等轴双曲线,排除AB 选项,双曲线两顶点间的距离为2,得到,排除E E 1a =D ,得到答案.【详解】圆锥的母线长均为,底面直径均为,,故,4((2224+=AC BD ⊥所以双曲线的两条渐近线互相垂直,为等轴双曲线,排除AB 选项.E E 易知两圆锥的高均为2,双曲线两顶点间的距离为2,即实轴长,排除D.E 22,1a a ==故选:C.8.过点引直线与曲线相交于两点,则直线的斜率范围为( )()4,0P l 2y =,A B lA .B .C .D .4,03⎛⎫- ⎪⎝⎭4,03⎡⎤-⎢⎥⎣⎦4,13⎡⎫--⎪⎢⎣⎭4,13⎛⎤-- ⎥⎝⎦【答案】D【分析】曲线表示以为圆心,2为半径的上半圆弧,画出图像得到,计算得到答()0,2PD PE k k k <≤案.【详解】曲线方程可化为,2y =()()22242x y y +-=≥它表示以为圆心,2为半径的上半圆弧,()0,2易知直线斜率存在,设直线方程为,即,l ()4y k x =-40kx y k --=如图所示:直线的斜率应满足,l PD PE k k k <≤其中直线与相切于点,PD ()()22242x y y +-=≥D或(舍去),又,243k =-0k =()202,2,124PE E k -==--所以.413k -<≤-故选:D.二、多选题9.已知空间向量,,则下列结论正确的是( )()1,1,1a =-()2,2,1b =-A .B ()2//b a a -C .与夹角的余弦值为D .a b ()3a a b⊥+ 【答案】BCD【分析】根据空间向量的坐标运算即可求解.【详解】因为,,所以,所以向量与不共线,故选()24,0,3b a -=-()1,1,1a =-403111-≠≠-2b a - a 项A 不正确;,B 正确;3b =因为C 正确;cos ,a b == 因为,所以,即,故选项D 正确.()35,7,2a b +=-()35720a ab ⋅+=-+-=()3a a b⊥+ 故选:BCD.10.1765年,数学家欧拉在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,这条直线就是后人所说的“欧拉线”.已知的顶点,重心ABC ()()1,0,0,2B C -,则下列说法正确的是( )12,63G ⎛⎫ ⎪⎝⎭A .点的坐标为A 3,02⎛⎫ ⎪⎝⎭B .为等边三角形ABC C .欧拉线方程为2430x y +-=D .外接圆的方程为ABC 22151254864x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭【答案】ACD【分析】根据重心公式计算得到A B 错误;计算线段垂直平分线的方程得到C 正确;计算外接圆圆心为,得到圆方程,D 正确,得到答案.BC 15,48M ⎛⎫ ⎪⎝⎭【详解】为的重心,设,由重心坐标公式,12,63G ⎛⎫ ⎪⎝⎭ABC (),A x y ()10163202 33x y ⎧+-+=⎪⎪⎨++⎪=⎪⎩解得,,选项A 正确;320x y ⎧=⎪⎨⎪=⎩3,02A ⎛⎫⎪⎝⎭,所以不是等边三角形,故选项B 错误;ABC,的外心、重心、垂心都位于线段的垂直平分线上,的顶点AB AC=ABC BC ABC ,线段的中点的坐标为,线段所在直线的斜率,()()1,0,0,2B C -BC 1,12⎛⎫- ⎪⎝⎭BC ()20201BC k -==--线段垂直平分线的方程为,即,的欧拉线方程为BC 11122y x ⎛⎫-=-+ ⎪⎝⎭2430x y +-=ABC ,故选项C 正确;2430x y +-=因为线段的垂直平分线方程为,的外心为线段的垂直平分线与线段的垂AB 14x =ABC M BC AB 直平分线的交点,所以交点的坐标满足,解得,外接圆半径M 24301 4x y x +-=⎧⎪⎨=⎪⎩15,48M ⎛⎫⎪⎝⎭外接圆方程为,故选项D =ABC 22151254864x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭正确.故选:ACD.11.我国发射的“神州十二号”载人飞船的运行轨道是以地球的中心为一个焦点的椭圆,地球是一F 个半径为的球体,为地球表面任意一点,飞船运行轨道近地点A 与点的最远距离为千米,R P P m 远地点与点的最远距离为千米,则下列结论正确的是( )B P n A .飞船运行轨道的长轴长为千米22m n R+-B .飞船运行轨道的焦距为千米()n m -C D .飞船运行轨道的离心率为2n mm n R-+-【答案】BD【分析】设飞船运行椭圆轨道的长轴长为千米,短轴长为千米,焦距为千米,由椭圆性质2a 2b 2c 得近地点、远地点与地面上点的最远距离,从而求得,然后由椭圆性质计算判断.,a c 【详解】设飞船运行椭圆轨道的长轴长为千米,短轴长为千米,焦距为千米,2a 2b 2c 由题,,a c R m a c R n -+=++=解得,,22m n n ma R c +-=-=所以飞船运行轨道的长轴长为千米,故A 错误;22a m n R =+-焦距为千米,故B 正确;()2c n m =-短轴长为千米,故C错误;2b ===离心率,所以D 正确.2c n m e a m n R -==+-故选:BD.12.已知椭圆与双曲线有相同的焦点()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>的离心率分别为曲线与的一个公共点,则下列各项正确的是( )1212,,,F F C C 1C 2C A .若,则122PF PF =213e e =B .若,则122PF PF =212e e =C .若,则无最小值122F PF π∠=2212e e +D .若,则最小值为2122F PF π∠=2212e e +【答案】AC【分析】计算得到,,A 正确,B 错误;确定112212,PF a a PF a a =+=-212133c c e e a a ===,,根据函数的单调性得到C 正确,D 错误.,得到答案.2212112e e +=222221122212112e e e e e e ⎛⎫+=++ ⎪⎝⎭【详解】记焦距为,则,12,C C 2c 1212,c ce e a a ==由椭圆定义可得,由双曲线定义可得,1212+=PF PF a 1222PF PF a -=结合选项,不妨设,,故.12PF PF >1222-=PF PF a 112212,PF a a PF a a =+=-若,则,故A 正确,B 错误.122PF PF =()121212212132,3,3c ca a a a a a e e a a +=-====若,则,12π2F PF ∠=2221212PF PF F F +=即()()()22222222121212122212112,2,2,a a a a a a c a a c e e c c ⎛⎫⎛⎫++-=+=+=+= ⎪ ⎪⎝⎭⎝⎭,()222222211212222212121111122e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭记,则在上单调递增,取值范围为,22211e t e =>22121112e e t t ⎛⎫+=++ ⎪⎝⎭()1,t ∈+∞()2,∞+无最小值,故C 正确,D 错误.故选:AC三、填空题13.若直线与直线垂直.则的值为___________.430ax y +-=210x y -+=a 【答案】2【分析】由两直线垂直可得,从而可得出答案.12120A A B B +=【详解】解:因为与垂直,430ax y +-=210x y -+=所以,解得.240a -=2a =故答案为:2.14.定义:设是空间向量的一个基底,若向量,则称实数组为{}123,,a a a 123p xa ya za =++(),,x y z 向量在基底下的坐标.已知向量是空间中的一个单位正交基底,向量p{}123,,a a a{},,a b c 是空间中的另一个基底,若向量在基底下的坐标为,则在{},,a b a b c -+ m {},,a b a b c -+()1,2,2m 基底下的坐标为___________.{},,a b c 【答案】()3,1,2【分析】化简得到,得到答案.32m a b c =++ 【详解】,()()2232m a b a b c a b c=-+++=++故在基底下的坐标为,m {},,a b c()3,1,2故答案为:.(3,1,2)15.抛物线有如下光学性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴.如下示意图中,手电筒内,在小灯泡的后面有一个反光镜,镜面的形状是一个由抛物线绕它的对称轴旋转所得到的曲面.该镜面圆形镜口的直径,镜深.为使小灯泡发出4AB =3OH =的光经镜面反射后,射出为一束平行光线,则该小灯泡距离镜面顶点的距离应为___________.O【答案】13【分析】根据抛物线的方程以及性质即可求解.【详解】以为坐标原点,以所在直线为轴,建立如图所示平面直角坐标系,则点坐标为O OH x A ,设平面截该镜面所得的抛物线方程为,代入,得,()3,2A xOy 22(0)y px p =>()3,2A 246,3p p ==小灯泡应置于焦点处,故其距离镜面顶点的距离应为.O 123p =故答案为:13四、双空题16.已知为坐标原点,分别为双曲线的左、右焦点,以为直径的O 12,F F 2222:1(0,0)x y C a b a b -=>>12,F F 圆与的渐近线在第一象限的交点为,则点的横坐标为___________;点,若C P P (),0A a -的离心率为___________.tan APO ∠=C【答案】 2a 【分析】首先确定渐近线方程,再结合三角函数即可求解点的横坐标;利用所给的正切值,求出P ,再结合正切的二倍角公式,化简即可求解离心率.tan bPOA a ∠=-【详解】由题,其中.双曲线过一、三象限的渐近线为,故,OP c=c C b y x a =tan b POx a ∠=所以,从而点横坐标.cos sin a bPOx POx c c ∠=∠=,P cos P x OP POx a =∠=又点纵坐标,故点的坐标为.P sin P y OP POx b=∠=P (),a b ,()0tan tan 2b b bPAO POA a a a a-∠==∠=---,,化简得()2tan tan 12b b a a APO PAO POA b b a a ⎛⎫+- ⎪⎝⎭∠=-∠+∠=-⎛⎫-⋅- ⎪⎝⎭b a =从而的离心率.C 2e ==故答案为:;2a 五、解答题17.已知椭圆经过点.2222:1(0)x y C a b a b +=>>()0,1,⎛ ⎝(1)求的方程;C (2)直线与相交于两点,求弦长的值.:1l y x =--C ,AB AB【答案】(1)2212x y +=【分析】(1)直接代入坐标即可求解.(2)利用弦长公式以及韦达定理即可求解.【详解】(1)由题且,22211,111,2b a b ⎧=⎪⎪⎨⎪+=⎪⎩0a b >>解得1,a b ⎧=⎪⎨=⎪⎩的方程为.C ∴2212x y +=(2)设,()()1122,,,A x y B x y联立得.221,1,2y x x y =--⎧⎪⎨+=⎪⎩2340x x +=解得,1240,3x x ==-.243AB x ⎛⎫=-=-=⎪⎝⎭18.如图所示,正方形和矩形所在的平面互相垂直,,分别为的ABCD ADEF P ,M N ,,EF AB BC中点,.22AB AF ==(1)证明:平面;PD ⊥PAB (2)求点到平面的距离.N PDM【答案】(1)证明见解析【分析】(1)通过证明来证得平面;,AB PD PA PD ⊥⊥PD ⊥PAB (2)建立空间直角坐标系,利用向量法求得点到平面的距离.N PDM 【详解】(1)平面平面,平面平面平面 ABCD ⊥ADEF ABCD ⋂,ADEF AD AB =⊂,,ABCD AB AD ⊥平面,AB ∴⊥ADEF 平面,PD ⊂ ,ADEF AB PD∴⊥由题可得,2222,,PA PD AD PA PD AD PA PD ===+=∴⊥平面,平面.,,AB PA A AB PA ⋂=⊂ PAB PD ∴⊥PAB (2)以点为坐标原点,的方向分别为轴、轴轴的正方向建立空间直角坐标系,A ,,AB AD AFx y z 、可得,()()()()0,2,0,2,1,0,1,0,0,0,1,1D N M P则.()()()1,1,1,0,1,1,1,1,0PM PD NM =--=-=--设平面的一个法向量为,PDM (),,n x y z =由,得,不妨令,则.00n PM n PD ⎧⋅=⎪⎨⋅=⎪⎩ 00x y z y z --=⎧⎨-=⎩1z =()2,1,1n = 设点到平面的距离为,则N PDMd d 19.拟在某小区北侧围栏外的草坪上修建健身步道,设计思路为相交的两圆,设计方案如图所示:点为小区出入口,且均在圆上,点正北方向20米处为圆心点正北方向60米处为圆心A C 、E B ,E D米,且为两圆的相交弦,求的长.,15F AB BC CD ===CG CG 【答案】米48【分析】建立直角坐标系,根据线段长度计算两圆的方程,得到相交弦所在直线方程CG ,计算点到直线的距离,得到答案.34450x y +-=【详解】以所在直线为轴,为坐标原点建立如图所示平面直角坐标系,如图所示:l x B,()()()()()()15,0,0,0,15,0,30,0,0,20,30,60A B C D E F -圆半径为米,圆方程为:,E 25EA ==E 22(20)625x y +-=圆半径为方程为:;F FC ==F 22(30)(60)3825x y -+-=两式相减可得相交弦所在直线方程,CG 34450x y +-=圆心到直线的距离米,E CG 7d所以米.48CG ===20.如图,平面,,,,,.⊥AE ABCD //CF AE //AD BC AB BC ⊥2AB AD ==4AE BC ==(1)求证:平面;//BF ADE (2)若平面与平面的夹角的余弦值为,求线段的长.BDF BDE 13CF 【答案】(1)证明见解析(2)167【分析】(1)根据垂直关系建立空间直角坐标系,通过证明向量与平面的法向量垂直即可BF ADE 证明结论.(2)先求出两个平面的法向量,再根据两个平面的法向量夹角余弦值的绝对值为,即可求出线13段的长.CF 【详解】(1)依题意,可以建立以为坐标原点,分别以的方向为轴,轴,轴正A ,,AB AD AE x y z方向的空间直角坐标系(如图),可得,,,,,()0,0,0A ()2,0,0B ()2,4,0C ()0,2,0D ()0,0,4E 设,则,()0CF h h =>()2,4,F h ()0,4,BF h =根据题意得,是平面的一个法向量,()2,0,0AB =ADE 所以,即,0BF AB ⋅= AB BF ⊥又因为直线平面,所以平面.BF ⊄ADE //BF ADE (2)由(1)得,,,,,()0,4,BF h =()2,2,0BD =-()2,0,4BE =-()2,4,4CE =--设为平面的法向量,(),,m x y z =BDF 则,即,00m BD m BF ⎧⋅=⎪⎨⋅=⎪⎩ 22040x y y hz -+=⎧⎨+=⎩不妨令,可得.1y =41,1,m h ⎛⎫=- ⎪⎝⎭ 设为平面的法向量,(),,n x y z =BDE 则即,0,0,n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 220240x y x z -+=⎧⎨-+=⎩不妨令,可得,1z =()2,2,1n =由题意,得,1cos ,3m n m n m n⋅===⋅解得,167h =所以线段的长为.CF 16721.已知抛物线的焦点为,点在上,其中.2:2(0)C y px p =>F ()02,A y C050,2y AF >=(1)求的值;0,p y (2)直线与相交于两点,直线是圆的两条切线,求直线的斜l C ,P Q ,AP AQ 222(2)(0)x y r r -+=>l 率.【答案】(1),1p =02y =(2)12-【分析】(1)根据题意得到,得到,代入得到答案.5222p +=1p =(2)设,联立方程得到根与系数的关系,根据得到,得到直线斜:l x my n =+0AP AQ k k +=2m =-率.【详解】(1)由抛物线的定义知:点到的准线的距离为,,()02,A y C 2p x =-5222p +=1p =的方程为,,又,.C 22y x =2022y =⨯00y >02y =(2)法:,的倾斜角互补,斜率之和为0,的斜率存在且非零,1()2,2A ,AP AQ l 设,联立,得.:l x my n =+22 y x x my n ⎧=⎨=+⎩2220y my n --=设,则,,()()1122,,,P x y Q x y 121222 y y m y y n +=⎧⎨=-⎩1121112222222AP y y k y x y --===-+-同理,,222AQ k y =+()()()121212242202222AP AQ y y k k y y y y +++=+==++++,直线的斜率为.124240,2y y m m ++=+==-l 12-法2:设,则,()()1122,,,P x y Q x y 121222121212222PQ y y y y k y y x x y y --===-+-同理,1222,22AP AQ k k y y ==++,,()()()121212242202222AP AQ y y k k y y y y +++=+==++++1212214,2PQ y y k y y +=-==-+直线的斜率为.l 12-22.已知椭圆的离心率为,且过点.2222:1(0)x y C a b a b +=>>1231,2⎛⎫ ⎪⎝⎭(1)求的方程;C (2)若直线交椭圆于两点,点恒在以为直径的圆内,求的取值范()1x my m =+∈R C ,A B (),0G t AB t 围.【答案】(1)22143x y +=(2)1,22⎛⎤- ⎥⎝⎦【分析】(1)根据和离心率定义以及点在曲线上即可求解;(2)联立直线和椭圆,借222a b c =+助韦达定理和点在圆内的向量表达即可进一步求解.【详解】(1)设椭圆的焦距为,则C 2c 22222,1,2191,4a b cc a a b ⎧⎪=+⎪⎪=⎨⎪⎪+=⎪⎩解得2,1,a b c =⎧⎪=⎨⎪=⎩故的方程为.C 22143x y +=(2)联立221,1,43x my x y =+⎧⎪⎨+=⎪⎩得,()2234690my my ++-=设,()()1122,,,A x y B x y 则.122122634934m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩由题:任意.,0m GA GB ∈⋅<R ,()()1122,,,GA x t y GB x t y =-=-()()1212GA GB x t x t y y ⋅=--+()()121211my t my t y y =+-+-+()()()()221212111m y y m t y y t =++-++-()()()2222961113434m m m t t m m ⎛⎫⎛⎫=+-+--+- ⎪ ⎪++⎝⎭⎝⎭,()22223448534t m t t m -+--=+对任意恒成立,()22223448534t m t t m -+--∴<+m ∈R 解得.()22340,4850,t t t ⎧-⎪∴⎨--<⎪⎩ 122t -< 的取值范围是.t ∴1,22⎛⎤- ⎥⎝⎦。
人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
山西省太原市2018-2019学年九年级上学期数学期中考试试卷及参考答案

山西省太原市2018-2019学年九年级上学期数学期中考试试卷一、选择题 1. 若= =2(b+d≠0),则的值为( )A . 1B . 2C .D . 42. 将方程(x+1)(2x-3)=1化成“ax +bx+c=0”的形式,当a=2时,则b ,c 的值分别为( )A ., B ., C ., D . ,3. 矩形、菱形、正方形都具有的性质是( )A . 对角线相等B . 对角线互相平分C . 对角线互相垂直D . 对角线平分对角4. 如图,一组互相平行的直线a ,b ,c 分别与直线l , 1交于点A ,B ,C ,D ,E ,F ,直线1 , l 交于点O ,则下列各式不正确的是( )A .B .C .D .5. 一元二次方程x +6x+9=0的根的情况是( )A . 有两个相等的实数根B . 有两个不相等的实数偎C .只有一个实数根 D . 没有实数根6. 小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为( )A .B .C .D . 7. 用配方法解方程x -8x+5=0,将其化为(x+a )=b 的形式,正确的是( )A .B .C .D .8. 如图,△ABC 中,点P 是AB 边上的一点,过点P 作PD ∥BC ,PE ∥AC ,分别交AC ,BC于点D ,E ,连按CP .若四边形CDPE 是菱形,则线段CP 应满足的条件是( ) A . CP 平分 B . C . CP 是AB 边上的中线 D .9. 为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程( )A .B .C .D . 2121222210. 如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∠ABC 和∠BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:①EB ∥CF ,CE ∥BF ;②BE=CE ,BE=BF ;③BE ∥CF ,CE ⊥BE ;④BE=CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A . 1个B . 2个C . 3个D . 4个二、填空题11. 一元二次方程x +3x=0的解是________.12. 经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为________.13. 如图,正方形ABCD 中,点E 是对角线BD 上的一点,BE=BC ,过点E 作EF ⊥AB ,EG ⊥BC ,垂足分别为点F ,G ,则正方形FBGE 与正方形ABCD 的相似比为________.14. 如图,正方形ABCD 中,AB=2,对角线AC ,BD 相交于点O ,将△OBC 绕点B 逆时针旋转得到△O′BC′,当射线O′C′经过点D 时,线段DC′的长为________.15. 如图,在菱形ABCD 中,AB=4,AE ⊥BC 于点E ,点F ,G 分别是AB ,AD 的中点,连接EF ,FG ,若∠EFG=90°,则FG 的长为________.三、计算题16. 解下列方程:(1) x -6x+3=0;(2) 3x (x-2)=2(x-2).17. 如图,矩形ABCD 中,AB=4,点E ,F 分别在AD ,BC 边上,且EF ⊥BC ,若矩形ABFE ∽矩形DEFC,且相似比为1:2,求AD 的长.22景点介绍,求甲、乙两人中恰好有一人介绍,到2018年“早黑宝”的种植面积达到EFB的边长.22. 已知:如图,菱形ABCD8 .2. 3. 4. 5. 6. 7. 8. 9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
2022-2023学年山西省太原市校高二年级上册学期期末阶段测试数学试题【含答案】

2022-2023学年山西省太原市校高二上学期期末阶段测试数学试题一、单选题1.抛物线的焦点坐标为( )22y x =A .B .C .D .1,02⎛⎫- ⎪⎝⎭1,02⎛⎫ ⎪⎝⎭()1,0-()1,0【答案】B【分析】由抛物线的方程即可确定焦点位置和焦点坐标.【详解】由抛物线的方程可知,抛物线的焦点位于轴正半轴,由,可得:,22y x =x 22p =122p =即焦点坐标为.1,02⎛⎫ ⎪⎝⎭故选:B .2.函数的单调递减区间为( )()4ln f x x x=-A .B .C .D .()0,∞+10,4⎛⎫ ⎪⎝⎭1,4⎛⎫-∞ ⎪⎝⎭1,4⎛⎫+∞ ⎪⎝⎭【答案】B 【分析】由结合定义域即可解出.()0f x '<【详解】因为,所以,由解得:,所()()4ln 0f x x x x =->()14f x x '=-()0140x f x x >⎧=<'⎪⎨-⎪⎩104x <<以函数的单调递减区间为.()4ln f x x x=-10,4⎛⎫⎪⎝⎭故选:B .3.已知函数,则( )()()2ln 31f x x x f x '=-+()1f =A .2B .1C .0D .1-【答案】D【分析】计算出的导数,将代入即可求出,进而可计算出.()f x '()f x 1x ='()f x ()1f '(1)f 【详解】因为,则,()()2ln 31f x x x f x'=-+()()1321f x f x x ''=-+所以,则,()()'1132'1f f =-+()12f '=所以,所以.()2ln 32f x x x x =-+()1ln1321f =-+=-故选:D.【点睛】本题考查导数的相关计算,属于基础题.4.某放射性同位素在衰变过程中,其含量(单位:贝克)与时间(单位:天)满足函数关系N t ,其中为时该同位素的含量.已知时,该同位素含量的瞬时变化率为()240e-=t N t N 0N 0=t 24t =,则( )1e --()120N =A .24贝克B .贝克524e -C .1贝克D .贝克5e -【答案】B【分析】先求出,然后利用,求出,再求解即可.'()N t 1(24)e N -'=-0N ()120N 【详解】由,得,()240e-=tN t N ()2401e24tN t N -'=-因为时,该同位素含量的时变化率为,24t =1e --所以,解得,()241240124e e 24N N --=-=-'024N =所以.120524(120)24e 24e N --=⨯=故选:B.5.设椭圆离心率为e ,双曲线,22122:1(0)x y C a b a b +=>>22222:1x y C a b -=则椭圆的离心率e 的取值范围是( )1C A .B .C .D.⎫⎪⎪⎭⎫⎪⎪⎭)+∞【答案】B【分析】根据渐近线斜率的取值范围可得出的关系,再根据椭圆离心率的定义即可求得离心率,a b e 的取值范围.【详解】根据双曲线方程可得,其渐近线方程为,22222:1x y C a b -=by xa =±又因为,即0a b >>0b a <<所以,椭圆的离心率1C c e a ⎫==⎪⎪⎭即离心率e 的取值范围是.⎫⎪⎪⎭故选:B6.设定义R 在上的函数,满足任意,都有,且时,()y f x =x ∈R ()()4f x f x +=(]0,4x ∈,则,,的大小关系是( )()()'>xf x f x ()2021f ()22022f ()32023f A .B .()()()20222202320231f f f <<()()()20222023202123f f f <<C .D .()()()20232032222021f f f <<()()()20232022202132f f f <<【答案】A【分析】利用构造函数法,结合导数以及函数的周期性确定正确答案.【详解】依题意,任意,都有,所以是周期为的周期函数.x ∈R ()()4f x f x +=()f x 4所以.()()()()()()202222023320211,,2233f f f f f f ===构造函数,()()()()()()204,0f x xf x f x F x x F x x x '-'=<≤=>所以在区间上单调递增,所以,()F x (]0,4()()()123F F F <<即,也即.()()()122313f f f <<()()()20222202320231f f f <<故选:A7.1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律.卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为,,下列结论2a 2c 错误的是( )A .卫星向径的取值范围是[],a c a c -+B .卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C .卫星运行速度在近地点时最小,在远地点时最大D .卫星向径的最小值与最大值的比值越小,椭圆轨道越扁【答案】C【分析】由题意可得卫星的向径是椭圆上的点到右焦点的距离,结合椭圆的性质即可判断A ;根据卫星的向径在相同时间内扫过的面积相等,即可判断B ;卫星运行在近地点时向径最小,在远地点时向径最大,由于卫星的向径在相同的时间内扫过的面积相等,则向径越大,速度越小,即可判断C ;卫星向径的最小值与最大值的比值越小,即越小,由此即可判断D .211a c a ce -=-+++【详解】A 选项:由题意可得卫星的向径是椭圆上的点到右焦点的距离,所以最小值为,最大a c -值为,所以A 正确;a c +B 选项:根据卫星的向径在相同时间内扫过的面积相等,卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间,故B 正确;C 选项:卫星运行在近地点时向径最小,在远地点时向径最大,由于卫星的向径在相同的时间内扫过的面积相等,则向径越大,速度越小,所以卫星运行速度在近地点时最大,在远地点时最小,故C 错误;D 选项:卫星向径的最小值与最大值的比值越小,即越小,则越大,椭圆12111a c e a c e e --==-++++e 越扁,故D 正确.故选:C .8.若函数有两个零点,且存在唯一的整数,则实数的取值范围2ln 1()x mx f x x +-=,a b 0(,)x a b ∈m 是( )A .B .e(0,)2ln 2e[,1]4C .D .ln 2e[,1)4ln 3e e [,)92【答案】C【分析】由题意可知有两个实根,构造函数,利用导数研究函数2ln 1x m x +=2ln 1()(0)x h x x x +=>的单调性及极值,作出函数的图象,利用数形结合思想即可求解.()h x ()h x 【详解】由题意,得有两个实根,2ln 1()0x mx f x x +-==2ln 1x m x +=设,则,2ln 1()(0)x h x x x +=>4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x -+-+-+'===令,解得,()0h x '=12e x -=当时,,单调递增;当时,,单调递减;120e x -<<()0h x '>()h x 12e x ->()0h x '<()h x 故当时,函数取得极大值,且,12e x -=12e (e )2h -=又时,;时,;当时,,,1e x =()0h x =10e x <<()0h x <1e x >2ln 10,0x x +>>()0h x >作出函数的大致图象,如图所示:()h x直线与的图象的两个交点的横坐标即分别为,y m =2ln 1()x h x x +=,a b 由题意知,又,,121(,e )e a -∈(1)1h =ln 21ln 2e (2)44h +==因为存在唯一的整数,所以,0(,)x a b ∈12b <≤又直线与的图象有两个交点,y m =2ln 1()x h x x +=由图可知:,即.(2)(1)h m h ≤<ln 2e14m ≤<故选:C.【点睛】方法点睛:已知函数零点的情况求参数的取值范围,常用的方法有:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题9.函数的定义域为R ,它的导函数的部分图象如图所示,则下面结论正确的是()f x ()y f x '=( )A .在上函数为增函数B .在上函数为增函数()1,2()f x ()3,5()f x C .在上函数有极大值D .是函数在区间上的极小值点()1,3()f x 3x =()f x []1,5【答案】AC【解析】根据图象判断出的单调区间、极值(点).()f x 【详解】由图象可知在区间和上,递增;在区间上,()f x ()1,2()4,5()'0f x >()f x ()2,4()'0f x <递减.()f x 所以A 选项正确,B 选项错误.在区间上,有极大值为,C 选项正确.()1,3()f x ()2f 在区间上,是的极小值点,D 选项错误.[]1,54x =()f x 故选:AC10.给出定义:若函数在上可导,即存在,且导函数在上也可导,则称()f x D ()f x '()f x 'D 在上存在二阶导函数,记,若在上恒成立,则称在上为()f x D ()()()f x f x ''''=()0f x ''<D ()f x D 凸函数.以下四个函数在上不是凸函数的是( )π0,2⎛⎫⎪⎝⎭A .B .()sin cos f x x x =-()ln 4f x x x=-C .D .()321f x x x =-+-()e xf x x =【答案】AD【分析】求出每个选项中函数的二阶导函数,并验证是否对任意的()f x ()f x ''()0f x ''<恒成立,由此可得出答案.π0,2x ⎛⎫∈ ⎪⎝⎭【详解】对于A ,,,()cos sin f x x x '=+()πsin cos 4f x x x x ⎛⎫=-+=- ⎪⎝'⎭'当时,,,故不是凸函数;π0,4x ⎛⎫∈ ⎪⎝⎭ππ044x -<-<()0f x ''>()sin cos f x x x =-对于B ,,,故是凸函数;()14f x x '=-()210f x x ''=-<()ln 4f x x x =-对于C ,,对任意的,,故是凸函数;()232f x x '=-+π0,2x ⎛⎫∈ ⎪⎝⎭()60f x x ''=-<()321f x x x =-+-对于D ,,对任意的,,故不是凸函数.()()1e xf x x '=+π0,2x ⎛⎫∈ ⎪⎝⎭()()e 02x f x x =+''>()e x f x x =故选:AD .11.直线与双曲线的左、右两支各有一个交点,则的可能取值为:(2)l y k x =-22:2C x y -=k ( )A .B .C .D .01212【答案】AD【分析】联立直线与双曲线的方程,由韦达定理结合方程根的情况列出不等式,求解可得的范围,k 判断选项即可.【详解】联立,消去y 得,.22(2)2y k x x y =-⎧⎨-=⎩2222(1)4420k x k x k -+--=因为直线与双曲线的左、右两支各有一个交点,l C 所以方程有一正一负根,2222(1)4420k x k x k -+--=所以,整理得,解得.222104201k k k ⎧-≠⎪⎨--<⎪-⎩210k ->11k -<<所以的取值范围为,故A ,D 符合题意.k 11k -<<故选:AD.12.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线的焦点为,一束平行于轴的光线从点射入,经过抛物线上24y x =F x 1l ()3,1M 的点反射后,再经抛物线上另一点反射后,沿直线射出,则下列结论中正确的()11,P x y ()22,Q x y 2l是( )A .B .124y y =-43PQ k =-C .D .与之间的距离为4254PQ =1l 2l 【答案】ABC【分析】由抛物线的光学性质可知,直线过焦点,设直线,代入,PQ (1,0)F :1PQ x my =+24y x =由韦达定理得可判断A ;点与均在直线上,于是可求出点的坐标,再结合124y y =-P M 1l P 可得点的坐标,然后利用斜率公式即可判断B ;根据抛物线的定义可知,124y y =-Q 12||PQ x x p =++可判断C ;由于与平行,所以与之间的距离,可判断D .1l 2l 1l 2l 12||d y y =-【详解】由抛物线的光学性质可知,直线过焦点,设直线,代入得PQ (1,0)F :1PQ x my =+24y x =,则,故A 正确;2440y my --=124y y =-点与均在直线上,则点的坐标为,由得,则点的坐标为,P M 1lP (1,14)124y y =-24y =-Q (4,4)-则,故B 正确;4141344PQ k --==--由抛物线的定义可知,,故C 正确;12125||4244PQ x x p =++=++=与平行,与之间的距离,故D 错误,1l 2l 1l ∴2l 12||5d y y =-=故选:ABC .三、填空题13.椭圆的长轴长为______.2224x y +=【答案】4【分析】把椭圆方程化成标准形式直接计算作答.【详解】椭圆方程化为:,令椭圆长半轴长为a ,则,解得,2224x y +=22142x y +=24a =2a =所以椭圆的长轴长为4.2224x y +=故答案为:414.函数在点处的切线方程为______.2cos y x x =+π,π2⎛⎫ ⎪⎝⎭【答案】π=2y x +【分析】求出函数的导数,继而可求得切线的斜率,根据直线的点斜式方程即可求得答案.【详解】由函数可得,2cos y x x =+2sin y x '=-故在点处的切线的斜率为,2cos y x x =+π,π2⎛⎫⎪⎝⎭π2sin 12k =-=故切线方程为,即,ππ=2y x --π=2y x +故答案为:.π=2y x +15.已知函数有两个极值点,则实数的取值范围为________.()2ln f x x x ax =+a 【答案】1,02⎛⎫- ⎪⎝⎭【分析】求出导函数,要使函数有两个极值点,经分析可知只()ln 1f x x ax'=++()2ln f x x x ax =+需有两个不同正根,并且在的两侧的单调性相反,在的两侧()0f x '=12,x x 1x ()y f x =2x 的单调性相反. 令可得,作出和的图像,分析()y f x =()0f x '=ln 12x a x +=-()ln 1x h x x +=-2y a =即可得出的取值范围a 【详解】的定义域为,.()2ln f x x x ax =+()0+∞,()ln 1f x x ax '=++要使函数有两个极值点,只需有两个不同正根,并且在的两侧()2ln f x x x ax =+()0f x '=12,x x 1x 的单调性相反,在的两侧的单调性相反.()y f x =2x ()y f x =由得,.ln 120x ax ++=ln 12x a x +=-令,,要使函数有两个极值点,只需()()ln 1,0x h x x x +=->2y a =()2ln f x x x ax =+和有两个交点.()ln 1x h x x +=-2y a =,令得:x >1;令得:;()2ln x h x x '=()2ln 0x h x x '=>()2ln 0xh x x '=<01x <<所以在上单减,在上单增.()ln 1x h x x +=-()0,1()1,+∞当时,;当时,;0x +→y →+∞x →+∞0y →作出和的图像如图,()ln 1x h x x +=-2y a =所以即实数的取值范围为.120,a -<<a 1,02⎛⎫- ⎪⎝⎭故答案为:.1,02⎛⎫- ⎪⎝⎭16.已知,若对于任意的,不等式恒成立,则的最小值1m >1[,)4x ∈+∞()5ln 4e ln x x x m m -≤-m 为________.【答案】4e【分析】不等式等价变形,利用函数()()()5ln 4e ln 4ln 4e ln e x x x x x m m x x m m -≤-⇔-≤-的单调性可得,即,令,结合函数的单调性与最值即可求()ln f x x x =-4e x x m ≤4e x xm ≤()4e x x g x =得答案.【详解】.()()5ln 4e ln 4ln 4e ln x x x x m m x x m m x -≤-⇔-≤--()()4ln 4e ln e x xx x m m ⇔-≤-令,,则,()ln f x x x=-[1,)x ∈+∞()1110x f x x x ='-=-≥∴在上单调递增.()f x [)1,+∞∵,,∴,1m >1[,)4x ∈+∞[)4,e 1,x x m ∈+∞∴恒成立,()()44ln 4e ln e (4))(e 4e e x x x x x xx x m m f x f m x m m -≤-⇔≤⇔≤⇔≤令,则,()4e x x g x =()e 44x xg x -='∴单调递增;单调递减,()()1,1,0,4x g x g x ⎡⎫∈>⎪⎢⎣⎭'(1,),()0,()x g x g x '∈+∞<时,的最大值为,1x ∴=()g x 4e ∴,∴的最小值为.4e m ≥m 4e 故答案为:.4e四、解答题17.已知在时有极值0.()3223f x x ax bx a =+++=1x -(1)求常数的值;a b 、(2)求函数在区间上的值域.()y f x =[]4,0-【答案】(1)2,9a b ==(2)[]0,4【分析】(1)求出导函数,再由在时有极值0,可得解()236f x x ax b '=++()f x =1x -()()10,10,f f ⎧-=='⎪⎨-⎪⎩方程组即可求出的值;a b 、(2)求出导函数,再由函数的单调性以及导数的正负列出表格,即可解得函()23129f x x x '=++数在和递增,递减,从而可得值域.()y f x =()4,3--()1,0-()3,1--【详解】(1),可得,()3223f x x ax bx a =+++()236f x x ax b'=++由题时有极值0.可得:即=1x -()()10,10,f f ⎧-=='⎪⎨-⎪⎩2360,130,a b a b a -+=⎧⎨-+-+=⎩解得:或,1,3,a b =⎧⎨=⎩2,9.a b =⎧⎨=⎩当时,单调,不会有极值,故舍去. 13a b =⎧⎨=⎩()23690f x x x '=++≥,()y f x =经验证成立;2,9a b ==(2)由(1)可知,()32694f x x x x =+++,,()()()23129313f x x x x x '=++=++[]4,0x ∈-x4-()4,3--3-()3,1--1-()1,0-()f x '+ 0-+()f x0增4减0增4所以函数在和递增,递减.()y f x =()4,3--()1,0-()3,1--且,,,,()40f -=()34f -=()10f-=()04f =可得值域为.[]0,418.在平面直角坐标系中,已知双曲线的焦点为、,实轴长为.xOy C (0,((1)求双曲线的标准方程;C (2)过点的直线与曲线交于,两点,且恰好为线段的中点,求直线的方程()1,1Q l C M N Q MN l 及弦的长.MN【答案】(1);(2)22:12y C x -=210x y --=【解析】(1)根据题意可得,进而可得双曲线方程;,,a b c (2)先根据点差法求直线方程,再根据弦长公式即可求出.【详解】解:(1)根据题意,焦点在轴上,且,y c =a =1b =双曲线的标准方程为;22:12y C x -=(2)过点的直线与曲线交于,两点,且恰好为线段的中点,当直线斜率不()1,1Q l C M N Q MN 存在时,直线方程为,则由双曲线对称性可知线段的中点在轴上,所以不满足题意;1x =MN x 当斜率存在时,设直线方程为,设,,()11y k x =-+()11,M x y ()22,N x y 则,化简可得,()221112y k x y x ⎧=-+⎪⎨-=⎪⎩()()2222222210k x k k x k k ---+--=因为有两个交点,所以()()22222242210k kk k k ⎡⎤∆=----->⎣⎦化简可得恒成立,22210k k -->21222122222,212k k x x k k k x x k ⎧-+=⎪⎪-∴⎨--⎪=⎪-⎩因为恰好为线段的中点,则,()1,1Q MN 222222k kk -=-化简可得,2k =所以直线方程为,即.()211y x =⨯-+210x y --=此时,1212212x x x x +=⎧⎪⎨=-⎪⎩==【点睛】关于圆锥曲线的中点弦问题:直线与圆锥曲线相交所得弦中点问题,是解析几何的内容之一,也是高考的一个热点问题.这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦中点的坐标问题.其解法主要是点差法,设而不求,得到结果.19.已知函数.()()221ln f x ax a x x=-+-12a ⎛⎫≤ ⎪⎝⎭(1)当时,证明:;1a =-()31f x x x ≥--(2)讨论的单调性.()f x 【答案】(1)证明见解析(2)答案见解析【分析】(1)构造函数,利用函数的最值即可证明不等()()()311ln 1,0g x f x x x x x x ⎛⎫=---=-+> ⎪⎝⎭式;(2),对分类讨论即可得出函数的单调性.()()()212ax x f x x --'=a ()f x 【详解】(1)当时,令,1a =-()()()311ln 1,0g x f x x x x x x ⎛⎫=---=-+> ⎪⎝⎭,()22111x g x x x x -'=-=可得时,,函数单调递减;(0,1)x ∈()0g x '<()g x 时,,函数单调递增, (1,)x ∈+∞()0g x '>()f x 时,函数取得极小值即最小值,,1x ∴=()g x ()1g 0=∴,即.()0g x ≥()31f x x x ≥--(2)函数的定义域为,(0,)+∞,()()()2212212ax x a f x a x x x --+'=-+=当时, 时,,函数单调递增;时,,函数单调0a ≤(0,2)x ∈()0f x ¢>()f x (2,)x ∈+∞()0f x '<()f x 递减;当时,时,,函数单调递增区间为;102a <<1(0,2),x a ⎛⎫∈+∞ ⎪⎝⎭ ()0f x ¢>()f x 1(0,2),,a ⎛⎫+∞ ⎪⎝⎭时,,函数单调递减;1(2,)x a ∈()0f x '<()f x 当时,,,函数在单调递增.12a =()()2222x f x x -'=()0f x '≥()f x (0,)+∞综上,当时,函数在单调递增,在单调递减;0a ≤()f x (0,2)(2,)+∞当时,函数在上单调递增,函数在上单调递减;102a <<()f x 1(0,2),,a ⎛⎫+∞ ⎪⎝⎭()f x 1(2,)a 当时,函数在上单调递增.12a =()f x (0,)+∞20.在新冠肺炎疫情期间,口罩是必不可少的防护用品.某小型口罩生产厂家为保障抗疫需求,调整了口罩生产规模.已知该厂每月生产口罩的固定成本为1万元,每生产x 万件,还需投入万0.1x 元的原材料费,全部售完可获得万元,当月产量不足5万件时,;当月()p x 21() 4.112p x x x =-++产量不低于5万件时,,通过市场分析,该口罩厂生产的口罩当月可以全8()13ln 0.1p x x x x =--+部售完.(1)求月利润(万元)关于月产量(万件)的函数关系式,并求出月产量为3万件时,该厂这个y x 月生产口罩所获得的利润;(2)月产量为多少万件时,该口罩生产厂家所获得月利润最大?最大约为多少万元?(精确到)0.1参考数据:.ln 20.69≈【答案】(1);7.5万元214,05,2812ln , 5.x x x y x x x ⎧-+<<⎪⎪=⎨⎪--≥⎪⎩(2)当月产量约为8万件时,该口罩生产厂家所获得月利润最大,最大月利润约为8.9万元【分析】(1)利润等于销售收入减去固定成本减去原材料费(2)分段函数的最值,先分段求,再比较,较大的是最大值【详解】(1)当时;05x <<22114.1110.1422y x x x x x=-++--=-+当时, 5x ≥8813ln 0.110.112ln y x x x x x x =--+--=--故月利润y 关于月产量x 的函数关系式为214,05,2812ln , 5.x x x y x x x ⎧-+<<⎪⎪=⎨⎪--≥⎪⎩当时,3x =19437.52y =-⨯+⨯=故月产量为3万件时,该厂这个月生产口罩所获得的利润为7.5万元.(2)当时,,05x <<22114(4)822y x x x =-+=--+故当时,y 取得最大值,最大值为8万元; 4x =当时,,5x ≥812ln y x x =--.22188x y x x x '-=-+=当时,,当时,,58x ≤<0'>y 8x >0'<y 所以在上单调递增,在上单调递减,812ln y x x =--[5,8)(8,)+∞故当时,y 取得最大值,且.8x =max 12ln81113ln 28.9y =--=-≈因为,所以当月产量约为8万件时,该口罩生产厂家所获得月利润最大,最大月利润约为8.98>8.9万元.21.已知函数.()()2e 1x f x x =+(1)若在上是增函数,求实数的取值范围;()()221e 2x g x f x x x kx =---R k (2)若时,不等式恒成立,求实数的取值范围.210x x >>()()212212ee x x af x f x ->-a 【答案】(1)(],1-∞(2)e 2a ≤【分析】(1)由在上是增函数,可得在上恒成立,再由参数分离法即可求得()g x R ()0g x '≥R 的取值范围.k (2)当时,恒成立,所以在上单调递增,且0x >()()2e 210x f x x x '=++>()f x ()0,∞+.由,可得,再构造函数,则问题等价()()010f x f >=>210x x >>()()21f x f x >()()2e xg x af x =-于函数在上单调递增,()g x ()0,∞+即在上恒成立,即参数分离后,只需求()()22e 0x g x af x ''=-≥()0,∞+()222e 2e 21x xa f x x x ≤='++即可得的取值范围.22e 21xx x ++a 【详解】(1)依题, 故,()21e 2x g x x kx =--()e x g x x k ='--在上是增函数,在上恒成立.()g x R ()0g x '∴≥R即:在上恒成立.e xk x ≤-R 设,则()e x m x x=-()e 1x m x '=-当时,;当时,(),0x ∈-∞()0,m x '<()0,x ∈+∞()0,m x '>即在上单调递减;在在上单调递增()m x (),0∞-()m x ()0,∞+()()min 01m x h ∴== 1k ∴≤即的取值范围为:k (],1-∞(2)当时,恒成立,0x >()()2e 210x f x x x '=++>所以在上单调递增,且.()f x ()0,∞+()()010f x f >=>因为,所以,210x x >>()()21f x f x >则不等式可化为,()()212212e e x x a f x f x ->-()()212221e e x x a f x f x ->-⎡⎤⎣⎦即.()()212221e e x x af x af x ->-令,因为,则问题等价于函数在上单调递增,()()2e x g x af x =-210x x >>()g x ()0,∞+即在上恒成立,()()22e 0x g x af x ''=-≥()0,∞+即,.()222e 2e 21x xa f x x x ≤='++()0,x ∈+∞令,,()22e 21xp x x x =++()0,x ∈+∞则.()()()()()()()()22223222e 212e 222e 12e 112121x x x x x x x x x p x x x x x x ++-+--===+++++'令,解得,()0p x '=1x =所以当时,,函数在上单调递减;()0,1x ∈()0p x '<()p x ()0,1当时,,函数在上单调递增;()1,x ∈+∞()0p x '>()p x ()1,+∞所以当时,函数取得最小值,且,1x =()p x ()()min e 12p x p ==所以当时,,()0,x ∈+∞()()e12p x p ≥=所以.e2a ≤【点睛】本题考查的是函数与导数的综合运用,导数求函数的最值,函数不等式恒成立问题以及参数分离法的灵活运用,属于较难题.22.已知点,,动点满足.记点的轨迹为曲线.()0,1A -()0,1B P PB AB PA BA=⋅ P C (1)求的方程;C (2)设为直线上的动点,过作的两条切线,切点分别是,.证明:直线过D =2y -D CEF EF 定点.【答案】(1);(2)证明见解析.24x y =【分析】(1)把已知条件用坐标表示,并化简即得的方程;C (2)设,,,利用导数得出切线的方程,由在切线上,从而(),2D t -()11,E x y ()22,F x y ,DE DF D 可得直线的方程,由直线方程可得定点坐标.EF 【详解】(1)设,则,,(),P x y (),1PA x y =---(),1PB x y =--,,()0,2AB =()0,2BA =-所以,,PB AB PA BA=⋅ 1y=+化简得.24x y =所以,的方程为.C 24x y =(2)由题设可设,,,(),2D t -()11,E x y ()22,F x y 由题意知切线,的斜率都存在,DE DF由,得,则,24x y =24x y =2xy '=所以,12DE x k =直线的方程为,即,①DE ()1112x y y x x -=-211122x x y y x -=-因为在上,所以,即,②()11,E x y 24x y =2114x y =21122x y =将②代入①得,11220x x y y --=所以直线的方程为DE 11220x x y y --=同理可得直线的方程为.DF 22220x x y y --=因为在直线上,所以,(),2D t -DE 11240tx y -+=又在直线上,所以,(),2D t -DF 22240tx y -+=所以直线的方程为,EF 240tx y -+=故直线过定点.EF ()0,2【点睛】关键点点睛:本题考查直接法求动点轨迹方程,考查抛物线中的直线过定点问题,解题方法是设出切线坐标,由导数的几何意义写出切线方程,再由在切线上,根据直线方程的意义得出D 直线方程,然后得定点坐标.EF。
二项式定理(1)
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
山西省临汾市2019-2020学年高二上学期数学期中考试试卷A卷
山西省临汾市 2019-2020 学年高二上学期数学期中考试试卷 A 卷姓名:________班级:________成绩:________一、 单选题 (共 8 题;共 16 分)1. (2 分) (2016 高二上·宣化期中) 要从已编号(1~60)的 60 枚最新研制的某型导弹中随机抽取 6 枚来 进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的 6 枚导弹的编号可能是( )A . 5、10、15、20、25、30B . 3、13、23、33、43、53C . 1、2、3、4、5、6D . 2、4、8、16、32、482. (2 分) (2018 高二下·长春期末) 有 件产品,其中 件是次品,从中任取 件,若 表示取得次品的件数,则()A. B. C.D.3. (2 分) (2019 高三上·汉中月考) 某人 5 次上班途中所花的时间(单位:分钟,均为正整数)分别为 x, y,10,11,9.已知这组数据的平均数为 10,则它的极差不可能为( )A.8B.4C.2D.1第 1 页 共 14 页4. (2 分) 已知直线交抛物线 于 、 两点,则()A . 为直角三角形B . 为锐角三角形C . 为钝角三角形D . 前三种形状都有可能5. (2 分) (2015 高二上·安阳期末) p:若 x2+y2≠0,则 x,y 不全为零,q:若 m>﹣2,则 x2+2x﹣m=0 有 实根,则( )A . “p∨q”为真B . “¬p”为真C . “p∧q”为真D . “¬q”为假6. (2 分) (2016 高二上·温州期末) 已知 F1、F2 分别是椭圆的左、右焦点,A 是椭圆上一动点,圆 C 与 F1A 的延长线、F1F2 的延长线以及线段 AF2 相切,若 M(t,0)为一个切点,则( )A . t=2B . t>2C . t<2D . t 与 2 的大小关系不确定7. (2 分) (2017 高二下·太和期中) 设 a、b∈(0,+∞),则“ab<ba”是“a>b>e”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件第 2 页 共 14 页D . 既不充分也不必要条件8. (2 分) 已知点是双曲线线的直线与圆交于点 P , 且点 P 在抛物线的左焦点,离心率为 e , 过 F 且平行于双曲线渐近 上,则 e2 =( )A. B.C.D.二、 多选题 (共 2 题;共 6 分)9. (3 分) (2019 高二上·思明期中) 下列说法中正确的是( ) A . 在频率分布直方图中,中位数左边和右边的直方图的面积相等. B . 若 A、B 为互斥事件,则 A 的对立事件与 B 的对立事件一定互斥. C . 某个班级内有 40 名学生,抽 10 名同学去参加某项活动,则每 4 人中必有 1 人抽中.D . 若回归直线的斜率,则变量 与 正相关.10. (3 分) (2019 高二上·思明期中) 有如下命题,其中真命题的标号为( )A.,B.,C.,D.,三、 填空题 (共 6 题;共 6 分)第 3 页 共 14 页11. (1 分) 现有甲型电脑 56 台,乙型电脑 42 台,从中用分层抽样的方法抽取一个容量为 14 的样本,则甲 型电脑应抽取________台.12. (1 分) 关于圆周率 π,数学展史上出现过许多有创意的求法,如著名的浦丰实验和查理斯实验,受其 启发,我们也可以通过设计下面的实验来估计 π 的值:先请 120 名同学,每人随机写下一个都小于 1 的正实数对 (x,y); 再统计两数能与 1 构成钝角三角形三边的数对(x,y) 的个数 m; 最后再根据统计数 m 来估计 π 的 值.假如统计结果是 m=94,那么可以估计 π≈________ (用分数表示)13. (1 分) (2017·苏州模拟) 口袋中有大小相同的 5 个小球,小球上分别标有数字 1,1,2,2,4,一次 从中取出两个小球,则取出的两个小球上所标数字之积为 4 的概率是________.14. (1 分) (2016 高三上·新津期中) 已知 f(x)是定义在[﹣2,2]上的奇函数,当 x∈(0,2]时,f(x) =2x﹣1,函数 g(x)=x2﹣2x+m.如果对于∀ x1∈[﹣2,2],∃ x2∈[﹣2,2],使得 g(x2)=f(x1),则实数 m 的 取值范围是________15. (1 分) 已知椭圆与 x 轴相切,左、右两个焦点分别为 F1(1,1),F2(5,2),则原点 O 到其左准线的 距离为________16. (1 分) (2017·山东) 在平面直角坐标系 xOy 中,双曲线=1(a>0,b>0)的右支与焦点为 F的抛物线 x2=2py(p>0)交于 A,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.四、 解答题 (共 6 题;共 60 分)17. (15 分) (2018 高一下·临沂期末) 某车间将 名技工平均分成甲、乙两组加工某种零件,在单位时 间内每个技工加工的合格零件数的茎叶图如图,已知两组技工在单位时间内加工的合格零件的平均数都为 .(1) 求 , 的值; (2) 求甲、乙两组技工在单位时间内加工的合格零件的方差 和 ,并由此分析两组技工的加工水平;第 4 页 共 14 页(3) 质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零 件个数之和大于 ,则称该车间“质量合格”,求该车间“质量合格”的概率.附:方差,其中 为数据的平均数18. (5 分) (2019 高二上·城关期中) 设满足。
山西省2018-2019学年第二学期七年级阶段二质量评估试题·数学(华师版)·试题+答案
七年级数学答案(华师版) 第 2 页 (共 4 页)
20. 解:(1)分类讨论 !!!!!!!!!!!!!!!!!!!!!!!!! 2 分
(2)①当 2x-1≥0 时,2x-1=5,!!!!!!!!!!!!!!!!!!!! 3 分
解得 x=3,!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 4 分
的解互为相反数,则 k 的值是 ________.
x+2y=-1
15. 对于 x,y 定义一种新运算“☆”,x☆y=ax+by,其中 a,b 是常数,等式右边是通常的加法
和乘法运算.已知 3☆5=15,4☆7=28,则 1☆1 的值为 ________.
七年级数学(华师版) 第 2 页 (共 4 页)
A. 0 个
B. 1 个
C. 2 个
D. 3 个
第Ⅱ卷 非选择题 (共 90 分)
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
11.“m 的 2 倍与 8 的和不大于 2 与 m 的和”用不等式表示为 ________.
12. 若 x+y=7,3x-5y=-3,则 3(x+y)-(3x-5y)的值是 ________.
项符合题目要求)
沿 1. 下列选项中,是一元一次方程的是
此 A. 3x+y=1
B. a2+2ab+b2
线
C. 3x-3=2(x-2)
D. 2x-3<0
折
2. 若 x>y,则下列式子中错误的是
叠 A. x-3>y-3
B.
x 3
>
y 3
C. x+3>y+3
D. -3x>-3y
3. 若 x=2 是ቤተ መጻሕፍቲ ባይዱ于 x 的方程 2x+3m-1=0 的解,则 m 的值为
山西省太原市志达中学校2018-2019学年八年级下学期期中考试数学试题(解析版)
y乙= (200 ×12 + 50x) × 85% ,
即= y乙
2040 + 85 x ; 2
当
y甲
<
y乙
时,1800
+
50x
<
2040
+
85 2
x
,
∴ x < 32 ,
又根据题意可得: x12 ,
∴12x < 32 ,
综上所述,当购买的餐椅大于等于 12 少于 32 把时,到甲商场购买更优惠.
【解析】证明 ∆BO′A ≅ ∆BOC ,又 ∠OBO=′ 60° ,所以 ∆BO′A 可以由 ∆BOC 绕点 B 逆时针旋
转 60° 得到,故结论①正确;
由 ∆OBO′ 是等边三角形,可知结论②正确;
在 ∆AOO′ 中,三边长为 3,4,5,这是一组勾股数,故 ∆AOO′ 是直角三角形;进而求得
∠AOB =150° ,故结论③正确;
【考点】图形的旋转 【答案】45° 【解析】略
【难度星级】★
13.如图,在 △ABC 中, AB = 4 , BC = 6 ,∠B = 60° ,将 ∆ABC 沿射线 BC 的方向平移 2 个单位后,得到 △A′B′C′ ,连接 A′C ,则△ A′B′C 的周长为___________.
7
【考点】平移的性质
2
2(2x −1) − 3(5x +1) ≥ 6
−11x ≥ 11 x ≤ −1
【难度星级】★★
17.(本题 5 分)先化简,再求值:
x − 3(x − 2) ≤ 4
解不等式组:1
− 2x 4
<
1
−
x
【考点】解不等式组 【答案】1 ≤星级】★★
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省太原市2018-2019学年高二上学期期中考试数学试卷★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(本大题共12小题,每小题3分,共36分。
)1.在空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.【答案】A【解析】【分析】根据关于yOz平面对称,x值变为相反数,其它不变这一结论直接写结论即可.【详解】在空间直角坐标系Oxyz中,点A(1,2,3)关于yOz平面对称的点的坐标为(﹣1,2,3).故选:A.【点睛】本题考查空间向量的坐标的概念,考查空间点的对称点的坐标的求法,属于基础题.2.由下列主体建筑物抽象得出的空间几何体中为旋转体的是()A. B.C. D.【答案】B【解析】【分析】利用旋转体的定义、性质直接求解.【详解】在A中,主体建筑物抽象得出的空间几何体不为旋转体,故A错误;在B中,主体建筑物抽象得出的空间几何体为旋转体,故B正确;在C中,主体建筑物抽象得出的空间几何体不为旋转体,故C错误;在D中,主体建筑物抽象得出的空间几何体不为旋转体,故D错误.故选:B.【点睛】本题考查旋转体的判断,考查旋转体的定义及性质等基础知识,考查运算求解能力,是基础题.3.已知,则直线AB的倾斜角为()A. 0°B. 90°C. 180°D. 不存在【答案】B【解析】【分析】由直线经过A(0,1),B(0,﹣1)两点,直线AB的斜率不存在,从而能求出直线AB的倾斜角.【详解】∵直线经过A(0,1),B(0,﹣1)两点,∴直线AB的斜率不存在,∴直线AB的倾斜角90°.故选:B.【点睛】本题考查直线的倾斜角的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.4.下列四面体中,直线EF与MN可能平行的是()A. B.C. D.【答案】C【解析】【分析】利用异面直线判定定理可确定A,B错误;利用线面平行的性质定理和过直线外一点有且仅有一条直线与已知直线平行,可判定D错误.【详解】根据过平面内一点和平面外一点的直线,与平面内不过该点的直线异面,可判定A,B中EF,MN异面;D中,若EF∥MN,则过EF的平面与底面相交,EF就跟交线平行,则过点N有两条直线与EF平行,不可能;故选:C.【点睛】此题考查了异面直线的判定方法,线面平行的性质等,难度不大.5.已知点在直线上,若,则直线的斜率为()A. 2B. ﹣2C.D.【答案】A【解析】【分析】由点A(2,3)在直线11:2x+ay﹣1=0上,求出直线l1:2x﹣y﹣1=0,再由l2∥l1,能示出直线l2的斜率.【详解】∵点A(2,3)在直线11:2x+ay﹣1=0上,∴2×2+3a﹣1=0,解得a=﹣1,∴直线l1:2x﹣y﹣1=0,∵l2∥l1,∴直线l2的斜率k=2.【点睛】本题考查直线的斜率的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.设为三条不同的直线,为三个不同的平面,则下列结论成立的是()A. 若且,则B. 若且,则C. 若且,则D. 若且,则【答案】C【解析】【分析】在A中,a与c相交、平行或异面;在B中,α与γ相交或平行;在C中,由线面垂直的判定定理得b⊥α;在D中,a与β相交、平行或a⊂β.【详解】由a,b,c为三条不同的直线,α,β,γ为三个不同的平面,知:在A中,若a⊥b且b⊥c,则a与c相交、平行或异面,故A错误;在B中,若α⊥β且β⊥γ,则α与γ相交或平行,故B错误;在C中,若a⊥α且a∥b,则由线面垂直的判定定理得b⊥α,故C正确;在D中,若α⊥β且a∥α,则a与β相交、平行或a⊂β,故D错误.故选:C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.已知圆C的一条直径的端点坐标分别是和,则圆C的方程是()A. B.C. D.【答案】C【解析】【分析】利用中点公式求得圆心坐标,再求出半径,可得圆C的方程.【详解】圆C的一条直径的端点坐标分别是(4,1)和(﹣2,3),故利用中点公式求得圆心为(1,2),半径为,故圆的方程为(x﹣1)2+(y﹣2)2=10,【点睛】本题主要考查求圆的方程的方法,关键是求出圆心和半径,属于基础题.8.一个长方体由同一顶点出发的三条棱的长度分别为2,2,3,则其外接球的表面积为()A. B. C. D.【答案】B【解析】【分析】利用长方体的外接圆直径为体对角线,容易得解.【详解】长方体的外接球直径即为长方体的体对角线,由题意,体对角线长为:,外接球的半径R=,=17π,故选:B.【点睛】此题考查了长方体的外接球面积,属容易题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.9.已知满足不等式组,则的最大值为()A. 12B. 16C. 18D. 20【答案】B【解析】【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出x,y满足不等式组对应的平面区域,由z=5x+2y,得y=x+z,平移直线y=x+z,由图象可知当直线y=x+z,经过点B时,直线y=x+z的截距最大,此时z最大.由,得A(2,3),此时z的最大值为z=5×2+2×3=16,故选:B.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
10.直线与直线在同一坐标系中的图象可能是()A. B.C. D.【答案】D【解析】【分析】根据a的符号,分类讨论,利用数形结合思想和排除法能求出结果.【详解】直线ax+y+a=0与直线x+ay+a=0不可能平行,故B错误;当a>0时,直线ax+y+a=0是减函数,直线x+ay+a=0是减函数,故A错误;当a<0时,直线ax+y+a=0是增函数,与y轴交于正半轴,直线x+ay+a=0是增函数,与y 轴交于负半轴,故C错误.综上,正确答案是a>0,直线ax+y+a=0与直线x+ay+a=0在同一坐标系中的图象可能是D.故选:D.【点睛】本题考查函数图象的判断,考查直线的图象与性质等基础知识,考查运算求解能力,是基础题.11.如图,在正方体中,平面,垂足为H,给出下面结论:①直线与该正方体各棱所成角相等;②直线与该正方体各面所成角相等;③过直线的平面截该正方体所得截面为平行四边形;④垂直于直线的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A. ①③B. ②④C. ①②④D. ①②③【答案】D【解析】【分析】由A1C⊥平面AB1D1,直线A1H与直线A1C重合,结合线线角和线面角的定义,可判断①②;由四边形A1ACC1为矩形,可判断③;由垂直于直线A1H的平面与平面AB1D1平行,可判断④.【详解】如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.12.一条光线从点射出,经直线反射后与圆相切,则反射光线所在直线的方程是()A. B.C. D.【答案】A【解析】【分析】根据光学性质,点P(﹣2,4)关于直线x﹣y+2=0对称的点在反射线所在直线上,设出所求直线方程,然后用点到直线的距离等于半径,求出斜率,舍去正值即可.【详解】点P(﹣2,4)关于直线x﹣y+2=0的对称点为Q(2,0),设反射光线所在直线方程为:y=k(x﹣2),即kx﹣y﹣2k=0,依题意得:,依题意舍去k=故反射线所在直线方程为:x+y﹣2=0,故选:A.【点睛】本题考查了直线与圆的位置关系.属中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理。
二、填空题(共4个小题,每题4分,共16分)13.已知点,则线段AB的中点坐标是_____.【答案】【解析】【分析】直接利用中点坐标公式求解.【详解】设A、B的中点为P(x0,y0),由A(3,﹣3)、B(0,2),再由中点坐标公式得:,.∴线段AB的中点坐标为.故答案为:.【点睛】本题考查了中点坐标公式,是基础题.14.已知直线.若,则实数m=_____.【答案】2【解析】【分析】利用直线与直线垂直的性质直接求解.【详解】∵直线l1:x﹣2y=1,l2:mx+(3﹣m)y+1.l1⊥l2,∴1×m+﹣2×(3﹣m)=0,解得m=2.故答案为:2.【点睛】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.15.某三棱锥的三视图如图所示,图中三个三角形均为直角三角形,则_____.【答案】34【解析】【分析】由三视图还原原几何体,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC是以∠ABC 为直角的直角三角形,然后利用勾股定理转化求解.【详解】由三视图还原原几何体如图,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC是以∠ABC为直角的直角三角形.则x2+y2=x2+PA2+AD2=(PA2+AB2)+AD2=52+32=34.故答案为:34.【点睛】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.16.中,,,,M为AB中点,将沿CM折叠,当平面平面AMC时,A,B两点之间的距离为_____.【答案】【解析】【分析】取MC中点O,连结AO,BO,推导出AC=BM=AM=CM=1,AO=,BO=,AO⊥MC,AO⊥平面BMC,AO⊥BO,由此能求出A,B两点之间的距离.【详解】取MC中点O,连结AO,BO,∵△ABC中,∠C=90°,∠A=60°,AB=2,M为AB中点,∴AC=BM=AM=CM=1,∴AO=,BO=AO⊥MC,将△BMC沿CM折叠,当平面BMC⊥平面AMC时,AO⊥平面BMC,∴AO⊥BO,∴A,B两点之间的距离|AB|=,故答案为:.【点睛】本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.三、解答题(本大题共3小题,共48分,解答应写出文字说明、证明过程或演算步骤)17.已知的三个顶点的坐标是.(1)求BC边所在直线的方程;(2)求的面积.【答案】(1);(2).【解析】【分析】(1)直接由两点式直线方程公式求解即可;(2)求出B到AC的距离为d,再求AC的距离,然后利用面积公式求解即可.【详解】(1)由题可知,直线BC过,方程为,化简得,直线BC方程为.(2)由题可知,到直线BC的距离,,的面积为.【点睛】本题考查两点式直线方程公式,考查点到直线的距离公式的应用,考查计算能力,是中档题.18.已知正方体.(1)求证:平面;(2)求证:平面.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)推导出四边形C1D1AB是平行四边形,从而AD1∥C1B,由此能证明AD1∥平面C1BD;(2)推导出A1D⊥AD1,CD⊥平面A1ADD1,CD⊥AD1,由此能证明AD1⊥平面A1DC.【详解】(1)在正方体中,又,面(2)在正方体中,又,,,.【点睛】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.已知圆C的方程为.(1)设O为坐标原点求直线OC的方程;(2)设直线与圆C交于A,B两点,若,求实数t的值.【答案】(1);(2).【解析】【分析】(1)把圆C的方程化为标准形式,可得C的坐标,从而求得直线OC的方程;(2)求出弦心距,再根据弦心距、弦长、半径之间的关系,求得t的值.【详解】(1)圆C方程可化为,圆心为,半径,直线OC过及两点,且,,直线OC的方程为.(2)由题可知直线为,半径为,半弦长,圆心到直线的距离,.解得或(舍),所以.【点睛】本题主要考查圆的一般方程和标准方程,点到直线的距离公式,弦长公式的应用,属于中档题.说明:请考生在A、B两个小题中任选一题作答.20.如图,在四棱锥中,平面ABCD,底面ABCD为矩形,且,垂足为E.(1)求PD与平面ABCD所成角的大小;(2)求三棱锥的休积.【答案】(1);(2).【解析】【分析】(1)由PA⊥平面ABCD,得∠PDA为PD与平面ABCD所成角,由此能求出PD与平面ABCD所成角的大小;(2)推导出PA⊥AB,AD⊥AB,从而AB⊥平面PAD,由此能求出三棱锥P﹣ABE的体积.【详解】(1),即为所求,,.(2)过E做垂足为F,EF为面PAB上的高,,,.,,【点睛】本题考查线面角的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.如图,在四棱锥中,平面ABCD,,E为棱PC上不与点C重合的点.(1)求证:平面平而PAC;(2)若,且二面角的平面角为45°,求三棱锥的体积.【答案】(1)见解析;(2).【解析】【分析】(1)推导出AC⊥BD,PA⊥BD,从而BD⊥平面PAC,由此能证明平面BED⊥平面PAC;(2)设AC与BD交于点F,连结EF,三棱锥P﹣BED的体积V P﹣BDE=由此能求出结果.【详解】(1)又,,,.(2)AC与BD交于点O,连接EO,过E作垂足为F,则即为的平面角,【点睛】本题考查面面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.说明:请考生在A、B两个小题中任选一题作答。