全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题

合集下载

2008年10月--2011年10月全国自考《概率论与数理统计》(经管类)真题及答案

2008年10月--2011年10月全国自考《概率论与数理统计》(经管类)真题及答案

全国2008年10月高等教育自学考试 概率论与数理统计(经管类)试题及答案课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6D .0.83.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3eC .11--eD .1311--e 4.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31C .3D .45.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( ) A .161B .163 C .41 D .836.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(NB .)27,7(NC .)45,7(ND .)45,11(N8.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( ) A .np p )1(- B .np p )1(- C .)1(p np - D .)1(p np -9.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(tD .)1,1(F10.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

财政与金融自考历年试题

财政与金融自考历年试题
17.以下属于国际收支平稳表中资本项目的是( )A.外汇储蓄B.证券投资C.贸易收支D.职工报酬
18.当需要增加货币供给量时,中央银行能够采取的方法是( )A.出售债券B.提高法定存款预备金率C.降低贴现率D.减少基础货币
19.反映商业部门或批发商从生产厂家购买商品劳务所支付的价钱变更程度的指数是( )A.消费物价数B.国民生产总值平减指数C.批发物价指数D.生产物价指数
36.某人借款100000元,年利率为5%,借款期限为3年,请别离按单利和复利方式计算到期本利和及应付利息。
五、简答题(本大题共4小题,每题5分,共20分)37.简述财政对农业投资的特点。
38.简述商品课税的特点。
39.简述金币本位制的特点。
40.简述直接融资的优势。
六、论述题(本大题共2小题,每题10分,共20分)41.什么是市场失灵?试述市场失灵的各类表现。
25.阻碍利率水平的因素有( )A.资金供求B.宏观经济状况C.企业经受能力D.银行经营本钱E.历史利率26.以下属于金融衍生品工具的有( )A.股票B.债券C.期货合约D.期权合约E.掉期合约27.以下属于国际收支常常项目的是( )A.贸易收支B.劳务收支C.职工报酬D.直接投资E.证券投资28.形成我国通货膨胀的缘故有( )A.投资膨胀B.消费膨胀C.本钱推动D.结构失调E.存款预备金率提高29.西方国家货币政策目标包括( )A.充分就业B.稳固物价C.稳固利率D.经济增加E.国际收支平稳30.货币政策的工具通常有( )A.公布市场业务B.改变法定存款预备金率C.调整再贴现率D.调整政府支出E.调整税收政策三、名词说明题(本大题共4小题,每题3分,共12分)31.财政的职能32.复式预算33.金融期货合约34.公布市场业务四、计算题(本大题共2小题,每题4分,共8分)35.某增值税一样纳税人2020年8月份发生如下经济业务:当月销售电脑和电脑配件,取得不含税销售收入500 000元人民币。外购电脑及配件一批,取得增值税专用发票并通过认证,支付的不含税价款为400 000元人民币。再无其它业务发生。试计算其当月应纳增值税额。(计算结果保留小数点后两位)36.甲某在银行办理了3 000元人民币的一年期按期储蓄存款,那时一年期储蓄存款利率为4%,但甲在存款120天后要求提早支取,按规定提早支取只能按活期利率付息,那时的活期利率为1.0%。计算甲在提取存款时取得的利息。(计算结果保留小数点后两位)五、简答题(本大题共4小题,每题5分,共20分)37.简述财政资源配置职能的要紧内容。38.简述公债的功能。39.简述税收原那么。40.简述优先股筹资的优势。六、论述题(本大题共2小题,每题10分,共20分)41.试论市场经济条件下我国成立公共财政的必要性。42.试述国际收支失衡的缘故

全国2010年1月自考概率论与数理统计(经管类)试题

全国2010年1月自考概率论与数理统计(经管类)试题

第 1 页全国2010年1月自考概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ⋃B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B )D.P (AB )=φ2.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.81 B.41 C.83D.213.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( )A. 51B. 52C.53D.544.设随机变量X则k= A.0.1 B.0.2 C.0.3D.0.45.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( )A.F(-a)=1-⎰adx )x (fB.F(-a)=⎰-adx )x (f 21C.F(-a)=F(a)D.F(-a)=2F(a)-16.设二维随机变量(X ,Y )的分布律为第 2 页则P{XY=0}=( ) A. 121 B. 61 C.31D.327.设随机变量X ,Y 相互独立,且X~N (2,1),Y~N (1,1),则( ) A.P{X-Y ≤1}=21 B. P{X-Y ≤0}=21 C. P{X+Y ≤1}=21D. P{X+Y ≤0}=218.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )=( )A.2B.3C.4D.59.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑==51i ix51x 和251i i2)x x (41s ∑=-=,则s)x (5μ-服从( )A.t(4)B.t(5)C.)4(2χD. )5(2χ10.设总体X~N (2,σμ),2σ未知,x 1,x 2,…,x n 为样本,∑=--=n1i 2i2)x x(1n 1s ,检验假设H 0∶2σ=20σ时采用的统计量是( ) A.)1n (t ~n/s x t -μ-=B. )n (t ~n/s x t μ-=C. )1n (~s )1n (2222-χσ-=χD. )n (~s )1n (2222χσ-=χ二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

(完整版)自考本概率论与数理统计真题10套

(完整版)自考本概率论与数理统计真题10套
A.0.1B.0.2C.0.3D.0.5
2.设F(x)为随机变量X的分布函数,则有
A.F(-∞)=0,F(+∞)=0B.F(-∞)=1,F(+∞)=0
C.F(-∞)=0,F(+∞)=1D.F(-∞)=1,F(+∞)=1
3.设二维随机变量(X,Y)服从区域D:x2+y2≤1上的均匀分布,则(X,Y)的概率密度为
19. 设随机变量X与Y相互独立,且X~N(0,5),Y~X2(5),则随机变量 服从
自由度为5的_______________分布。
20. 设随机变量X与Y相互独立,且D(X)=2,D(Y)=1,则D(X-2Y+3)=___________.
21. 已知二维随机向量(X,Y)服从区域G:0≤x≤1, 0≤y≤2上的均匀分布,则 _______________.
Y
X
-1
0
1
0
0.3
0.2
0.1
1
0.1
0.3
0
求:(1)X和Y的分布律;(2)Cov(X,Y).
四、综合题(本大题共2小题,每小题12分,共24分)
28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布N(75,σ2),已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率.
22. 设总体X~N( …,Xn为来自总体X的样本, 为样本均值,则D( )=.
23. 设二维随机向量(X,Y)的概率密度为f(x,y)= 则当
0≤y≤1时,(X,Y)关于Y的边缘概率密度fY(y)=.
24. 设总体X的分布列为
X
0
1
P
1-p
P
其中p为未知参数,且X1,X2,…,Xn为其样本,则p的矩估计 =___________.

2009年4月全国自考概率论与数理统计(二)真题参考答案

2009年4月全国自考概率论与数理统计(二)真题参考答案

2009年4月全国自考概率论与数理统计(二)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A,B为两个互不相容事件,则下列各式中错误的是()A.P(AB)=0B.P(A∪B)=P(A)+P(B)C.P(AB)=P(A)P(B)D.P(B-A)=P(B)答案:C2.A. AB. BC. CD. D答案:D3.A. AB. BC. CD. D答案:A4.A. AB. BC. CD. D 答案:C5.A. AB. BC. CD. D 答案:C6.A. AB. BC. CD. D 答案:B7.A. AB. BC. CD. D 答案:A8.A. AB. BC. CD. D 答案:D9.A. AB. BC. CD. D 答案:B10.A. AB. BC. CD. D二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。

错填、不填均无分。

1.___答案:0.32.盒中有4个棋子,其中白子2个,黑子2个,今有1人随机地从盒中取出2子,则这2个子颜色相同的概率为___.答案:3.若随机变量X在区间[-1,+∞)内取值的概率等于随机变量Y=X-3在区间[a,+∞)内取值的概率,则a=___.答案:-44.___答案:0.25.___6.___答案:0.5 7.___答案:1 8.___答案:答案:710.___答案:11.___答案:012.一个系统由100个互相独立起作用的部件组成,各个部件损坏的概率均为0.2,已知必须有80个以上的部件正常工作才能使整个系统工作,则由中心极限定理可得,整个系统正常工作的概率为___.答案:0.513.___答案:014.___15.___答案:2三、计算题(本大题共2小题,每小题8分,共16分)1.答案:2.一批产品共10件,其中8件正品,2件次品,每次从这批产品中任取1件,设X为直至取得正品为止所需抽取次数.(1)若每次取出的产品仍放回去,求X的分布律;(2)若每次取出的产品不放回去,求P{X=3}.答案:四、综合题(本大题共2小题,每小题12分,共24分)1.答案:2.答案:五、应用题(10分)第 11 页。

概率论与数理统计(经管类)第二章课后习题答案

概率论与数理统计(经管类)第二章课后习题答案

习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p kP(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解:12c +34c +58c +716c =1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求23X 的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k 6.设离散型随机变量X 的分布律为X -123P141214解:求P {X ≤12}, P {23<X ≤52}, P {2≤X ≤3}, P {2≤X <3}P {X ≤12}=14P {23<X ≤52}=12P {2≤X ≤3}=12+14=34P {2≤X <3}=127.设事件A 在每一次试验中发生的概率分别为0.3.当A 发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X 为事件A 发生的次数,(1)P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=C 35(0.3)3(0.7)2+C 45(0.3)4(0.7)1+C 55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λP{X≥2}=1‒P{X=0}‒P{X=1}=1‒C01000(0.0001)0(0.9999)1000‒C11000(0.0001)1(0.9999)999=1‒e‒0.1‒0.1e‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X=8}=P{X≥8}‒P{X≥9}=0.051134‒0.021363=0.029771(2) P{X>10}=P{X≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x<0q, 0≤x<11,x≥12.设离散型随机变量X的分布律为:3 OF 18X -123P0.250.50.25求X 的分布函数,以及概率,.P {1.5<X ≤2.5} P {X ≥0.5}解:當x <‒1時,F (x )=P {X ≤x }=0;當‒1≤x <2時,F (x )=P {X ≤x }=P {X =‒1}=0.25;當2≤x <3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}=0.25+0.5=0.75;當x ≥3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}+P {X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F (x )={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P {1.5<X ≤2.5}=F (2.5)‒F (1.5)=0.75‒0.25=0.5 P {X ≥0.5}=1‒F (0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F (+∞)=aF (+∞)‒bF (+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x )={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x )={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x )={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x )={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P {‒1<X ≤1}解: (1)由分布函数的基本性质 得:F (‒∞)=0,F (+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy5 OF 18解之a=, b=121π(2)P {‒1<X ≤1}=F (1)‒F (‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F (x )={0, x <1lnx, 1≤x <e1, x ≥e求P {X ≤2},P {0<X ≤3},P {2<X ≤2.5}解: 注: P {X ≤2}=F(2)=ln2 F(x)=P {X ≤x }P {0<X ≤3}=F (3)‒F (0)=1‒0=1;P {2<X ≤2.5}=F (2.5)‒F (2)=ln2.5‒ln2=ln2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f (x )={acosx, |x |≤π20, 其他.求: (1)常数a; (2);(3)X 的分布函数F(x).P {0<X <π4}解:(1)由概率密度的性质∫+∞‒∞f (x )dx =1,∫π2‒π2acosxdx =a sinx |π2‒π2=asin π2‒asin (‒π2)=asin π2+asin π2=a +a =1A =12(2)P {0<X <π4}=(12)sin(π4)‒(12)sin (0)=12∗22+12∗0=24一些常用特殊角的三角函数值正弦余弦正切余切0010不存在π/61/2√3/2√3/3√3π/4√2/2√2/211of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy(3)X 的概率分布为:F (x )={0, x <‒π212(1+sinx ), ‒π2≤x <π21, x ≥π2 2.设随机变量X 的概率密度为f (x )=ae ‒|x |, ‒∞<x <+∞,求: (1)常数a; (2); (3)X 的分布函数. P {0≤X ≤1}解:(1),即a=∫+∞‒∞f(x)dx =∫0‒∞ae x dx +∫+∞ae ‒x dx =a +a =112(2)P {0≤X ≤1}=F (1)‒F (0)=12(1‒e ‒1)(3)X 的分布函数F (x )={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x )=12+1πarctanx , ‒∞<x <+∞;解:(柯西分布)f 1(x )=1π(1+x 2)(2)F 2(x )={1‒e ‒x 22, x >00, x ≤0π/3√3/21/2√3√3/3π/210不存在0π-1不存在7 OF 18解:(指数分布) f 2(x )={x e ‒x 22, x >00, x ≤0(3)F 3(x )={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x )={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f (x )={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2)P {12<X <32}=F(32)‒F(12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f (K )={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P {K ≤‒1}+P {K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解:P {K >3}=1‒F (3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P {X ≤1}=F (1)=1‒e‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待159 OF 18服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥1}.解:“未等到服务而离开的概率”为P {X ≥10}=1‒F (10)=1‒(1‒e‒15∗10)=e ‒2P {Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k , (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P {Y ≥1}=1‒P {Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P {2<X ≤5}, P {‒4<X ≤10}, P {|X |>2}, P {X >3}(2).常数c,使P {X >c }=P {X ≤c }解: (1)P {2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P {‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P {|X |>2}= 1‒P {‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P {X >3}= P {X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P {X >c }=P {X ≤c }P {X >c }=1‒P {X ≥c }P {X >c }+P {X ≥c }=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P {|X |>x }<0.1.求x 的取值范围.解:P {|X |>x }<0.12[1‒Φ(x )]<0.1‒Φ(x )<‒1920Φ(x )≥1920Φ(x )≥0.95经查表当 1.65时x ≥Φ(x )≥0.95即 1.65时x ≥P {|X |>x }<0.111.X ~ N(10,),求:22(1)P {7<X ≤15};(2)常数d,使P {|X ‒10|<d }<0.9.解: (1)P {7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P {|X ‒10|<d }=P {10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内 0.062±为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P {10.05‒0.12<X <10.05+0.12}=P {9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:P{‒30<X<30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m的概率为:C13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X的分布律为X-2023P0.20.20.30.3求(1)的分布律.Y1=‒2X+1的分布律; (2)Y2=|X|解: (1)的可能取值为5,1,-3,-5.Y1由于P{Y1=5}=P{‒2X+1=5}=P{X=‒2}=0.2P{Y1=1}=P{‒2X+1=1}=P{X=‒2}=0.2P{Y1=‒3}=P{‒2X+1=‒3}=P{X=2}=0.3P{Y1=‒5}=P{‒2X+1=‒5}=P{X=3}=0.3从而的分布律为:Y1X-5-315Y10.30.30.20.2(2)的可能取值为0,2,3.Y2由于P{Y2=0}=P{|X|=0}=P{X=0}=0.2P{Y2=2}=P{|X|=0}=P{X=‒2}+P{X=2}=0.2+0.3=0.5P{Y2=3}=P{|X|=3}=P{X=3}=0.3从而的分布律为:Y2X023Y20.20.50.32.设X的分布律为X-1012P0.20.30.10.411 OF 18求Y=(X‒1)2的分布律.解:Y的可能取值为0,1,4.由于P{Y=0}=P{(X‒1)2=0}=P{X=1}=0.1P{Y=1}=P{(X‒1)2=1}=P{X=0}+P{X=2}=0.7P{Y=4}=P{(X‒1)2=4}=P{X=‒1}=0.2从而的分布律为:YX014Y0.10.70.23.X~U(0,1),求以下Y的概率密度:(1)Y=‒2lnX; (2)Y=3X+1; (3)Y=e x.解: (1) Y=g(x)=‒2lnX, 值域為(0,+∞),X=ℎ(y)=e‒Y2, ℎ'(y)=12e‒Y2 f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗12e‒Y2=12e‒Y2.即f Y(y)={12e‒Y2, y>0,0, y≤0(2) Y=g(x)=3X+1,值域為(‒∞,+∞), X=ℎ(y)=Y‒13, ℎ'(y)=13f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗13=13即f Y(y)={13, 1< y<4,0, 其他注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4 Y=3X+1(3) Y=g(x)=e x, X=ℎ(y)=lny, ℎ'(y)=1yf Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗1y=1y即f Y(y)={1y, 0< y<e,0, 其他注: ,当X=0时,; ,当X=1时,Y=e0=0 Y=e1=e4.设随机变量X的概率密度为f X(x)={32x2, ‒1<x<00, 其他.of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy13 OF 18求以下Y 的概率密度:(1)Y=3X; (2) Y=3-X; (3)Y =X 2.解: (1) Y=g(x)=3X,X =ℎ(y )=Y 3, ℎ'(y)=13f Y (y )=f x (ℎ(y ))| ℎ'(y)|=Y 26∗13=Y218即f Y (y )={Y 218, ‒3< y <0,0, 其他(2)Y=g(x) =3-X, X=h(y) =3-Y,-1ℎ'(y)=f Y (y )=f x (ℎ(y ))| ℎ'(y)|=32∗(3‒Y)2+1=3(3‒Y)22即f Y (y )={3(3‒Y)22, 3< y <4,0, 其他(3), X=h(y)=,Y =g(x)=X 2Y ℎ'(y)=12Y,即f Y (y )=f x (ℎ(y ))| ℎ'(y)|=3Y 22∗1 2Y=3Y4f Y (y )={3Y4, 0< y <1,0, 其他5.设X 服从参数为λ=1的指数分布,求以下Y 的概率密度:(1)Y=2X+1; (2)(3) Y =e x; Y =X 2.解: (1) Y=g(x)=2X+1,X =ℎ(y )=Y ‒12, ℎ'(y )=12X 的概率密度为:f X (x )={λe ‒λx, x >0,0, x ≤0f Y (y )=f x (ℎ(y ))| ℎ'(y)|=λe ‒λ∗Y ‒12∗12=12e ‒Y ‒12即f Y (y )={12e ‒Y ‒12, y >00, 其他(2)Y =g (x )=e x , X =ℎ(y )=lnY,ℎ'(y )= 1Y注意是绝对值 ℎ'(y)of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happyf Y (y )=f x (ℎ(y ))| ℎ'(y)|=e‒lnY∗1Y =1e lnY ∗1Y =1Y ∗1Y =1Y 2即f Y (y )={1Y2, y >10, 其他(3)Y =g (x )=X 2,X =ℎ(y )=Y , ℎ'(y )=12Y,,f Y (y )=f x (ℎ(y ))| ℎ'(y)|=e ‒Y∗12Y=12Ye ‒Y即f Y (y )={12Ye ‒Y, y >00, 其他6.X~N(0,1),求以下Y 的概率密度:(1) Y =|X |; (2)Y =2X 2+1解: (1) Y =g (x )=|X |, X =ℎ(y )=±Y, ℎ'(y )=1f X (x )=12πσe‒(x ‒μ)22σ2‒∞<x <+∞当X=+Y 时:f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒y 22当X=-Y 时: f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe ‒y 22故f Y (y )=12πe ‒y 22+12πe‒y 22=22πe ‒y 22=42πe‒y 22=2πe ‒y 22f Y (y )={2πe ‒y 22, y >00, y ≤0(2)Y =g (x )=2X 2+1, X =ℎ(y )=Y ‒12,ℎ'(y )=12Y ‒12永远大于0.e x 当x>0是,>1e xof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy15 OF 18f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y )={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A. B.C. D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F (+∞)=1 F (‒∞)=00≤F (x )≤14.下列各函数中是随机变量分布函数的为 B .A. B.F 1(x )=11+x 2, ‒∞<x <+∞F 2(x )={0, x ≤0x 1+x , x >0C.D.F 3(x )=e ‒x, ‒∞<x <+∞F 4(x )=34+12πarctanx, ‒∞<x <+∞5.设随机变量X 的概率密度为 则常数a= A .f (x )={a x 2, x >100, x ≤10A. -10B.C.D. 10解: F(x) =‒15001500∫+∞‒∞a x2dx =‒ax =16.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C f (x )={x, a<x <b0, 其他A. [0, 1]B. [0, 2]C. D. [1, 2][0,2]不晓得为何课后答案为Dof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A. B. {12, ‒1< x <10, 其他{2, ‒1< x <10, 其他C.D. {x, ‒1< x <10, 其他{x 2, ‒1< x <10, 其他8.设连续型随机变量X 的概率密度为 则= B .f (x )={x2, 0< x <20, 其他P{‒1≤ X ≤1}A. 0 B. 0.25 C. 0.5 D. 1解:P {‒1≤ X ≤1}=∫1‒1x2dx =x 24|1‒1=149.设随机变量X~U(2,4),则= A . (需在区间2,4内)P{3< x <4}A. B. P{2.25< x <3.25}P{1.5< x <2.5}C. D. P{3.5< x <4.5}P{4.5< x <5.5}10. 设随机变量X 的概率密度为 则X~ A .f (x )=122πe ‒(x ‒1)28A. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X 的概率密度为fx(x),令Y=-2X,则Y 的概率密度fy(y)为 D .A.B.C.D. 2f X (‒2y)f X (‒y2)12f X(‒y2)12f X (y 2)二,填空题1.已知随机变量X 的分布律为X 12345P2a0.10.3a0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=.解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则=.P{ X ≤4}3132解:P { X ≤4}=1‒P { X =5}=1‒C 55(12)5(12)自己算的结果是12f X(‒y2)17 OF 184.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P { X =0}=12P { X =2}解:分别将.P { X =0},P { X =2}帶入P k =P { X =k }=λk k!e ‒λ5.设随机变量X 的分布函数为F (x )={0, x <a0.4, a ≤x <b1, x ≥b其中0<a<b,则= 0.4.P {a2<X <a +b 2}解:P { a 2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P { X =c }7. 设连续型随机变量X 的分布函数为F (x )={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13e x 8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F (x )={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f (x )={12a, ‒a < x <a 0, 其他P { X >1}=13 3 .解:P { X >1}=1‒P { X ≤1}=13,P { X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x )+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F (x ),Φ(x)Φ(x)=.F (x )Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P { X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P { X <a }<0.6915常数a< 6.5. 解:, F (a )=Φ(a ‒μσ)=a ‒53a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y )122πe‒(Y ‒1)28解:Y =g (x )=2X +1, X =ℎ(y )=Y ‒12,ℎ'(y )=12f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12=122πe‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时,P { X =0}=C 03∗C 22C 25=110当X=1时,P { X =1}=C 13∗C 12C 25=610当X=2时,P { X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f (x )={|x|, ‒1≤ x ≤10, 其他 P { X <0.5},P { X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)=∫x‒1‒x dx =‒x 22|x ‒1=12‒x 22当0≤x <1时,F (x )=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1F (X )={0, X <‒112‒x22, ‒1≤X <012+x22, 0≤X <11, X ≥1(2)P { X <0.5}=F (0.5)=12+0.522=58;P { X >‒0.5}=1‒F (‒0.5)=1‒(12‒0.522)=58五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为f (x )={12000e ‒x 2000, x >00, x ≤0We will continue to improve the company's internal control system, and steady improvement in ability to manage and control, optimize business processes, to ensure smooth processes, responsibilities in place; to further strengthen internal controls, play a control post independent oversight role of evaluation complying with third-party responsibility; to actively make use of internal audit tools detect potential management, streamline, standardize related transactions, strengthening operations in accordance with law. Deepening the information management to ensure full communication "zero resistance". To constantly perfect ERP, and BFS++, and PI, and MIS, and SCM, information system based construction, full integration information system, achieved information resources shared; to expand Portal system application of breadth and depth, play information system on enterprise of Assistant role; to perfect daily run maintenance operation of records, promote problem reasons analysis and system handover; to strengthening BFS++, and ERP, and SCM, technology application of training, improve employees application information system of capacity and level. Humanistic care to ensure "zero." To strengthening Humanities care,continues to foster company wind clear, and gas are, and heart Shun of culture atmosphere; strengthening love helped trapped, care difficult employees; carried out style activities, rich employees life; strengthening health and labour protection, organization career health medical, control career against; continues to implementation psychological warning prevention system, training employees health of character, and stable of mood and enterprising of attitude, created friendly fraternity of Humanities environment. To strengthen risk management, ensure that the business of "zero risk". To strengthened business plans management, will business business plans cover to all level, ensure the business can control in control; to close concern financial, and coal electric linkage, and energy-saving scheduling, national policy trends, strengthening track, active should; to implementation State-owned assets method, further specification business financial management; to perfect risk tube control system, achieved risk recognition, and measure, and assessment, and report, and control feedback of closed ring management, improve risk prevention capacity. To further standardize trading, and strive to achieve "according to law, standardize and fair." Innovation of performance management, to ensure that potential employees "zero fly". To strengthen performance management, process control, enhance employee evaluation and levels of effective communication to improve performance management. To further quantify and refine employee standards ... Work, full play party, and branch, and members in "five type Enterprise" construction in the of core role, and fighting fortress role and pioneer model role; to continues to strengthening "four good" leadership construction, full play levels cadres in enterprise development in theof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy19 OF 18一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正p 1常工作2000小时以上的概率.p 2解: (1)P 1=P {X ≥2000}=∫+∞200012000e‒x 2000dx=12000∗‒2000∗e‒x2000|+∞2000=‒e‒x 2000|+∞2000=0‒(‒e ‒1)=e ‒1(2)因4个电子组件损坏与否相互独立,故:P 2=P 14=(e ‒1)4=e ‒4当+∞带入‒x2000时变成负无穷大,e ‒∞=0。

2009年1月自考线性代数(经管类)试题与答案

全国2009年1月自考线性代数(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.线性方程组⎪⎩⎪⎨⎧=++=--=++428410352zyxzyxzyx的解为()A.x=2,y=0,z=-2 B.x=-2,y=2,z=0 C.x=0,y=2,z=-2D.x=1,y=0,z=-12.设矩阵A=⎪⎭⎫⎝⎛3421,则矩阵A的伴随矩阵A*=()A.⎪⎭⎫⎝⎛1423B.⎪⎭⎫⎝⎛--1423C.⎪⎭⎫⎝⎛1243D.⎪⎭⎫⎝⎛--12433.设A为5×4矩阵,若秩(A)=4,则秩(5A T)为()A.2 B.3 C.4 D.54.设A,B分别为m×n和m×k矩阵,向量组(I)是由A的列向量构成的向量组,向量组(Ⅱ)是由(A,B)的列向量构成的向量组,则必有()A.若(I)线性无关,则(Ⅱ)线性无关B.若(I)线性无关,则(Ⅱ)线性相关C.若(Ⅱ)线性无关,则(I)线性无关D.若(Ⅱ)线性无关,则(I)线性相关5.设A为5阶方阵,若秩(A)=3,则齐次线性方程组Ax=0的基础解系中包含的解向量的个数是()A.2 B.3 C.4 D.56.设m×n矩阵A的秩为n-1,且ξ1,ξ2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解为()A.kξ1,k∈R B.kξ2,k∈R C.kξ1+ξ2,k∈R D.k(ξ1-ξ2),k∈R7.对非齐次线性方程组Am×nx=b,设秩(A)=r,则()A.r=m时,方程组Ax=b有解B.r=n时,方程组Ax=b有唯一解C.m=n时,方程组Ax=b有唯一解D.r<n时,方程组Ax=b有无穷多解8.设矩阵A=⎪⎪⎪⎭⎫⎝⎛3131121111,则A的线性无关的特征向量的个数是()A.1 B.2 C.3 D.49.设向量α=(4,-1,2,-2),则下列向量是单位向量的是()本套试题共分7页,当前页是第1页-本套试题共分7页,当前页是第2页-A .31αB .51αC .91α D .251α10.二次型f (x1,x2)=222135x x +的规范形是( )A .2221y y -B .2221y y --C .2221y y +-D .2221y y +二、填空题(本大题共10小题,每小题2分,共20分)11.3阶行列式313522001=____ ____.12.设A=(3,1,0),B=⎪⎪⎭⎫ ⎝⎛--530412,则AB=__ ______. 13.设A 为3阶方阵,若|A T |=2,则|-3A|=__ ____.14.已知向量α=(3,5,7,9),β=(-1,5,2,0),如果α+ξ=β,则ξ=_ ___.15.设A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a 为3阶非奇异矩阵,则齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 的解为__ __.16.设非齐次线性方程组Ax=b 的增广矩阵为⎪⎪⎭⎫ ⎝⎛-642002********* ,则该方程组的通解为 . 17.已知3阶方阵A 的特征值为1,-3,9,则=A 31__ _____.18.已知向量α=(1,2,-1)与向量β=(0,1,y )正交,则y=__ ___.19.二次型f (x1,x2,x3,x4)=2423222123x x x x -++的正惯性指数为___ _____.20.若f (x1,x2,x3)=32312123222142244x x x x x x x x x +-+++λ为正定二次型,则λ的取值应满足___ ____. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=.533335333353333522.设A=⎪⎪⎪⎪⎭⎫⎝⎛-211111,B=⎪⎪⎭⎫⎝⎛1121,又AX=B,求矩阵X.23.设矩阵A=⎪⎪⎭⎫⎝⎛142853,B=⎪⎪⎭⎫⎝⎛3952121,求矩阵AB的秩.24.求向量组α1=(1,4,3,-2),α2=(2,5,4,-1),α3=(3,9,7,-3)的秩.本套试题共分7页,当前页是第3页-25.求齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++5532442432143214321xxxxxxxxxxxx的一个基础解系.26.设矩阵A=⎪⎪⎭⎫⎝⎛21121,求可逆矩阵P,使P-1AP为对角矩阵.四、证明题(本大题共1小题,6分)27.设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1,证明:向量组β1,β2,β3线性无关.本套试题共分7页,当前页是第4页-全国2009年1月自考线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.线性方程组⎪⎩⎪⎨⎧=++=--=++428410352zyxzyxzyx的解为(A)A.x=2,y=0,z=-2 B.x=-2,y=2,z=0 C.x=0,y=2,z=-2 D.x=1,y=0,z=-12.设矩阵A=⎪⎭⎫⎝⎛3421,则矩阵A的伴随矩阵A*=(B)A.⎪⎭⎫⎝⎛1423B.⎪⎭⎫⎝⎛--1423C.⎪⎭⎫⎝⎛1243D.⎪⎭⎫⎝⎛--12433.设A为5×4矩阵,若秩(A)=4,则秩(5A T)为(C)A.2 B.3C.4 D.54.设A,B分别为m×n和m×k矩阵,向量组(I)是由A的列向量构成的向量组,向量组(Ⅱ)是由(A,B)的列向量构成的向量组,则必有(C)A.若(I)线性无关,则(Ⅱ)线性无关B.若(I)线性无关,则(Ⅱ)线性相关C.若(Ⅱ)线性无关,则(I)线性无关D.若(Ⅱ)线性无关,则(I)线性相关5.设A为5阶方阵,若秩(A)=3,则齐次线性方程组Ax=0的基础解系中包含的解向量的个数是(A)A.2 B.3C.4 D.56.设m×n矩阵A的秩为n-1,且ξ1,ξ2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解为(D)A.kξ1,k∈R B.kξ2,k∈RC.kξ1+ξ2,k∈R D.k(ξ1-ξ2),k∈R7.对非齐次线性方程组Am×nx=b,设秩(A)=r,则(A)A.r=m时,方程组Ax=b有解B.r=n时,方程组Ax=b有唯一解C.m=n时,方程组Ax=b有唯一解D.r<n时,方程组Ax=b有无穷多解本套试题共分7页,当前页是第5页-本套试题共分7页,当前页是第6页-A .1B .2C .3D .49.设向量α=(4,-1,2,-2),则下列向量是单位向量的是( B )A .31αB .51αC .91αD .251α10.二次型f (x1,x2)=222135x x +的规范形是( D )A .2221y y -B .2221y y --C .2221y y +-D .2221y y +二、填空题(本大题共10小题,每小题2分,共20分)11.3阶行列式313522001=_____1____.12.设A=(3,1,0),B=⎪⎪⎭⎫ ⎝⎛--530412,则AB=__(2,3)_______. 13.设A 为3阶方阵,若|A T |=2,则|-3A|=___-54______.14.已知向量α=(3,5,7,9),β=(-1,5,2,0),如果α+ξ=β,则ξ=_(-4,0,-5,-9)____.15.设A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a 为3阶非奇异矩阵,则齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 的解为___零解___.16.设非齐次线性方程组Ax=b 的增广矩阵为⎪⎪⎭⎫ ⎝⎛-642002********* ,则该方程组的通解为12213201k -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 17.已知3阶方阵A 的特征值为1,-3,9,则=A 31__-1_______.18.已知向量α=(1,2,-1)与向量β=(0,1,y )正交,则y=___2______.本套试题共分7页,当前页是第7页- 19.二次型f (x1,x2,x3,x4)=2423222123x x x x -++的正惯性指数为___3______.20.若f (x1,x2,x3)=32312123222142244x x x x x x x x x +-+++λ为正定二次型,则λ的取值应满足___21λ-<<____.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=.5333353333533335=112 22.设A=⎪⎪⎪⎪⎭⎫ ⎝⎛-2100110011,B=⎪⎪⎭⎫ ⎝⎛011021,又AX=B ,求矩阵X=132120-⎛⎫ ⎪- ⎪ ⎪⎝⎭. 23.设矩阵A=⎪⎪⎭⎫ ⎝⎛100042853,B=⎪⎪⎭⎫ ⎝⎛030095201201,求矩阵AB 的秩=3. 24.求向量组α1=(1,4,3,-2),α2=(2,5,4,-1),α3=(3,9,7,-3)的秩=2.25.求齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0553204420432143214321x x x x x x x x x x x x 的一个基础解系122233,1001ζζ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 26.设矩阵A=⎪⎪⎭⎫ ⎝⎛210120001,求可逆矩阵P ,使P -1AP 为对角矩阵111001,0113011P AP P -⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 四、证明题(本大题共1小题,6分)27.设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1,证明:向量组β1,β2,β3线性无关. 略。

自考学习资料试卷与答案!

1.与政治相对应“行政〞是指〔〕A.国家政策制定B.国家意志执行C.企业内部管理活动D.国家审判机关执法活动2.行政管理学创始人是〔〕A.罗纳德·怀特B.魏洛比C.古德诺D.伍德罗·威尔逊3.首先提出行政环境问题并予以研究学者是〔〕A.高斯B.泰罗C.帕森斯D.韦伯4.在雷格斯三种行政模式中,与农业社会相适应行政模式是〔〕A.融合型行政模式B.衍射型行政模式C.棱柱型行政模式D.法理型行政模式5.从根本上制约着行政系统规模、体制构造与运行方式等根本因素是〔〕A.政治力量B.经济力量C.文化力量D.社会构造6.行政权力根本目标是〔〕A.提高行政效率B.开展社会经济C.执行国家意志与实现公共利益D.维护社会稳定7.在中国方案经济时期,事权主要表现为〔〕A.政治管理权B.经济管理权C.社会事务管理权D.文化管理权8.在现代社会,相对于国家立法职能而言,国家行政职能具有明显〔〕A.执行性B.多样性C.整体性D.监视性9.改革开放以来我国政府职能重心是〔〕A.以阶级斗争为中心B.以科技开展为中心C.以经济建立为中心D.以政治开展为中心10.行政管理机构首要特性是〔〕A.系统性B.合理性C.合法性D.主体性11.国家有关行政管理机构依法在一定区域内设立分支机构或代表机构是〔〕A.信息机构B.咨询机构C.辅助机构D.派出机构12.人事行政管理最经常职责与最大量活动是对行政人员进展合理〔〕A.方案与组织B.使用与开发C.鼓励与监视D.调任与辞退13.政府预算工作中心环节是〔〕A.预算编制B.预算执行C.决算管理D.预算外资金管理14.目前实行委员会制典型国家是〔〕A.德国B.法国C.英国D.瑞士15.行政组织中最根本构成要素是〔〕A.行政职位B.行政人员C.行政体制D.精神要素16.渐进决策理论模式主要代表人物是〔〕A.威尔逊B.西蒙C.林德布洛姆D.埃佐尼17.行政执行工作关键是〔〕A.方案B.协调C.发动D.指挥18.使行政管理思想变为现实状态中间媒介是〔〕A.行政技术B.行政管理方法C.行政理念D.行政人员19.在行政管理方法中,经济方法核心是〔〕A.物质利益B.市场标准C.道德诉求D.等价交换20.行政道德体系灵魂是〔〕A.行政道德主体B.行政道德准那么C.行政道德观念D.行政道德水平21.法律方法所依据法律,其标准对象与内容都是相对固定。

全国2010年1月《概率论与数理统计{经管)》试题

全国2010年1⽉⾼等教育⾃学考试概率论与数理统计(经管类)试题课程代码:04183⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错选、多选或未选均⽆分。

1.若A与B互为对⽴事件,则下式成⽴的是( )A.P(A B)=B.P(AB)=P(A)P(B)C.P(A)=1-P(B)D.P(AB)=2.将⼀枚均匀的硬币抛掷三次,恰有⼀次出现正⾯的概率为( )A. B.C. D.3.设A,B为两事件,已知P(A)= ,P(A|B)= ,,则P(B)=( )A. B.C. D.4.设随机变量X的概率分布为( )X123P0.20.3k0.1则k=A.0.1B.0.2C.0.3D.0.45.设随机变量X的概率密度为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意的实数a,有( )A.F(-a)=1-B.F(-a)=C.F(-a)=F(a)D.F(-a)=2F(a)-16.设⼆维随机变量(X,Y)的分布律为YX1212则P{XY=0}=( )A. B.C. D.7.设随机变量X,Y相互独⽴,且X~N(2,1),Y~N(1,1),则( )A.P{X-Y≤1}=B. P{X-Y≤0}=C. P{X+Y≤1}=D. P{X+Y≤0}=8.设随机变量X具有分布P{X=k}= ,k=1,2,3,4,5,则E(X)=( )A.2B.3C.4D.59.设x1,x2,…,x5是来⾃正态总体N()的样本,其样本均值和样本⽅差分别为和,则服从( )A.t(4)B.t(5)C. D.10.设总体X~N(),未知,x1,x2,…,xn为样本,,检验假设H0∶ = 时采⽤的统计量是( )A. B.C. D.⼆、填空题(本⼤题共15⼩题,每⼩题2分,共30分)请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

11.设P(A)=0.4,P(B)=0.3,P(A B)=0.4,则P()=___________.12.设A,B相互独⽴且都不发⽣的概率为,⼜A发⽣⽽B不发⽣的概率与B发⽣⽽A不发⽣的概率相等,则P(A)=___________.13.设随机变量X~B(1,0.8)(⼆项分布),则X的分布函数为___________.14.设随机变量X的概率密度为f(x)= 则常数c=___________.15.若随机变量X服从均值为2,⽅差为的正态分布,且P{2≤X≤4}=0.3, 则P{X≤0}=___________.16.设随机变量X,Y相互独⽴,且P{X≤1}= ,P{Y≤1}= ,则P{X≤1,Y≤1}=___________.17.设随机变量X和Y的联合密度为f(x,y)= 则P{X>1,Y>1}=___________.18.设⼆维随机变量(X,Y)的概率密度为f(x,y)= 则Y的边缘概率密度为___________.19.设随机变量X服从正态分布N(2,4),Y服从均匀分布U(3,5),则E(2X-3Y)= __________.20.设为n次独⽴重复试验中事件A发⽣的次数,p是事件A在每次试验中发⽣的概率,则对任意的 =___________.21.设随机变量X~N(0,1),Y~(0,22)相互独⽴,设Z=X2+ Y2,则当C=___________时,Z~ .22.设总体X服从区间(0,)上的均匀分布,x1,x2,…,xn是来⾃总体X的样本,为样本均值,为未知参数,则的矩估计= ___________.23.在假设检验中,在原假设H0不成⽴的情况下,样本值未落⼊拒绝域W,从⽽接受H0,称这种错误为第___________类错误.24.设两个正态总体X~N(),Y~N( ),其中未知,检验H0:,H1:,分别从X,Y两个总体中取出9个和16个样本,其中,计算得 =572.3, ,样本⽅差,,则t检验中统计量t=___________(要求计算出具体数值).25.已知⼀元线性回归⽅程为 ,且 =2, =6,则 =___________.三、计算题(本⼤题共2⼩题,每⼩题8分,共16分)26.飞机在⾬天晚点的概率为0.8,在晴天晚点的概率为0.2,天⽓预报称明天有⾬的概率为0.4,试求明天飞机晚点的概率. 27.已知D(X)=9, D(Y)=4,相关系数,求D(X+2Y),D(2X-3Y).四、综合题(本⼤题共2⼩题,每⼩题12分,共24分)28. 设某种晶体管的寿命X(以⼩时计)的概率密度为f(x)=(1)若⼀个晶体管在使⽤150⼩时后仍完好,那么该晶体管使⽤时间不到200⼩时的概率是多少?(2)若⼀个电⼦仪器中装有3个独⽴⼯作的这种晶体管,在使⽤150⼩时内恰有⼀个晶体管损坏的概率是多少?29.某柜台做顾客调查,设每⼩时到达柜台的顾额数X服从泊松分布,则X~P(),若已知P(X=1)=P(X=2),且该柜台销售情况Y(千元),满⾜Y= X2+2.试求:(1)参数的值;(2)⼀⼩时内⾄少有⼀个顾客光临的概率;(3)该柜台每⼩时的平均销售情况E(Y).五、应⽤题(本⼤题共1⼩题,10分)30.某⽣产车间随机抽取9件同型号的产品进⾏直径测量,得到结果如下:21.54, 21.63, 21.62, 21.96, 21.42, 21.57, 21.63, 21.55, 21.48根据长期经验,该产品的直径服从正态分布N(,0.92),试求出该产品的直径的置信度为0.95的置信区间.( 0.025=1.96, 0.05=1.645)(精确到⼩数点后三位)。

概率论与数理统计(经管类)第一章

概率论与数理统计教材:《概率论与数理统计》(经管类)课程代码:4183柳金甫王义东主编武汉大学出版社本课程的重点章是第1、2、3、4、7、8章.(1)试题的难度可分为:易,中等偏易,中等偏难,难。

它们所占分数依次大致为:20分,40分,30分,10分。

(2)试题的题型有:选择题(10*2=20分)、填空题(15*2=30分)、计算题(2*8=16分)、综合题(2*12=24分)、应用题(1*10=10分)。

(3)在试题中,概率论和数理统计内容试题分数的分布大致是75分和25分.序言概率论是研究什么的?概率论——从数量上研究随机现象的统计规律性的科学。

数理统计——从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

目录第一章随机事件与概率(重点)第二章随机变量及其概率分布(重点)第三章多维随机变量及其概率分布(重点) 第四章随机变量的数字特征(重点)第五章大数定律及中心极限定理第六章统计量及其抽样分布第七章参数估计(重点)第八章假设检验(重点)第九章回归分析一、两个基本原理1、乘法原理(分段)如果某事件需经K步才能完成,做第一步有m1种方法,做第二部有m2种方法。

第K步需要m k中方法,那么完成这件事共有m1×m2×m k种方法。

2、加法原理(分类)如果某事件可以由K类不同途径之一去完成,第一类有m1种完成方法,第二类有m2种完成方法,第k类有m k种完成方法,那么事件共有m1+m2+m k种方法。

二、排列1、排列从n个不同元素中任取r(r≤n)个元素排成一列(考虑元素次序)称此为一个排列,此种排列的总数记为。

按乘法原理,取出第一个元素有n种取法,取出第二个元素有n-1种取法……取出第r个元素有n – r +1种取法,则有=n×(n-1)×…×(n-r+1)=当r = n时,则称为全排列,排列总数为= n!2、可重复排列从n个不同元素中每次取出一个,放回后再取下一个,如此连续r次所得的排列称为可重复排列,此种排列总数共有n r个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国2009年1月高等教育自学考试
概率论与数理统计(经管类)试题
(课程代码:04183)
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号
内。错选、多选或未选均无分。
1.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( )
A.0.125 B.0.25 C.0.375 D.0.5
2.设A、B为任意两个事件,则有( )
A.(A∪B)-B=A B.(A-B)∪B=A C.(A∪B)-BA D.(A-B)∪BA

3.设随机变量X的概率密度为f(x)=.,0;2x1,x2;1x0,x其它 则P{0.2A.0.5 B.0.6 C.0.66 D.0.7
4.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( )
A.0.027 B.0.081 C.0.189 D.0.216
5.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为( )

Y
X
0 1 2

-1 0.2 0.1 0.1
0 0 0.3 0
2 0.1 0 0.2
则F(0,1)=
A.0.2 B.0.6 C.0.7 D.0.8

6.设二维随机变量(X,Y)的联合概率密度为f(x,y)=.,0;1y0,2x0),yx(k其它则k=
( )

A.41 B.31 C.21D.32
7.设X~B(10, 31), 则)X(E)X(D( )
A.31 B.32C.1 D.310
8.已知随机变量X的分布函数为F(x)=.0;0xe1x2其它则X的均值和方差分别为( )
A.E(X)=2, D(X)=4 B.E(X)=4, D(x)=2

C.E(X)=41,D(X)=21 D.E(X)=21, D(X)=41
9.设随机变量X的E(X)=,D(X)=2,用切比雪夫不等式估计)3|)X(EX(|P( )
A.91 B.31 C.98D.1
10.记F1-α(m,n)为自由度m与n的F分布的1-分位数,则有( )

A.)n,m(F1)m,n(F1 B.)n,m(F1)m,n(F11
C.)n,m(F1)m,n(F D.)m,n(F1)m,n(F1
二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答
案。错填、不填均无分。
11.连续抛一枚均匀硬币6次,则正面至少出现一次的概率为___________。
12.设事件A,B相互独立,且P(A)=0.5,P(B)=0.2, 则P(A∪B)= ___________。
13.某人工作一天出废品的概率为0.2,则工作四天中仅有一天出废品的概率为___________。
14.袋中有5个黑球3个白球,从中任取4个球中恰有3个白球的概率为___________。

15.已知随机变量X的分布函数为F(x)=3x13x1321x0210x0 则P{216.已知随机变量X的概率密度为f(x)=ce-|x|,-∞17.设二维随机变量(X,Y)的分布律为

则P{XY=0}=___________。 18.设(X,Y)的概率密度为f(x,y)=.,0;0y,0x,eyx其它则X的边缘概率密度为fX(x)= ___________。 19.设X与Y为相互独立的随机变量,其中X在(0,1)上服从均匀分布,Y在(0,2)上服从均匀分布,则(X,Y)的概率密度f(x,y)= ___________。 20.设随机变量X具有分布P{X=k}=51,k=1,2,3,4,5,则D(X)= ___________。 21.若X~N(3,0.16),则D(X+4)= ___________。 22.设Xi=发生事件不发生事件A,1A,0(i=1,2,…,100),且P(A)=0.8, X1,X2,…,X100相互独立,令Y=1001iiX,则由中心极限定理知Y近似服从于正态分布,其方差为___________。 Y X
0 5
0
41 6

1

2
3

1 41
23.设总体X~N),(2,X1,…,X20为来自总体X的样本,则201i22i)X(服从参数为
___________的2分布。
24.设ˆ是未知参数的一个估计量,若E(ˆ)___________,则ˆ是的无偏估计。
25.已知一元线性回归方程为xˆ1yˆ1,且9y,2x,则1ˆ___________。
三、计算题(本大题共2小题,每小题8分,共16分)
26.设A,B是两事件,已知P(A)=0.3,P(B)=0.6,试在下列两种情形下:
(1)事件A,B互不相容;
(2)事件A,B有包含关系;
分别求出P(A | B)。

27.设总体X服从指数分布,其概率密度为f(x,)=0x00xex,其中0为未知参数,
x1, x2,…,xn为样本,求的极大似然估计。
四、综合题(本大题共2小题,每小题12分,共24分)
28.某地抽样调查结果表明,某次统考中,考生的数学成绩(百分制)X服从正态分布

N(72,2),且96分以上的考生占考生总数的2.3%. 试求考生的数学成绩在60~84分之
间的概率. (已知977.0)2(,8413.0)1(00)
29.已知随机变量X,Y的相关系数为XY,若U=aX+b, V=cY+d, 其中ac>0. 试求U,V
的相关系数UV。
五、应用题(本大题共1小题,10分)
30.某城市每天因交通事故伤亡的人数服从泊松分布,根据长期统计资料,每天伤亡人数均
值为3人. 近一年来,采用交通管理措施,据300天的统计,每天平均伤亡人数为2.7人. 问
能否认为每天平均伤亡人数显著减少?(u0.025=1.96 u0.05=1.645)

相关文档
最新文档