高中数学检测(集合与函数1)
(完整版)高一数学第一章试题及答案

高中数学集合检测题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 A M B {}1,4 C {}1 D Φ2. 设全集U =R ,集合2{|1}A x x =≠,则U C A =A. 1B. -1,1C. {1}D. {1,1}-3. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A = A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >4. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =A .{0}B .{}3,4--C .{}1,2--D .∅5.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是 A .3 B .4 C .5 D .66. 已知集合{}1,0,1-=A ,则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A7.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B AA.}32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 8.已知集合}01|{2=-=x x A ,则下列式子表示正确的有 ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个9.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为 A .-3或1 B .2 C .3或1 D .1 10. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是A. 1B. 2C. 7D. 811.已知集合M={x|x 1},N={x|x>}a ≤-,若M N ≠∅,则有 A .1a <- B .1a >- C . 1a ≤- D .1a ≥-12、已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃= A{}0,1,8,10 B {}1,2,4,6 C {}0,8,10D Φ选择题答案二、填空题:13.设U ={三角形},A ={锐角三角形},则U C A = . 14. 已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B= 。
2014秋入学高中数学必修一第一章_集合与函数概念分节详解及练习

§1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R . 4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .§1.1.2 集合间的基本关系¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}.A BB A A B A B A . B .C .D .【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.§1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到B (读作“B (读作“{|B x x ={|B x x =¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð.\【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()ABC ; (2)()A A BC ð.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.§1.1.3 集合的基本运算(二)¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , AB .(教材P 14B 组题2)【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a的值.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= .§1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.§1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______..【例2】已知f (x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.【例3】画出下列函数的图象: (1)|2|y x =-;(2)|1||24|y x x =-++.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当(2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.§1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.【例4】已知31()2x f x x +=+,指出()f x 的单调区间.§1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac ba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.【例3】求函数2y x =的最小值.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.§1.3.2 函数的奇偶性¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.复习【例1】已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .【例2】已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并加以证明.【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B =,求实数m 的取值范围.【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .。
高中数学,必修一,《第一章,集合与函数概念》习题解析

目录第一章集合与函数概念 (1)1.1.1、集合的含义与表示 ............................................................................................................................. 1 1.1.2、集合间的基本关系 ............................................................................................................................. 2 1.1.3、集合的基本运算 (3)习题1.1 集合 ....................................................................................................................................... 4 1.2.1 函数的概念 ........................................................................................................................................... 7 1.2.2、函数的表示法 . (8)习题1.2 函数及其表示 ....................................................................................................................... 9 1.3.1 单调性与最大(小)值 ................................................................................................................... 13 1.3.2、奇偶性 .. (14)习题1.3 函数的基本性质 ................................................................................................................. 16 复习参考题 . (18)第一章集合与函数概念 1.1.1、集合的含义与表示1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则: 中国∈A,美国∉A,印度∈A,英国∉A.【解析】美国∈北美洲,英国∈欧洲.(2)若2{|A x x x ==},则1-∉A ;【解析1】2{|}{0,1}A x x x === ,1A ∴-∉; 【解析2】因为2(1)1-=-不成立,所以1A -∉.(3)若2{|60}B x x x =+-=,则3∉B ;【解析1】2{|60}{|(2)(3)0}{3,2}B x x x x x x =+-==-+==- ,3B ∴∉; 【解析2】因为23360+-=不成立,所以3B ∉;(4)若{|110}C x N x =∈≤≤,则8∈C ,9.1∉C.【解析1】{|110}{1,2,3,4,5,6,7,8,9,10}C x N x =∈≤≤=,9.1C ∴∉.【解析2】9.1N ∉ ,9.1C ∴∉.注1:判断一个元素是否属于某个集合,方法有二:(1)如果集合是用列举法表示的,就看元素有没有在集合中.如果元素在集合中,则元素属于集合;如果元素不在集合中,则元素不属于集合.如果集合是用描述法给出的,且集合中元素的个数有限,则往往先将集合改用列举法表示. (2)检验元素是否符合特征.如果元素符合特征,则元素属于集合;如果元素不符合特征,则元素不属于集合.注2:熟练掌握集合的三种表示方法,必要时将集合从一种形式转换为另一种形式。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
高中数学必修一第一章 集合与函数概念1-1集合课时提升作业及解析

综上可知 k=0 或 1. 【误区警示】解答本题时易不考虑二次项系数 k 是否为 0 而直接利用根与系数 的关系求解致错. 6.某研究性学习小组共有 8 位同学,记他们的学号分别为 1,2,3,„,8.现指导老 师决定派某些同学去市图书馆查询有关数据,分派的原则为:若 x 号同学去,则 8-x 号同学也去.请你根据老师的要求回答下列问题: (1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法? 【解析】本题实质是考查集合中元素的特性,只有一个名额等价于 x=8-x,有两个 名额则为 x 和 8-x. 分派去图书馆查数据的所有同学组成一个集合,记作 M,则有 x∈M,8-x∈M. (1)若只有一个名额,即 M 中只有一个元素,必须满足 x=8-x,故 x=4,所以应该派 学号为 4 的同学去. (2)若有两个名额,即 M 中有且仅有两个不同的元素 x 和 8-x,从而全部含有两个 元素的集合 M 含有元素的情况为:1,7 或 2,6 或 3,5,也就是有两个名额的分派方 法有 3 种.
高中数学必修一 1-1 集合课时提升作业(一) 集合
的含义
(25 分钟 60 分) 一、选择题(每小题 5 分,共 25 分) 1.下列指定的对象,不能组成集合的是 ( ) A.一年中有 31 天的月份 B.平面上到点 O 距离是 1 的点 C.满足方程 x2-2x-3=0 的 x D.某校高一(1)班性格开朗的女生 【解析】选 D.因为 A,B,C 所给的对象都是确定的,从而可以组成集合,而 D 中所 给的对象没有具体的标准来衡量一名女生怎样才能算性格开朗,故不能组成集 合. 【补偿训练】(2015·昆明高一检测)下列对象能组成集合的是 ( ) A.中国大的城市 B.方程 x2-9=0 在实数范围内的解 C.直角坐标平面内第一象限的一些点 D. 的近似值的全体 【解析】选 B.A 中的城市大到什么程度不明确,所以不能组成集合;B 能组成集 合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因 此“直角坐标平面内第一象限的一些点”不能组成集合;D 中“ 的近似值”不 明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能 组成集合. 2.(2015·黄山高一检测)若 a 是 R 中的元素,但不是 Q 中的元素,则 a 可以
高中数学第一章集合与函数概念1.1.3第1课时并集和交集课后习题新人教版

1.1.3 第1课时并集和交集一、A组1.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=()A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}解析:在数轴上分别表示集合M和N,如图所示,则M∪N={x|x<-5,或x>-3}.答案:A2.已知集合A={x|x=2n-3,n∈N},B={-3,1,4,7,10},则集合A∩B中元素的个数为()A.5B.4C.3D.2解析:由条件知,当n=0时,2n-3=-3;当n=2时,2n-3=1;当n=5时,2n-3=7.所以A∩B={-3,1,7}.故选C.答案:C3.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}解析:因为B={-1,2},所以A∩B={2}.答案:B4.若集合M={(x,y)|x+y=0},N={(x,y)|x2+y2=0,x∈R,y∈R},则有()A.M∪N=MB.M∪N=NC.M∩N=MD.M∩N=⌀解析:集合M表示第二、四象限角的平分线,集合N表示坐标原点.答案:A5.若A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为()A.{2}B.{3}C.{-3,2}D.{-2,3}解析:A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.答案:A6.已知集合S={直角三角形},集合P={等腰三角形},则S∩P=.解析:S∩P表示集合S和集合P的公共元素组成的集合,故S∩P={等腰直角三角形}.答案:{等腰直角三角形}7.已知集合A={2,3},B={2,6,8},C={6,8},则(C∪A)∩B=.解析:∵A∪C={2,3}∪{6,8}={2,3,6,8},∴(C∪A)∩B={2,3,6,8}∩{2,6,8}={2,6,8}.答案:{2,6,8}8.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是. 解析:用数轴表示集合A,B,如图所示,由于A∪B=R,则在数轴上实数a与1重合或在1的左边,所以a≤1.答案:a≤19.已知集合A=,集合B={x|3>2x-1},求A∩B,A∪B.解:解不等式组得-2<x<3,即A={x|-2<x<3}.解不等式3>2x-1,得x<2,即B={x|x<2},在数轴上分别表示集合A,B,如图所示.则A∩B={x|-2<x<2},A∪B={x|x<3}.10.已知A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求a的值;(2)若A∩B=B,求a的值.解:(1)A={-4,0}.若A∪B=B,则B=A={-4,0},解得a=1.(2)若A∩B=B,则B⊆A.①若B为空集,则Δ=4(a+1)2-4(a2-1)=8a+8<0,解得a<-1;②若B为单元素集合,则Δ=4(a+1)2-4(a2-1)=8a+8=0,解得a=-1.将a=-1代入方程x2+2(a+1)x+a2-1=0,得x2=0,即x=0,B={0},符合要求;③若B=A={-4,0},则a=1.综上所述,a≤-1或a=1.二、B组1.若X={0,1,2,4,5,7},Y={1,4,6,8,9},Z={4,7,9},则(X∩Y)∪(X∩Z)等于()A.{1,4}B.{1,7}C.{4,7}D.{1,4,7}解析:∵X∩Y={1,4},X∩Z={4,7},∴(X∩Y)∪(X∩Z)={1,4,7}.答案:D2.已知集合M={a,0},N={1,2},且M∩N={2},则M∪N=()A.{a,0,1,2}B.{1,0,1,2}C.{2,0,1,2}D.{0,1,2}解析:由于集合M={a,0},N={1,2},且M∩N={2},所以a=2.故M∪N={0,1,2}.答案:D3.已知集合A={x|-3≤x≤8},B={x|x>a},若A∩B≠⌀,则a的取值范围是()A.a<8B.a>8C.a>-3D.-3<a≤8解析:A={x|-3≤x≤8},B={x|x>a},要使A∩B≠⌀,借助数轴可知a<8.答案:A4.已知集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B=.解析:∵A∩B={2},∴2∈A,故a+1=2,a=1,即A={5,2};又2∈B,∴b=2,即B={1,2},∴A∪B={1,2,5}.答案:{1,2,5}5.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=. 解析:如图所示,可知a=1,b=6,2a-b=-4.答案:- 46.若集合A={x|3ax-1=0},B={x|x2-5x+4=0},且A∪B=B,则a的值是.解析:∵B={1,4},A∪B=B,∴A⊆B.当a=0时,A=⌀,符合题意;当a≠0时,A=,∴=1或=4,∴a=或a=.综上,a=0,.答案:0,7.(2016·四川宜宾三中高一期中)集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若⌀⫋A∩B,A∩C=⌀,求a的值.解:由已知得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B.∴2,3是关于x的一元二次方程x2-ax+a2-19=0的两个根.得a=5.(2)由⌀⫋A∩B⇒A∩B≠⌀.又A∩C=⌀,得3∈A,2∉A,-4∉A.由3∈A,得32-3a+a2-19=0,解得a=5或a=-2.当a=5时,A={x|x2-5x+6=0}={2,3},与2∉A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.8.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16}.(1)若A∩B=⌀,求实数a的取值范围;(2)若A⊆(A∩B),求实数a的取值范围.解:(1)若A=⌀,则A∩B=⌀成立.此时2a+1>3a-5,即a<6.若A≠⌀,如图,则解得6≤a≤7.经检验a=6,a=7符合题意.综上,满足条件A∩B=⌀的实数a的取值范围是a≤7.(2)因为A⊆(A∩B),所以A∩B=A,即A⊆B.显然A=⌀满足条件,此时a<6.若A≠⌀,如图,则由解得a∈⌀;由解得a>.综上,满足条件A⊆(A∩B)的实数a的取值范围是a<6或a>.。
高中数学集合测试题(附答案和解析)
高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,2,3,4A =,2{|log ,}B y y x x x A ==-∈,则A B =( ) A .{}1,2B .{}1,3C .{}1,2,3D .{}1,3,42.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,54.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅5.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( ) A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)- 8.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( ) A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--11.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,512.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .4 13.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}314.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .815.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________; (2)点A 与平面α:___________;(3)直线AB 与平面α:___________; (4)直线CD 与平面α:___________.18.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________. 19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______ 21.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.22.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.25.写出集合{1,1}-的所有子集______.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .28.已知集合2111x A x x +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题 1.A 【解析】 【分析】根据对数的运算求出集合B ,再根据交集的定义可求出结果. 【详解】当1x =时,21log 11y =-=, 当2x =时,22log 21y =-=, 当3x =时,23log 3y =-, 当4x =时,24log 42y =-=, 所以2{1,2,log 3}B =, 所以A B ={1,2}. 故选:A 2.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 3.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 4.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 5.B 【解析】 【分析】由集合的交运算求A B 即可. 【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<, 所以{}1,2,3,4A B ⋂=. 故选:B 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D 7.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 8.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.D 【解析】 【分析】 利用补集定义求出A R,利用交集定义能求出()A B R .【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--, 则R{|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--. 故选:D 11.D【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 12.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 13.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117. C β∉ A α AB B α⋂= CD α⊂【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案 【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=. (4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂; 18.{2,3}##{3,2} 【解析】 【分析】 由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3} 19.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31AB n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③. 20.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥21.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-22.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:724.{1,0,1,2}-【解析】 【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答. 【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-. 故答案为:{1,0,1,2}- 25.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=.(2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-.27.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-,令()22h m m m=++,其中20m -≤<,下面证明函数()h m 在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数, 当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果. 28.(1){21}x x -<<; (2)[2,4]∈-m . 【解析】 【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答. (1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭,所以{21}A B x x ⋃=-<<. (2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2mB x x =<<-,B A ⊄,不符合题意,当12m-=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤,综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(,3]-∞【解析】 【分析】求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦,因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B = 因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤综上可得:实数a 的取值范围是(,3]-∞ 30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<< 【解析】 【分析】先化简集合A 、B ,再去求A B 、A B 即可解决. 【详解】{}{}2=16044A x x x x -<=-<<{}{}2=318036B x xx x x -++>=-<<则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<<{}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
人教版数学高一-必修一高中数学各章节综合试题
高中数学必修一复习资料新思路教育高中数学必修——第一章集合与函数 测试题一、选择题(每小题4分,共32分)1、图中阴影部分表示的集合是 ( ) A. B C A U B. B A C UC. )(B A C UD. )(B A C U2、下列各组中的两个集合M 和N ,表示同一集合的是 ( )A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {1,3,}M π=, {,1,|3|}N π=-3、已知集合A={x x ≤2,R x ∈},B={x x ≥a},且B A ⊆,则实数a 的取值范围是( ) (A )a ≥-2 (B )a ≤-2 (C )a ≥2 (D )a ≤24、设全集{}+∈≤=N x x x U ,8|,若{}8,1)(=B C A U ,{}6,2)(=B A C U , {}7,4)()(=B C A C U U ,则 ( )(A ){}{}6,2,8,1==B A (B ){}{}6,5,3,2,8,5,3,1==B A (C ){}{}6,5,3,2,8,1==B A (D ){}{}6,5,2,8,3,1==B A 5、设P=}|),{(},|{22x y y x Q x y x ===,则P 、Q 的关系是 ( ) (A )P ⊆Q (B )P ⊇Q (C )P=Q (D )P ⋂Q=∅6、下列四组函数,表示同一函数的是 ( )(A )f (x )=2x , g (x )=x (B ) f (x )=x , g (x )=xx 2(C )f (x )=42-x , g (x )=22-⋅+x x (D )f (x )=|x +1|, g (x )=⎩⎨⎧-<---≥+1111x x x x7、函数xx x y +=的图象是图中的 ( )8、某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++,则炮弹在发射几秒后最高呢? ( )A. 1.3秒B. 1.4秒C. 1.5秒 D 1.6秒 二、填空题(每小题4分,共16分)9、已知集合{},,,A a b c =,则集合A 的非空真子集的个数是10、已知集合M={0,1,2},N={M a a x x ∈=,2},则集合N M = ,N M = 。
高中数学 第一章 集合与函数的概念 1.1.3 集合的基本运算 第1课时 并集和交集习题 新人教A版
第一章集合与函数的概念 1.1.3 集合的基本运算第1课时并集和交集习题新人教A版必修1一、选择题1.下面四个结论:①若a∈(A∪B),则a∈A;②若a∈(A∩B),则a∈(A∪B);③若a ∈A,且a∈B,则a∈(A∩B);④若A∪B=A,则A∩B=B.其中正确的个数为导学号 22840097 ( )A.1 B.2C.3 D.4[答案] C[解析]①不正确,②③④正确,故选C.2.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=导学号 22840098( ) A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5}D.{x|x≤5}[答案] A[解析]在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2016·文,1)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=导学号 22840099( )A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}[答案] C[解析]在数轴上表示集合A与集合B,由数轴可知,A∩B={x|2<x<3},故选C.4.(2015·某某省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C =导学号 22840100( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析]A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.已知集合A={2,-3},集合B满足B∩A=B,那么符合条件的集合B的个数是导学号 22840101( )A.1 B.2C.3 D.4[答案] D[解析]由B∩A=B可得B⊆A,因此B就是A的子集,所以符合条件的集合B一共有4个:∅,{2},{-3},{2,-3}.6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=∅,则实数a的取值集合为导学号 22840102( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析]如图.要使A∩B=∅,应有a<-1.二、填空题7.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.导学号 22840103[答案]0,1或-2[解析]由已知得B⊆A,∴x2=4或x2=x,∴x=0,1,±2,由元素的互异性知x≠2,∴x=0,1或-2.8.已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=________.导学号 22840104[答案] 6[解析]用数轴表示集合A、B如图所示.由于A∩B={x|5≤x≤6},得m=6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},某某数a 的值.导学号 22840105[解析]∵A ∩B ={-3}, ∴-3∈B . ∵a 2+1≠-3,∴a -3=-3或2a -1=-3. ①若a -3=-3,则a =0,此时A ={0,1,-3},B ={-3,-1,1}, 但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾, ∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}. 综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.导学号 22840106 (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,某某数a 的取值X 围. [解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴-a2<2,∴a >-4.一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =导学号 22840107( )A .{0,1}B .{-1,0}C.{-1,0,1} D.{-1,1}[答案] C[解析]由题意可知,集合N={-1,0},所以M∪N=M.2.(2016·全国卷Ⅲ理,1)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=导学号 22840108( )A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)[答案] D[解析]∵S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},且T={x|x>0},∴S∩T={x|0<x≤2或x≥3}.故选D.3.下列关系式中,正确的个数为导学号 22840109( )①(M∩N)⊆N;②(M∩N)⊆(M∪N);③(M∪N)⊆N;④若M⊆N,则M∩N=M.A.4 B.3C.2 D.1[答案] B[解析]借助韦恩图可知①②④正确,故选B.4.当x∈A时,若x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,由A的所有孤立元素组成的集合称为A的“孤星集”,若集合M={0,1,3}的孤星集为M′,集合N={0,3,4}的孤星集为N′,则M′∪N′=导学号 22840110( )A.{0,1,3,4} B.{1,4}C.{1,3} D.{0,3}[答案] D[解析]由条件及孤星集的定义知,M′={3},N′={0},则M′∪N′={0,3}.二、填空题5.集合A={x|2<x≤5},B={x|x<a},若A∩B≠∅,则a的取值X围为________.导学号 22840111[答案]a>2[解析]在数轴上表示出A,B.由图可知,要使A ∩B ≠∅,则a >2.6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.导学号 22840112[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧-12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2,所以A ={-1,-2},B ={-1,4}, 所以A ∪B ={-2,-1,4}. 三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值X 围.导学号 22840113[解析]∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12.8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,某某数a 的取值X 围.导学号 22840114[解析]∵A ={x }x 2+8x =0}={0,-8},A ∩B =B , ∴B ⊆A .当B =∅时,方程x 2+2(a +2)x +a 2-4=0无解, 即Δ=4(a +2)2-4(a 2-4)<0,得a <-2. 当B ={0}或{-8}时,这时方程的判别式Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2.[点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =∅的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.。
(好题)高中数学必修一第一单元《集合》检测(有答案解析)(2)
一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂3.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π1162+22+2323-+A .4B .3C .2D .14.已知集合P 的元素个数为()*3n n N∈个且元素为正整数,将集合P 分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,AB =∅,A C ⋂=∅,BC =∅,其中{}12,,,n A a a a =,{}12,,,n B b b b =,{}12,,,n C c c c =,若集合,,A B C 中的元素满足12n c c c <<<,k k k a b c +=,1,2,,k n =,则称集合P 为“完美集合”例如:“完美集合”{}11,2,3P =,此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6P x =,为“完美集合”,则x 的所有可能取值之和为( ) A .9B .16C .18D .275.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个6.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,37.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .618.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭9.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .3010.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .51111.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,112.若集合A ={x |3+2x -x 2>0},集合B ={x|2x <2},则A∩B 等于( )A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)二、填空题13.若集合A 具有以下两条性质,则称集合A 为一个“好集合”. (1)0A ∈且1A ∈;(2)若x 、y A ,则x y A -∈,且当0x ≠时,有1A x∈.给出以下命题:①集合{}2,1,0,1,2P =--是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x 、y A ,则x y A +∈;其中真命题的序号是________.14.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.15.若集合(){}2220A x Z x a x a =∈-++-<中有且只有一个元素,则正实数a 的取值范围是_____.16.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 17.若{}2230P x x x =--<,{}Q x x a =>,且P Q P =,则实数a 的取值范围是______.18.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.19.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.设全集U =R ,集合A ={x |-1<x -m <5},集合1{|24}.2x B x =<< (1)当m =-1时,求();UA B ⋂(2)若A ∪B =A ,求实数m 的取值范围.22.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).23.已知集合A ={x |2≤x <7},B ={x |3<x <10},C ={x |x a ≤}. (1)求A ∪B ,(∁R A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.24.已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围.25.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.26.已知集合{121}A xa x a =-<<+∣,{}03B x x =<≤,U =R . (1)若12a =,求A B ;()U A B ⋂. (2)若A B =∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.3.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.4.D解析:D 【分析】讨论集合A 与集合B ,根据完美集合的概念知集合C ,根据k k k a b c +=建立等式求x 的值. 【详解】首先当2x =时,{}21,2,3,4,5,6P =不可能是完美集合, 证明:假设{}21,2,3,4,5,6P =是完美集合, 若C 中元素最小为3,则11123a b +=+=,222456a b c +=+==不可能成立; 若C 中元素最小为4,则11134a b +=+=,222256a b c +=+==不可能成立; 若C 中元素最小为5,则11145a b +=+=,222236a b c +=+==不可能成立;故假设{}21,2,3,4,5,6P =是完美集合不成立,则{}21,2,3,4,5,6P =不可能是完美集合. 所以2x ≠;若集合{1,5},{3,6}A B ==,根据完美集合的概念知集合{}4,,5611C x x =∴=+=;若集合{1,3},{4,6}A B ==,根据完美集合的概念知集合{}5,,369C x x =∴=+=; 若集合{1,4},{3,5}A B ==,根据完美集合的概念知集合{}6,,347C x x =∴=+=; 则x 的所有可能取值之和为791127++=, 故选:D . 【点睛】本题是新概念题,考查学生分析问题,理解问题的能力,是中档题.5.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.6.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.8.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.9.C解析:C 【分析】 求出{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=,由题意列举出集合123,,A A A ,由此能求出123M M M ++的最小值. 【详解】 由题意可知,{}{}*123|191,2,3,4,5,6,7,8,9A A A x N x =∈≤≤=123,,A A A 各有3个元素且不重复,当{}13,4,5A =,{}22,6,7A =,{}31,8,9A =时,123M M M ++取得最小值,此时最小值为12357927+++++=,故选C 【点睛】本题主要考查集合中的元素运算,解题的关键是理解题中满足的条件,属于中档题.10.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.11.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.12.C解析:C 【分析】根据不等式的解法,求得集合,A B ,根据集合的交集运算,即可求解. 【详解】依题意,可得集合A ={x |3+2x -x 2>0}=(-1,3),B ={x|2x <2}=(-∞,1), ∴A∩B =(-1,1).【点睛】本题主要考查了集合的交集运算,其中解答中正确利用不等式的解法,求得集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.③④⑤【分析】取结合(1)可判断①的正误;取结合(2)可判断②的正误;利用好集合的定义可判断③④的正误;由可推导出再结合(1)可判断⑤的正误【详解】对于命题①但①错误;对于命题②但②错误;对于命题③解析:③④⑤ 【分析】取2x =,2y =-结合(1)可判断①的正误;取2x =结合(2)可判断②的正误;利用“好集合”的定义可判断③④的正误;由y A ,可推导出y A -∈,再结合(1)可判断⑤的正误. 【详解】对于命题①,2P ∈,2P -∈,但()224P --=∉,①错误;对于命题②,2Z ∈,但12Z ∉,②错误; 对于命题③④,显然,集合Q 、R 均满足(1)(2),所以,Q 、R 都是“好集合”,③④正确; 对于命题⑤,当yA 时,由于0A ∈,则0y y A -=-∈,当x A ∈,则()x y x y A +=--∈,⑤正确. 故答案为:③④⑤. 【点睛】解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.14.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.15.【分析】因为集合A 中的条件是含参数的一元二次不等式首先想到的是十字相乘法但此题行不通;应该把此不等式等价转化为的形式然后数形结合来解答需要注意的是尽可能让其中一个函数不含参数【详解】解:且∴令∴∴是解析:12,23⎛⎤⎥⎝⎦【分析】因为集合A 中的条件是含参数的一元二次不等式,首先想到的是十字相乘法,但此题行不通;应该把此不等式等价转化为()()f x g x <的形式,然后数形结合来解答,需要注意的是尽可能让其中一个函数不含参数. 【详解】 解:()2220x a x a -++-<且0a >∴()2221x x a x -+<+令()()()222;1f x x x g x a x =-+=+∴()()},{|A x f x g x x Z =∈<∴()y f x =是一个二次函数,图象是确定的一条抛物线; 而()y g x =一次函数,图象是过一定点()1,0-的动直线. 又∵,0x Z a ∈>.数形结合,可得:1223a <≤ 故答案为:12,23⎛⎤⎥⎝⎦【点睛】此题主要考查集合A 的几何意义的灵活运用,利用数形结合的数学思想来解决参数取值范围问题.16.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=.故答案为:2.【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力. 17.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中PQ P =,即可求出实数a 的取值范围. 【详解】 由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且P Q P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞-【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.18.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当 解析:2a ≥或1a =【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可.【详解】由题意可得,集合A 为φ或有且仅有一个元素,当A φ=时,方程()21210a x x -++=无实数根,所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根, 当10a -=,即1a =时,方程有一根12x =-符合题意; 当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=, 解得2a =;综上可知a 的取值范围为:2a ≥或1a =.故答案为:2a ≥或1a =【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.19.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数.【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()M N M N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个.故答案为:8【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17【分析】先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案. 【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)(){|21U AB x x =-<≤-或24}x ≤<;(2)30m -≤≤. 【分析】(1)求出集合B ,再根据集合的运算法则计算.由A B A ⋃=得B A ⊆,根据集合的包含关系得出不等式式,从而可求解.【详解】(1)1m =-时,{|115}{|24}A x x x x =-<+<=-<<,{|12}B x x =-<<, {|1U B x x =≤-或2}x ≥,∴(){|21U AB x x =-<≤-或24}x ≤<; (2)∵A B A ⋃=,∴B A ⊆,又{|15}A x m x m =-<<+,∴1152m m -≤-⎧⎨+≥⎩,解得30m -≤≤. 【点睛】本题考查集合的综合运算,考查集合的包含关系,考查指数函数的性质.解题时注意集合的运算与包含关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1){a|a≤7};(2){a|a <6或a >152}【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A =∅,则A∩B =∅成立.此时2a +1>3a -5,即a <6.若A≠∅,则2135{2113516a a a a +≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B =∅的实数a 的取值范围是{a|a≤7}.(2)因为A ⊆(A∩B ),且(A∩B )⊆A , 所以A∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A≠∅,则2135{351a a a +≤--<-或2135{2116a a a +≤-+> 由2135{351a a a +≤--<-解得a ∈∅;由2135{2116a a a +≤-+>解得a >152. 综上,满足条件A ⊆(A∩B )的实数a 的取值范围是{a|a <6或a >152}. 考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用 23.(1) {x |2≤x <10}, {x |7≤x <10};(2) 2a ≥【分析】(1)根据交、并、补集的运算分别求出A ∪B ,(∁R A )∩B ;(2)根据题意和A∩C≠∅,即可得到a 的取值范围.【详解】解:(1)因为A ={x |2≤x <7},B ={x |3<x <10},所以A ∪B ={x |2≤x <10}.因为A ={x |2≤x <7},所以∁R A ={x |x <2,或x ≥7},则(∁R A )∩B ={x |7≤x <10}.(2)因为A ={x |2≤x <7},C ={x |x a ≤},且A ∩C ≠∅,所以2a ≥所以a 的取值范围为2a ≥.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.24.()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦【分析】先分类讨论A 是否是空集,再当A 不是空集时,分-2≤a <0,0≤a≤2,a >2三种情况分析a 的取值范围,综合讨论结果,即可得到a 的取值范围【详解】若A=∅,则a <-2,故B=C=∅,满足C ⊆B ;若A ≠∅,即a ≥-2,由23y x =+在[]2,a -上是增函数,得123y a -≤≤+,即{}123B y y a =-≤≤+ ①当20a -≤≤时,函数2z x =在[]2,a -上单调递减,则24a z ≤≤,即{}24C z a z =≤≤,要使C B ⊆,必须且只需234a +≥,解得12a ≥,这与20a -≤<矛盾; ②当02a ≤≤时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则04z ≤≤,即{}04C z z =≤≤,要使C B ⊆,必须且只需23402a a +≥⎧⎨≤≤⎩,解得122a ≤≤; ③当2a >时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则20z a ≤≤,即{}20C z z a =≤≤,要使C B ⊆,必须且只需2232a a a ⎧≤+⎨>⎩,解得23a <≤; 综上所述,a 的取值范围是()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦. 【点睛】本题考查了通过集合之间的关系求参数问题,考查了分类讨论的数学思想,要明确集合中的元素,对集合是否为空集进行分类讨论,做到不漏解.25.(1){}|25x x <<;(2)()1,+∞.【解析】试题分析:(1)根据题意和并集的运算求出A B ,再由补集的运算求出()U C A B ;(2)由(1)得集合D ,由CD C =得C D ⊆,根据子集的定义对C 分类讨论,分别列出不等式求出a 的范围.试题(1)由题意知,A =x |x ≤-2或x ≥5},B =x |x ≤2},则A ∪B =x |x ≤2或x ≥5},又全集U =R ,∁U (A ∪B )=x |2<x <5}.(2)由(1)得D =x |2<x <5},由C ∩D =C 得C ⊆D ,①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有232325a a a a -≤-⎧⎪->⎨⎪-<⎩,解得a ∈∅. 综上,a 的取值范围为(1,+∞).26.(1)1|32x x ⎧⎫-<≤⎨⎬⎩⎭,1|02x x ⎧⎫-<≤⎨⎬⎩⎭;(2){1|2a a ≤-或}4a ≥. 【分析】(1)化简集合,利用集合的交并补运算求解即可;(2)讨论A =∅,A ≠∅两种情况,列出相应的不等式,求解即可得出答案.【详解】(1)若12a =时,12,{03}2A x x B x x ⎧⎫=-<<=<≤⎨⎬⎩⎭∣∣ ∴1|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,由{|0U B x x =≤或3}x > 所以()1|02U A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭(2)由A B =∅知当A =∅时,121,2a a a -≥+∴≤-当A ≠∅时,21113a a a +>-⎧⎨-≥⎩或211210a a a +>-⎧⎨+≤⎩4a ∴≥或122a -<≤- 综上:a 的取值范围是{1|2a a ≤-或}4a ≥. 【点睛】本题主要考查了集合的交并补混合运算以及根据交集的结果求参数的范围,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学检测题(1) 本试卷满分150分,考试时间120分钟 姓名 班级 得分
基础卷(100分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.若集合,,Mabc中的元素是△ABC的三边长,则△ABC一定不是( ) )(A.锐角三角形 )(B.直角三角形 )(C.钝角三角形 )(D.等腰三角形
2、下列函数fxgx与表示同一函数的是( )
)(A.42fxxgxx与 )(B.2xfxxgxx与
)(C.211fxxgxx与 )(D.326fxxgxx与
3、如下图可作为函数)(xf的图像的是( )
)(A )(B )(C )(D 4.函数22232xyxx的定义域为( ) )(A、,2 )(B、,1
)(C、11,,222
U )(D、
11,,222
U
5、函数11xyx的值域为( ) )(A.11U,, )(B.1,1
)(C.11U,-, )(D.11U,-,
6.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( ) )(A.0 )(B.0 或1 )(C.1 )(D.不能确定
7、已知函数1fx的定义域为2,3,则2fx的定义域为( ) )(A.2,3 )(B.1,4 )(C.16, )(D.4,1
8.满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( ) )(A.8 )(B.7 )(C.6 )(D.5
9.函数y= )40(422xxx的值域是 ( ) )(A ]2,2[ )(B ]2,1[ )(C ]2,0[ )(D]2,2[
x y x y O x y O x y
O 10.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为2xy,值域为{1,4}的“同族函数”共有( ) )(A.7个 )(B.8个 )(C.9个 )(D.10个
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
11、设集合U={(x,y)|y=3x-1},A={(x,y)|12xy=3},则CUA= . 12.50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人.
13、已知xxxf2)1(,则)(xf 。
14.设函数)7(,)10()10()]5([3)(fxxxffxxf则 . 三、解答题: 本大题共3小题,每小题10分,共30分.解答应写出文字说明, 演算步骤或证明过程. 15.已知集合AaadadBaaqaq,,,,,22,其中a,d,qR,若A=B,求q的值。
16、已知二次函数()yfx,满足当12x时有最大值25,且与x轴交点横坐标的平方和为13,求()yfx的解析式。 17、已知集合510axxA,集合 221xxB (1)若BA,求实数a的取值范围; (2)若AB,求实数a的取值范围; (3)问是否存在实数a使得BA?若存在,求出a的值,若不存在,试说明理由。
提高卷(共50分)
1、(5分)下列表示图形中的阴影部分的是( ) )(A.()()ACBCUIU )(B.()()ABACUIU )(C.()()ABBCUIU )(D.()ABCUI
2、(5分)已知函数xxxf11)(的定义域为A,函数))((xffy 的定义域为B,则( ) )(A BBA )(B BA )(C BBA )(DBA
3、(5分)设Rxfx)(,0,且xxfxf)1(2)(,则)2(f 。 4、(5分)对任何实数,xy,函数fx满足:,12fxyfxfyf且,则
)2009()2010()4()5()3()4()2()3()1()2(ffffffffff的值为 。
5、(10分)求下列函数的值域 (1)21yxx (2)122xxxxy
A B
C 6、(10分)函数)(xf对一切实数x,y均有xyxyfyxf)12()()(成立,且0)1(f, (1)求)0(f的值; (2)求函数)(xf的解析式。
7、(10分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图中(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图中(2)的抛物线表示.
(1)写出图中(1)表示的市场售价与时间的函数关系式P=f(t); 写出图中(2)表示的种植成本与时间的函数关系式Q=g(t); (2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/102 ,kg,时间单位:天) 高一数学检测题(1)答案 基础卷(100分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项. DDDDA BCCCC 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 11、2,1 12、25 13、)1(34)(2xxxxf 14、8 三、解答题: 本大题共3小题,每小题10分,共30分.解答应写出文字说明, 演算步骤或证明过程. 15解:由元素的互异性可知:0d,1q,0a,................2分 而集合A=B,则有:
22adaqadaq ① 或 22adaqadaq ②.........................6分 由方程组①解得:1q(舍去) 由方程组②解得:1q(舍去),或12q
所以12q .............................10分 (16)解:根据题意设)0(25)21()(2axaxf,故有254)(2aaxaxxf....2分 设函数)(xf图像与x的两交点分别为1x、2x,
且由韦达定理可知: axxxx254112121 ................................5分 又因为132221xx,即有:132)(21221xxxx,所以 4a ............ 9分 所以函数解析式为2444)(2xxxf ................................10分 (17)解:当0a时,RA;
当0a时,axaxA41;
当0a时,axaxA14; .......................2分
(1)若BA,则有211240aaa或214210aaa,可得2a或8a..........5分
(2)若AB,则有有211240aaa或214210aaa或0a,可得221a ...8分 (3)能,当2a时,有BA。 .......................10分
提高卷 1、A 2、C 3、1 4、 4018 5、解:(1)换元法:令01tx,则12tx .................1分
所以:815)41(222)1(2222ttttty )0(t ........3分
由图像(省略)可知:函数21yxx的值域为),815[ ........5分 (2)判别式法:函数可化为 0)1()1(2yxyxy ........6分 当01y时,即1y时,可得01,故1y不符合题意。 ........7分 当1y时,0)1(4)1(2yyy,即0)13)(1(yy
所以131y ........9分
综上所述可知函数122xxxxy的值域为)1,31[ ........10分 6、解:(1)令0,1yx,则有2)0()1(ff, 所以2)0(f ........................5分 (2)法一:令1y,则有xxxxxf3)3()1(2 令tx1,1tx, 于是 2)1(3)1()(22tttttf 所以所求函数解析式为2)(2xxxf ........................10分 法二:令0y,则有xxfxf)1()0()(,故有2)(2xxxf 7、解:(1)由图(1)可得市场售价与时间的函数关系为
f(t)=;300200,3002,2000,300tttt ........................2分
由图(2)可得种植成本与时间的函数关系为 g(t)=2001(t-150)2+100,0≤t≤300. ........................4分
(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t),
即h(t)=.300200,21025272001,2000,217521200122tttttt .......................5分
当0≤t≤200时,配方整理得h(t)=-2001(t-50)2+100, 所以,当t=50时,h(t)取得区间[0,200]上的最大值100; 当200<t≤300时,配方整理得
h(t)=-2001(t-350)2+100,
所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5. ........9分 综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. ........................10分