编写嵌入式Linux设备驱动程序的实例教程
嵌入式Linux下GPIO驱动程序的开发及应用

第28卷第4期增刊 2007年4月仪 器 仪 表 学 报Chinese Jour nal of Scientif ic InstrumentVol.28No.4Apr.2007 嵌入式L inux 下GPIO 驱动程序的开发及应用3何 泉,贺玉梅(北京化工大学信息科学与技术学院 北京 100029)摘 要:嵌入式Linux 是一种适用于嵌入式系统的源码开放的占先式实时多任务操作系统,是目前操作系统领域中的一个热点,其重点与难点是驱动程序的开发。
开发嵌人式Linux 下的设备驱动程序,可以更好地利用新硬件特性,提高系统访问硬件的效率,改善整个应用系统的性能。
驱动程序修改非常方便,使应用系统非常灵活。
本文简要论述了基于A TM E L 公司嵌入式ARM 处理器芯片的嵌入式Linux 的GP IO 驱动程序的开发原理及流程。
关键词:嵌入式Linux ;ARM ;驱动程序;设备文件;GPIOInvest igat ion an d a pplicat ion of GP IO dr iver in t he embedded L inuxHe Quan ,He YuMei(School of I nf orma tion Science and Tec hnology BU CT ,Beij ing 100029,China )Abstract :Embedded Linu x ,w hich i s a full y real 2time kernel and applicable to embedded syst ems ,has bec o me a hot s 2po t in t he do main of op erati ng system at present.It s out line and difficult y is to investigat e drivers.Developi ng device dri vers o n embedded Lin ux can help using t he new devices ,and imp rovi ng t he e fficiency of access to t he new devices and t he p erformance cap abilit y.As drivers can be changed easil y ,t he system is very convenient and flexi ble.Thi s p a 2p er simpl y point s o ut t he element s and flow of t he GPIO driver in t he embedded Linux based o n t he A RM proces sor of A TMEL system.Key words :embedded Li nux ;A RM ;driver ;device file ;GPIO 3基金项目国家自然科学基金(6)、北京化工大学青年教师自然科学研究基金(QN 58)资助项目1 引 言随着半导体技术的飞速发展,嵌入式产品已经广泛应用于军事、消费电子、网络通信、工业控制等各个领域,这是嵌入式系统发展的必然趋势。
2010-8-嵌入式设备驱动

TM
8
8
网络设备
通过BSD套接口访问
TM
9
9
相关基本概念
设备文件 设备驱动 设备
用户态
Linux
应用程序 设备驱动 硬件设备
内核态
TM
10
10
Linux设备文件
Linux抽象了对硬件的处理,所有的硬件设备都可 以作为普通文件一样来看待 可以使用和操作文件相同的、标准的系统调用接口 来完成打开、关闭、读写和I/O控制操作
注:这种结构的声明方法是一种标记化格式声明,便于移 植。
TM
27
27
接口函数实现(1)
xsbase_open()和xsbase_release()
static int xsbase_open(struct inode *inode, struct file *file) { MOD_INC_USE_COUNT; printk("This chrdev is opened!\n"); return 0; } static int xsbase_release(struct inode *inode, struct file *file) { MOD_DEC_USE_COUNT; printk("this chrdev is released!\n"); return 0; }
创建一个xsbase.c文件,其中包含一些必要的头文件、宏 和全局变量
TM
26
26
主要接口函数
file_operations{ }结构的实例
static struct file_operations chr_fops = { read: xsbase_read, write: xsbase_write, open: xsbase_open, release: xsbase_release, };
嵌入式linux开发教程pdf

嵌入式linux开发教程pdf嵌入式Linux开发是指在嵌入式系统中使用Linux操作系统进行开发的过程。
Linux作为一种开源操作系统,具有稳定性、可靠性和灵活性,因此在嵌入式系统中得到了广泛的应用。
嵌入式Linux开发教程通常包括以下内容:1. Linux系统概述:介绍Linux操作系统的发展历程和基本原理,包括内核、文件系统、设备驱动等方面的知识。
了解Linux系统的基本结构和工作原理对后续的开发工作至关重要。
2. 嵌入式开发环境搭建:通过搭建开发环境,包括交叉编译器、调试器、仿真器等工具的配置,使得开发者可以在本机上进行嵌入式系统的开发和调试。
同时,还需要了解各种常用的开发工具和调试技术,如Makefile的编写、GDB的使用等。
3. 嵌入式系统移植:嵌入式系统往往需要根据不同的硬件平台进行移植,以适应各种不同的硬件环境。
这个过程包括引导加载程序的配置、设备驱动的移植和内核参数的调整等。
移植成功后,就可以在目标硬件上运行Linux系统。
4. 应用程序开发:在嵌入式Linux系统上进行应用程序的开发。
这包括编写用户空间的应用程序,如传感器数据采集、数据处理、网络通信等功能。
还需要熟悉Linux系统提供的各种库函数和API,如pthread库、socket编程等。
5. 系统优化和性能调优:在开发过程中,经常需要对系统进行调优和优化,以提高系统的性能和稳定性。
这包括对内核的优化、内存管理的优化、性能分析和调试等。
只有深入了解和熟练掌握这些技术,才能使得嵌入式系统运行得更加高效和稳定。
嵌入式Linux开发教程PDF通常会结合理论和实践相结合的方式进行教学,通过实际的案例和实践操作,帮助开发者快速掌握嵌入式Linux开发的技术和方法。
同时还会介绍一些常见的开发板和硬件平台,以及开源项目等,帮助开发者在实际项目中应用所学的技术。
总之,嵌入式Linux开发教程PDF提供了系统而详细的指导,帮助开发者快速入门嵌入式Linux开发,掌握相关的技术和方法,以便更好地进行嵌入式系统的开发工作。
《嵌入式Linux开发》课件

交叉编译工具链的安装
指导如何安装适用于目标板的交叉编译工具 链。
测试交叉编译环境
提供一种简单的方法来测试交叉编译环境是 否设置成功。
目标板与宿主机的连接方式
串口通信
介绍如何通过串口连接目标板和宿主机 ,以及串口通信的配置和常用命令。
USB连接
介绍如何通过USB连接目标板和宿主 机,以及USB通信的配置和常用命令
02
03
嵌入式系统
是一种专用的计算机系统 ,主要用于控制、监视或 帮助操作机器与设备。
特点
具有实时性、硬件可裁剪 、软件可定制、低功耗、 高可靠性等特点。
应用
汽车电子、智能家居、医 疗设备、工业自动化等领 域。
Linux作为嵌入式操作系统的优势
开源
Linux是开源的,可以免费使用和定制,降 低了开发成本。
路由与交换
介绍路由器和交换机的原理及在网 络中的作用。
03
02
IP地址
解释IP地址的分类、寻址方式以及子 网掩码的作用。
网络安全
简述常见的网络安全威胁和防范措 施。
04
TCP/IP协议栈简介
TCP/IP协议栈结构
详细描述TCP/IP协议栈的层次结构,包括应 用层、传输层、网络层和链路层。
IP协议
解释IP协议的核心功能,如地址解析、路由 选择等。
调试工具
介绍常用的调试工具,如gdbserver和gdb等,并说明如何使用这些 工具进行远程调试。
调试过程
详细描述调试过程,包括启动调试会话、设置断点、单步执行代码等 操作。
调试技巧与注意事项
提供调试过程中的一些技巧和注意事项,以提高调试效率和准确性。
03
嵌入式Linux系统开发基础
nuc980 linux 编程

nuc980 linux 编程NUC980是一种基于ARM架构的嵌入式处理器,适用于嵌入式Linux系统的开发。
下面是在NUC980上进行Linux编程的一些基本步骤:1. 准备开发环境:首先,需要安装交叉编译工具链,以便在主机上编译适用于NUC980的Linux内核和应用程序。
可以在NUC980官方网站上找到相关工具链的下载链接,并按照说明进行安装。
2. 下载内核源代码:到NUC980官方网站下载相应的Linux内核源代码,并解压到合适的目录中。
3. 配置内核:进入内核源代码目录,运行`make menuconfig`命令,此命令会打开一个配置界面,可以根据需求选择和配置内核功能,包括硬件驱动、网络协议、文件系统等。
4. 编译内核:运行`make`命令开始编译内核。
此过程可能需要一些时间,取决于计算机配置和源代码大小。
最终会生成一个内核镜像文件,一般存放在`arch/arm/boot`目录下。
5. 编写应用程序:使用交叉编译工具链,在主机上编写适用于NUC980的应用程序。
可以使用C语言或者其他支持的编程语言进行开发。
6. 交叉编译应用程序:使用交叉编译工具链对应用程序进行编译。
例如,如果使用的交叉编译工具链为`arm-linux-gcc`,可以运行`arm-linux-gccyour_program.c -o your_program`命令进行编译。
7. 将内核镜像和应用程序烧写到NUC980开发板:将编译好的内核镜像和应用程序烧写到NUC980开发板的存储介质上。
可以使用相应的工具或者方法来完成烧写。
8. 运行:将存储介质插入到NUC980开发板上,并启动开发板。
系统会加载内核,并执行应用程序。
这些是在NUC980上进行Linux编程的基本步骤。
具体的开发过程还可能涉及其他方面的内容,如设备驱动的编写、系统调试等,具体要根据具体的需求和实际情况来确定。
嵌入式linux驱动开发流程

三、设备的中断和轮询处理
对于不支持中断的设备,读写时需要轮询设备状态,以及是否需要继续进行数据传输。例如,打印机。如果设备支持中断,则可按照中断方式进行。
struct file_operations Key7279_fops =
{
.open = Key7279_Open,
.ioctl = Key7279_Ioctl,
.release = Key7279_Close,
.read = Key7279_Read,
};
1、 设备的打开和释放
模块在使用中断前要先请求一个中断通道(或者 IRQ中断请求),并在使用后释放它。通过request_irq()函数来注册中断,free_irq()函数来释放。
四、驱动程序的测试
对驱动程序的调试可以通过打印的方式来进行,就是通过在驱动程序中添加printk()打印函数,来跟踪驱动程序的执行过程,以此来判断问题。
◇ 设备的打开和释放。
ห้องสมุดไป่ตู้◇ 设备的读写操作。
◇ 设备的控制操作。
◇ 设备的中断和轮询处理。
Linux主要将设备分为三类:字符设备、块设备和网络设备。字符设备是指发送和接收数据以字符的形式进行,没有缓冲区的设备;块设备是指发送和接收数据以整个数据缓冲区的形式进行的设备;网络设备是指网络设备访问的BSD socket 接口。下面以字符设备为例,写出其驱动编写框架:
二、 构造file_operations结构中要用到的各个成员函数
Linux操作系统将所有的设备都看成文件,以操作文件的方式访问设备。应用程序不能直接操作硬件,使用统一的接口函数调用硬件驱动程序,这组接口被成为系统调用。每个系统调用中都有一个与之对应的函数(open、release、read、write、ioctl等),在字符驱动程序中,这些函数集合在一个file_operations类型的数据结构中。以一个键盘驱动程序为例:
嵌入式-Linux 设备驱动实验报告

嵌入式系统实验报告Linux 设备驱动实验学院专业学生姓名实验台号指导教师提交日期一、实验目的1.了解Linux驱动程序的结构;2.掌握Linux驱动程序常用结构体和操作函数的使用方法;3.初步掌握Linux驱动程序的编写方法及过程;4.掌握Linux驱动程序的加载方法。
二、实验内容1.实现helloworld驱动,观察驱动的加载和释放过程;2.根据参考代码,分析数码显示驱动的结构和原理,给出设备程序的主要组成部分框图;3.利用数码显示驱动模块,编写测试程序实现按键对数码显示的控制,包括点亮和关闭,显示不同数字等。
三、实验原理3.1驱动程序介绍驱动程序负责将应用程序如读、写等操作正确无误的传递给相关的硬件,并使硬件能够做出正确反应的代码。
驱动程序像一个黑盒子,它隐藏了硬件的工作细节,应用程序只需要通过一组标准化的接口实现对硬件的操作。
3.2 Linux设备驱动程序分类Linux设备驱动程序在Linux的内核源代码中占有很大的比例,源代码的长度日益增加,主要是驱动程序的增加。
虽然Linux内核的不断升级,但驱动程序的结构还是相对稳定。
Linux系统的设备分为字符设备(char device),块设备(block device)和网络设备(network device)三种。
字符设备是指在存取时没有缓存的设备,而块设备的读写都有缓存来支持,并且块设备必须能够随机存取(random access)。
典型的字符设备包括鼠标,键盘,串行口等。
块设备主要包括硬盘软盘设备,CD-ROM等。
网络设备在Linux里做专门的处理。
Linux的网络系统主要是基于BSD unix的socket 机制。
在系统和驱动程序之间定义有专门的数据结构(sk_buff)进行数据传递。
系统有支持对发送数据和接收数据的缓存,提供流量控制机制,提供对多协议的支持。
3.3驱动程序的结构驱动程序的结构如图3.1所示,应用程序经过系统调用,进入核心层,内核要控制硬件需要通过驱动程序实现,驱动程序相当于内核与硬件之间的“系统调用”。
嵌入式Linux的设备驱动研究与开发

l
I
设 备接 口
l
] [
硬 件
{ u s n d s ot otn tt ; n i e h r B t Sau g o s
un in ar sg ed ch Bot n m p 0; to t =
图 l 设备驱动流程
单位进行读写 , 能够进行随机访 问。网络设备在 Lnx i 里有专 u
门的处理 , 没有被映射 到文件系统 的设备节点 , 它的访 问 它 对 采用 sce 机制 。字符设备与块设备的主要区别是 : okt 在对字符
设备发 出读 / 写请求 时 , 实际的硬件 I / 0一般紧接着发 生 ; 块设
在 Ln x中, iu 几乎所有的 内容都是文件 , 对设备驱动的访 问 也是以文件操作的方式实现。无论是字符设备还 是块设备 , 用户 对设备的操作都是通过虚拟文件系统 ( F ) v s 转化为设备驱动与 硬件操作例程的交互( 图 1。 见 ) 即使是访 问网络设备的 sc e 接 ok t 口, 也是通过 V S实现的。 iu F Ln x通过 V S为用户提供了—个 统 F
备是利用一块系统 内存作缓冲区来进行实际的 I / O操作 。
应 用层
驱动程序用来控制 目 标板 上的一组 L D灯。e_ p 结构体定 E l fs do
义了该设备需要的操作接 口。它的成 员全部是函数指针 , 以 所 实质上就是函数跳转表 。
sr c l op a i s ed fp ={ tu t fe i ert on l os
一
it : n i
B t n tts ( Y_ & 0f : ot Sau =KE _ o CS xf) r获取 当前 8个按键 的状态 ‘ , fr o( i=0 :i<8 +) :+ j { i( otn tts> i 1 = 0 f ( t S au > )& )= ) (B o
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编写嵌入式Linux设备驱动程序的实例教程
一、Linux device driver 的概念
系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。
设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。
设备驱动程序是内核的一部分,它完成以下的功能:
1、对设备初始化和释放;
2、把数据从内核传送到硬件和从硬件读取数据;
3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据;
4、检测和处理设备出现的错误。
在linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。
字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如
果不能,就调用请求函数来进行实际的I/O操作。
块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。
已经提到,用户进程是通过设备文件来与实际的硬件打交道。
每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。
设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。
最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。
也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。
如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。
二、实例剖析
我们来写一个最简单的字符设备驱动程序。
虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。
把
下面的C代码输入机器,你就会获得一个真正的设备驱动程序。
由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如 open,read,write,close…,注意,不是fopen, fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:
struct file_operations {
int (*seek) (struct inode * ,struct file *, off_t ,int); int (*read) (struct inode * ,struct file *, char ,int); int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int); int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *,struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *); int (*revalidate) (dev_t dev);
}
这个结构的每一个成员的名字都对应着一个系统调用。
用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。
这是linux的设备驱动程序工作的基本原理。
既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。
下面就开始写子程序。
#include <linux/types.h> 基本的类型定义
#include <linux/fs.h> 文件系统使用相关的头文件
#include <linux/mm.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;
static int read_test(struct inode *inode,struct file *file,char *buf,int count)
{
int left; 用户空间和内核空间
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT ) return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
这个函数是为read调用准备的。
当调用read时,read_test()被调用,它把用户的缓冲区全部写1。
buf 是read调用的一个参数。
它是用户进程空间的一个地址。
但是在read_test被调用时,系统进入核心态。
所以不能使用buf这个地址,必须用__put_user(),这是kernel提供的一个函数,用于向用户传送数据。
另外还有很多类似功能的函数。
请参考,在向用户空间拷。