光催化材料课件
合集下载
TiO2光解水及CO2催化转化 ppt课件

ppt课件
Fujishima A et al., Nature, 1972, 238, 376-38
二氧化钛晶体
二氧化钛是宽禁带半导体,在自然界中主要存在三种晶型:锐钛矿型(anatase)、金红石 型(rutile)和板钛矿型(brookite)。
板钛矿晶型热稳定性较差,几乎不具备光催化活性。
锐钛矿颗粒热稳定性相对低一些,但光催化活性最高。
ppSt课an件t P A,et al,Phys. Chem. Chem. Phys, 2002, 4(2): 19817–203
光解水催化剂的改性——贵金属沉积
光生电子和空穴在激发后有自然复合的倾向。在实际应用中,这种 复合作用降低了光催化剂的催化活性。
研究发现,在光催化剂的表面沉积适量的贵金属,这种具有不同电 子能级的异质结构可以有效地提高光生电子和空穴的分离效率。
二氧化钛在 550~750nm处没有特征吸收峰,而 CdS/TiO2复合 物在 550~750 nm处则出现宽吸收谱带。由于CdS的能带较窄,
使CdS/TiO2复合物把光的吸收范围从紫外光部分拓展到了可 见光区。此外,该复合半导体使得光致电子和空穴得到了更
有效的分离,提高了光催化剂的量子效率。
Xu Y,et al,Am. Mineral, 2000, 85: 543–556
光解水制氢的评价指标
一般来说考察催化剂的光解水催化性能主要有两个指标, 一为催化活性,二为催化剂稳定性。
我们可以将单位时间内的产氢量与催化剂的使用量联系 起来,以气体的生成速率来表示其催化活性和这使得在 相同的反应条件下,不同的催化剂之间具有一定的可比 性。
作为总量子效率概念的深化,表观量子效率是一种重要 而同时被人们广泛认可的评价催化剂催化活性的一种指 标。总量子效率与表观量子效率的计算方法分别如右式。
光催化分解水制氢ppt课件

Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
纳米材料
Si, GaAs, GaP, CdS,ZnO(unstable) AMWO6(A=Rb,Cs;M=Nb,Ta) SrTiO3, BaTi4O9 K4Nb6O17, K2La2Ti3O10,MTaO3, ZrO2, Ta2O5, TiO2(3.2eV), SnO2(3.6eV), Fe2O3(2.1-
Energy diagram of a PEC cell for the photoelectrolysis of water. The cell is based on
an n-type semiconducting photo-anode.
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
In a•dTdrainstitiioonnm,etal the high rate of electron–
hole• Nobrleemceotaml bination on resul• Ntosn-metalin a low photo• Sceamti-acolnydsucitosr combination
Doping atoms Ru,Eu,
2021年4月5日星期一
氢的主要来源
电解水制氢(商业化电解水的效率~85%) 热化学法分解水制氢 石油产品催化重整制氢 生物质原料催化重整制氢 生物制氢 硫化氢裂解制氢 光催化分解水制氢
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
纳米材料
Si, GaAs, GaP, CdS,ZnO(unstable) AMWO6(A=Rb,Cs;M=Nb,Ta) SrTiO3, BaTi4O9 K4Nb6O17, K2La2Ti3O10,MTaO3, ZrO2, Ta2O5, TiO2(3.2eV), SnO2(3.6eV), Fe2O3(2.1-
Energy diagram of a PEC cell for the photoelectrolysis of water. The cell is based on
an n-type semiconducting photo-anode.
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
In a•dTdrainstitiioonnm,etal the high rate of electron–
hole• Nobrleemceotaml bination on resul• Ntosn-metalin a low photo• Sceamti-acolnydsucitosr combination
Doping atoms Ru,Eu,
2021年4月5日星期一
氢的主要来源
电解水制氢(商业化电解水的效率~85%) 热化学法分解水制氢 石油产品催化重整制氢 生物质原料催化重整制氢 生物制氢 硫化氢裂解制氢 光催化分解水制氢
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
《催化剂课件》课件

课件应注重实用 性,便于学生将 所学知识应用到 实际工作中
课件评价
用户评价
课件内容丰富, 讲解清晰
课件设计美观, 易于理解
课件互动性强, 易于学习
课件实用性强, 易于应用
专家评价
课件内容丰富,知识点全面
课件设计合理,易于理解
课件互动性强,提高学习兴趣
课件实用性强,有助于提高教 学效果
社会影响
YOUR LOGO
催化剂课件
PPT,a click to unlimited possibilities
汇报人:PPT
汇报时间:20X-XX-XX
课件介绍
课件内容
课件制作
课件使用催化剂在化学反应中的作用 催化剂的分类及应用 催化剂的发展历史 催化剂在工业生产中的重要性
习时间
使用场景
化学实验教学:帮助学生理解 化学反应原理和过程
化学课程设计:为教师提供教 学资源和参考
化学研究:为科研人员提供实 验数据和理论支持
化学竞赛:为参赛者提供理论 知识和实践操作指导
使用建议
课件内容应简洁 明了,便于学生 理解
课件应包含丰富 的实例和案例, 便于学生掌握知 识点
课件应注重互动 性,鼓励学生积 极参与
多种形式
互动性强:设 有问答、实验、 模拟等互动环 节,增强学习
效果
易于理解:采 用通俗易懂的 语言和生动的 例子,便于学
生理解
课件内容
催化剂定义
催化剂是一种能够改变化学反应速率的物质 催化剂本身在化学反应中不被消耗 催化剂可以加速化学反应的进行,提高反应效率 催化剂可以分为均相催化剂和非均相催化剂两种类型
提高公众对催化剂的认识和理 解
促进催化剂在工业、环保等领 域的应用和发展
光辅助电解水制氢课件

光催化辅助电解水制氢阳极上的光催化剂膜
另外大的比表面积更加利于对底物的吸附。
将生长了ZnO纳米棒阵列的Ni片基板先后浸渍在TiO2前躯体溶胶、乙醇溶液、水溶液、乙醇溶液中,进行ZnO表面层层组装TiO2(如图所示),每个步骤
浸渍时间分别是10s,层层自组装循环过程重复10次。
7%的光电转换效率,但是这些方法成本较高,同时也很难应用在纳米尺度和小尺寸器件上。
b.几何的因素:包括所用催化剂的表面粗糙度,比表面积以及催 化剂晶面的暴露程度等,这些几何因素主要依靠于催化剂本身的 制备过程。
电解水制氢电极的研究—析氢阴极材料
析氢
电极材 料
镍基 合金
过渡 金属 元素 合金
光催 化活 性合
金
镍基合金的种类最多,并且镍基合金的化学稳定性较 强,是目前电解水制氢领域中研究并应用最广的合金。 (最具代表性的有Ni-Mo,Ni-W,Ni-Fe和Ni-C等)
电解水制氢电极的研究—析氢阴极材料
析氢电极
提高电极析氢的活性,主要应从以下几点入手:
化学稳定性、电催化活性、电子导电性
电极的催化活性主要受限于以下的两个因素:
a.能量的因素:反应粒子与催化剂(包括了反应产物与中间粒 子),它们之间的作用通常会控制活化能与能量变化。即在催化 剂的参与下如何控制并降低活化能,对于电解水制氢的这个过程 而言,电极材料本身的电化学性质往往会对析氢效率起到决定性 的作用。
这些方法得到的TiO2纳米管阵列对模板的附着力较差, 往往需要严格控制刻蚀时间(仅有几秒钟),才能避免ZnO基 底的溶解,所以一般重复性较差。
为了提高TiO2纳米管阵列对Ni片基板的附着力,增加经过 TiO2纳米管修饰后的阳极稳定性,从而提高产氢效率,又提出了 在原有方法的基础上对制备二氧化钛纳米管修饰Ni电极的方法进 行了一些改进。采用层层组装的方法在Ni片基板上组TiO2/ZnO 纳米棒阵列结构和TiO2纳米管阵列结构。
环境光催化材料与光催化净化技术——【功能材料 精】

La3+
抑制金红石相成核长大,提
高氧空位和缺陷浓度。
3mol% 600℃ 3mol% 500℃
Ce4+、Ce3+ Zn2+
抑制晶粒生长及相变发生, 提高氧空位和缺陷浓度,Ce4+ 易捕获光生电子。
抑制晶粒生长及相变发生, 提高氧空位和缺陷浓度,
3mol% 500℃
Cu2+、Cu+
促进金红石相成核长大,Cu2+ 易捕获光生电子,Cu+易于捕 获空穴。
基于电子能带结构设计的光催化剂 基于固溶体结构设计的光催化剂 基于微观结构设计的光催化剂
基于电子能带结构设计的光催化剂
基于电子能带结构设计的光催化剂
掺杂
能带调控
实际光催化剂电子结构更加复杂,存在缺陷或氧空位等
都可产生杂质能级,使得响应波长红移,另外表面态在光 电化学中存在能级固定的重要现象。
掺杂
e— •OH+OH— O2—•OH+OH—+O2
TiO2+hv
1. >TiOH
h+ v.b.
2.R
R
O2—,HOO•,HOOH,HOO—,HO•,OH—,H2O
R•
•ROH
活性氧物质
氧化 产物
热力 学氧 化
CO2 矿化
1.空穴
空穴是光化学反应中主要的一种氧化物质。有些纳晶光催化剂表面有深和浅 两种不同的捕获位存在。其中浅捕获位容易热激发回到价带,与自由空穴建立自 由转化。浅捕获空穴与自由空穴具有相当的反应活性与迁移性。深捕获空穴则具 有较弱的氧化能力。浅捕获空穴能迅速与表面化学吸附的物质反应,而深捕获空 穴则易于和物理吸附的物质反应,反应速率较慢。
光催化材料简介

常见半导体材料的能带结构
SiC ZrO2 SrTiO3 TiO 2
0.0
ZnS
-1.0
Ta2O5 Nb2O5 SnO ZnO 2
)/eV
3.0
WO3 3.6
CdS
H+/H2 (E=0 eV)
2.4
Evs.SHE(pH=
1 4
0
1.0
3.2 eV
3.2 4.6 5.0 3.4
3.8 3.2
O2/H2O (E=1.23eV)
I
COOH
Cl
rose bengal
rhdamine B
环保方面的应用有机物催化剂光源光解产物烃tio2紫外co2h2o卤代烃tio2紫外hclco2h2o羧酸tio2紫外氙灯coh2烷烃醇酮酸表面活性剂tio2日光灯co2so32染料tio2紫外co2h2o无机离子中间物含氮有机物tio2紫外co32no3nh4po43f等有机磷杀虫剂tio2紫外太阳光crpo43co2无机污染物的光催化氧化还原光催化能够解决cr6hg2pd2等重金属离子的污染还可分解转化其它无机污染物如cnno2h2sso2nox等有机化合物的光催化降解纳米tio2光催化绿色涂料对室内氨气等的降解光催化材料的应用灭杀细菌和病毒可以用于生活用水的的杀菌消毒
光催化技术的发展历史
1972年,Fujishima (藤岛)在N-型半导 体TiO2电极上发现了水的光催化分解作用, 从而开辟了半导体光催化这一新的领域。 1977年,Yokota (横田)T等发现了光照 条件下,TiO2对环丙烯环氧化具有光催化活 性,从而拓宽了光催化反应的应用范围,为 有机物的氧化反应提供了一条新思路。 近年来,光催化技术在环保、卫生保健、 自洁净等方面的应用研究发展迅速,半导体 光催化成为国际上最活跃的研究领域之一。
半导体光催化基础 第三章 光催化剂

Usc=U-Vfb
U为外加电压(V)
当Usc>10kT/e时,kT/e可忽略不计
h
34
C1S2Cr02eN D(UVfb)
以1/ C
2 SC
~U作图,当1/C
2 SC
=0时由截距则可求出平带电位
Vfb=U,其含义是由于外加电压的施加使半导体的带弯变为平 直状态。
C
2 SC
n-InP电极(111面)Vfb的测量 (M-S法,SCE)
h
23
n型半导体和含有氧化还原对(ox/red)的溶液接触前后 的能级示意图 (a)暗态接触前 (b)暗态接触后并达到平衡.
能带弯曲可以通过外加电势E或入射光的强度来改变。
对于n型半导体
调节E往负方向变化, 将使能带弯曲量减小;
若调节E往正方向变化, 将使能带弯曲量增大。
❖ 对于p型半导体,调节E往正方向变化,将使能 带弯曲量减小;若调节E往负方向变化,将使 能带弯曲量增大。
h
20
3 8.1 半导体禁带宽度Eg的测量
❖ 半导体带隙宽度Eg,通常可采用光谱法(反 射光谱或UV-Vis吸收光谱),STM,SPS等 方法测量,亦可用光电流法直接进行测量。
h
21
光电流与波长的关系
光电流法测量Eg的装置如图所示: 1-光源,2-透镜,3-单色仪, 4-半导体电极,5-对电极,6-微安表。
h
7
3.6.3 光催化剂Pt/TiO2中的能量关系,电 荷转移及光催化活性的剖析
❖ T导iO带2边的电功位函E数cΦs==-40..64 eVV(,N金HE属)铂,的EΦv=s5=.+625.8eVV,TiO2的 (NHE);
❖ 由此可以算出价带电子的能量Ee(Vb)=7.3 eV。
光电催化 PPT

溶液的PH对光催化反应有较大影响,主要是因为 溶液的pH不同,改变了半导体光透电极与电解质 溶液界面的电荷性质,进而影响了半导体光透电
极对有机物的吸附。
外加偏电压的影响
外加电压达到一定值时,光生载流子已达到充分分 离,形成饱和光电流。 因此,在光电流接近饱和状态时,继续增大电压对 光催化反应速率提高幅度不大; 相反,随着电压的升高,光电流效率反而下降。
紫外线照射
电Байду номын сангаас 能量
导 e- e- e带 e- e- e-
e- e- ee- e- e-
禁 带
h+ h+ h+ h+
价 带
h+ h+ h+
吸附 还(原O2)
(·O2-)
氧化(污染物)
氧化为 (·OH) 吸附 (吸H附2(O污)染物)
羟基自由基(·0H),超氧离子自由基(·02-)及·0H2自由 基具有很强的氧化能力,很容易将各种污染物物直接 氧化为CO2,H2O等无机小分子。
以环己烷为目标污染物,采用活性碳/石墨和泡沫镍作 TiO2的载体,形成微孔电极,用高聚物固体电解质 Nafion分隔阴、阳两极,组成新型气相光电催化氧 化反应系统。利用外加电压的作用,有效地解决了 TiO2半导体光生电荷简单复合的问题。
与光催化相比的优势
➢ TiO2光电组合效应把导带电子的还原过程同价带空 穴的氧化过程从空间位置上分开(与半导体微粒相比 较)
➢ 明显地减少了电子和空穴的复合,结果大大增加了 半导体表面·OH的生成效率
➢ 防止了氧化中间产物在阴极上的再还原 ➢ 导带电子能被引到阴极还原水中的H+,因此不需要
向系统内鼓入作为电子俘获剂的O2
极对有机物的吸附。
外加偏电压的影响
外加电压达到一定值时,光生载流子已达到充分分 离,形成饱和光电流。 因此,在光电流接近饱和状态时,继续增大电压对 光催化反应速率提高幅度不大; 相反,随着电压的升高,光电流效率反而下降。
紫外线照射
电Байду номын сангаас 能量
导 e- e- e带 e- e- e-
e- e- ee- e- e-
禁 带
h+ h+ h+ h+
价 带
h+ h+ h+
吸附 还(原O2)
(·O2-)
氧化(污染物)
氧化为 (·OH) 吸附 (吸H附2(O污)染物)
羟基自由基(·0H),超氧离子自由基(·02-)及·0H2自由 基具有很强的氧化能力,很容易将各种污染物物直接 氧化为CO2,H2O等无机小分子。
以环己烷为目标污染物,采用活性碳/石墨和泡沫镍作 TiO2的载体,形成微孔电极,用高聚物固体电解质 Nafion分隔阴、阳两极,组成新型气相光电催化氧 化反应系统。利用外加电压的作用,有效地解决了 TiO2半导体光生电荷简单复合的问题。
与光催化相比的优势
➢ TiO2光电组合效应把导带电子的还原过程同价带空 穴的氧化过程从空间位置上分开(与半导体微粒相比 较)
➢ 明显地减少了电子和空穴的复合,结果大大增加了 半导体表面·OH的生成效率
➢ 防止了氧化中间产物在阴极上的再还原 ➢ 导带电子能被引到阴极还原水中的H+,因此不需要
向系统内鼓入作为电子俘获剂的O2