小学奥数比例法行程问题汇总

合集下载

小学奥数 比例行程 知识点+例题+练习 (分类全面)

小学奥数 比例行程 知识点+例题+练习 (分类全面)

7、客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的3/甲、乙两城相距多少千米?(240)
8、小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。

有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。

那么小明每天步行上学需要时间多少分钟?
【解】后一半路程和原来的时间相等,这样前面一半的路程中和平时的速度比=3:1,所以时间比=1:3,也就是节省了2份时间就是10分钟,所以后一半路程走路的时间就是10÷2×3=15分钟,全部路程原来需要30分钟。

9、甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。

(176)。

小学奥数行程问题分类总结汇总版(题型全,知识点详细)

小学奥数行程问题分类总结汇总版(题型全,知识点详细)

目录目录 (1)行程专题(1)——简单相遇追及问题 (3)行程专题(2)——多人相遇追及问题 (6)行程专题(3)——多次相遇追及问题 (8)模块一:由简单行程问题拓展出的多次相遇问题 (8)模块二:运用比例关系解多次相遇问题 (8)模块三:多次相遇与全程的关系 (9)行程专题(4)——变速变道问题 (10)模块一:变速问题 (10)模块二:变道问题 (10)模块三:走停问题 (11)行程专题(5)——火车过桥问题 (12)模块一:火车过桥(隧道、树)问题 (12)模块二:火车与人的相遇与追及问题 (12)模块三:火车与火车的相遇与追及 (13)行程专题(6)——流水行船问题 (14)模块一、基本的流水行船问题 (14)模块二、相遇与追及问题 (15)行程专题(7)——发车问题 (17)行程专题(8)——环形跑道问题 (19)模块一、一般环形跑道问题 (19)模块二、环形跑道——变道问题 (19)模块三、环形跑道——变速问题 (20)模块四、时钟问题 (20)行程专题(9)——比例解行程题综合 (22)模块一:比例初步——利用简单倍比关系进行解题 (22)模块二:时间相同速度比等于路程比 (22)模块三:路程相同速度比等于时间的反比 (23)模块四、比例综合题 (23)行程专题强化(1) (24)行程专题强化(2) (26)行程专题强化(3) (27)目录行程专题强化(4) (28)行程专题强化(5) (29)行程专题强化(6) (30)行程专题强化(7) (31)行程专题强化(8) (32)行程专题强化(9) (33)行程专题强化答案(1) (34)行程专题强化答案(2) (36)行程专题强化答案(3) (38)行程专题强化答案(4) (40)行程专题强化答案(5) (42)行程专题强化答案(6) (44)行程专题强化答案(7) (46)行程专题强化答案(8) (48)行程专题强化答案(9) (50)行程专题(1)——简单相遇追及问题行程问题的基本公式:关于路程,速度,时间三者的基本关系:路程=速度×时间可简记为:s = v×t时间=路程÷速度可简记为:t = s÷v速度=路程÷时间可简记为:v = s÷t相同时间内,路程比=速度比平均速度的基本关系式为:平均速度=全部路程÷全部时间全部时间=全部路程÷平均速度全部路程=平均速度×全部时间相遇:甲乙从AB两地同时出发,两人在途中相遇,实际上是甲和乙一起行了A,B之间这段路程,如果两人同时出发,那么:相遇总路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间一般地,相遇问题的关系式为:路程和=速度和×相遇时间追及:如果设甲走得快,乙走得慢,相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例题1】(23中2012)一列慢车和一列快车分别从A、B两站相对开出,快车和慢车速度的比是5:4,慢车先从A站开出27千米,快车才从B站开出。

小学奥数行程问题经典题型

小学奥数行程问题经典题型

【导语】⾏程问题是⼩学奥数中的⼀⼤基本问题。

⾏程问题有相遇问题、追及问题等近⼗种,是问题类型较多的题型之⼀。

⾏程问题包含多⼈⾏程、⼆次相遇、多次相遇、⽕车过桥、流⽔⾏船、环形跑道、钟⾯⾏程、⾛⾛停停、接送问题等。

以下是整理的《⼩学奥数⾏程问题经典题型》相关资料,希望帮助到您。

1.⼩学奥数⾏程问题经典题型 1、⼀艘每⼩时⾏25千⽶的客轮,在⼤运河中顺⽔航⾏140千⽶,⽔速是每⼩时3千⽶,需要⾏⼏个⼩时? 2、⼀只⼩船静⽔中速度为每⼩时30千⽶。

在176千⽶长河中逆⽔⽽⾏⽤了11个⼩时。

求返回原处需⽤⼏个⼩时。

3、⼀只船每⼩时⾏14千⽶,⽔流速度为每⼩时6千⽶,问这只船逆⽔航⾏112千⽶,需要⼏⼩时? 4、⼀只船顺⽔每⼩时航⾏12千⽶,逆⽔每⼩时航⾏8千⽶,问这只船在静⽔中的速度和⽔流速度各是多少? 5、甲、⼄两港相距360千⽶,⼀轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。

现在有⼀机帆船,静⽔中速度是每⼩时12千⽶,这机帆船往返两港要多少⼩时? 2.⼩学奥数⾏程问题经典题型 A、B两地相距80千⽶,上午10时整,甲、⼄两⼈分别从A、B两地出发,相向⽽⾏,甲到达B地后⽴即返回,⼄到达A地后也⽴即返回,上午12时他们第⼆次相遇,此时甲⾛的路程⽐⼄多10千⽶,甲每⼩时⾏多少千⽶? 解:到甲、⼄第⼆次相遇时,路程和就是A、B两地距离和的3倍, 时间为:12-10=2(⼩时) 速度和等于路程除以时间:80×3÷(12-10)=120(千⽶/时) 速度差为10÷2=5(千⽶/时) 甲速=(速度和+速度差)÷2⼄速=(速度和-速度差)÷2 甲速:(120+5)÷2=62.5(千⽶/时)。

答:甲每⼩时⾏62.5千⽶。

3.⼩学奥数⾏程问题经典题型 1、⼀列客车从甲城开往⼄城要8个⼩时,⼀列⽕车从⼄城开往甲城要12个⼩时。

两车同时从两城开出,相遇时客车⾏了264千⽶,求甲⼄两个城市之间相距多少千⽶? 2、某船往返于相距180千⽶的两港之间,顺⽔⽽下要10个⼩时,逆⽔⽽上需要⽤15个⼩时。

小学奥数之 行程问题1

小学奥数之 行程问题1

行程专题(一)一、时间相同速度比等于路程比【例1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).【例2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。

【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:10分钟因为丙的速度是甲、乙的3倍,分步讨论如下:(1)若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信5分钟5分钟当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)(2)同理先追及甲需要时间为120分钟【例3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?【分析】甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744-⨯=,所以A、B两点的距离为1607=16804⨯÷(米).【例4】甲、乙两车分别从A、B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B 地时,乙离A地还有10 千米.那么A、B 两地相距多少千米?【解析】两车相遇时甲走了全程的59,乙走了全程的49,之后甲的速度减少20%,乙的速度增加20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+=,所以甲到达B 地时,乙又走了4689515⨯=,距离A地58191545-=,所以A、B 两地的距离为11045045÷=(千米).【例5】早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是15 千米.下午 3 点时,两人之间的距离还是l5 千米.下午 4 点时小王到达乙地,晚上7 点小张到达乙地.小张是早晨几点出发?【解析】从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是l5 千米.下午 3 点时,两人之间的距离还是l5 千米,所以下午2 点时小王距小张15 千米,下午 3 点时小王超过小张15千米,可知两人的速度差是每小时30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走30 千米,那小张3 小时走了15 30 45=+千米,故小张的速度是45 ÷3=15千米/时,小王的速度是15 +30 =45千米/时.全程是45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午10 点出发的。

(完整版)小学奥数行程问题汇总

(完整版)小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。

小学生奥数比和比例问题、多人行程练习题(一)

小学生奥数比和比例问题、多人行程练习题(一)

小学生奥数比和比例问题、多人行程练习题(1)
1、一个直角三角形的两个锐角的度数比是1:5,这两个锐角各是多少度?
2、一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验田的面积是多少平方米?
3、一种药水是用药物和水按3:400配制成的。

(1)要配制这种药水1612千克,需要药粉多少千克?
(2)用水60千克,需要药粉多少千克?
(3)用48千克药粉,可配制成多少千克的药水?
4、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?
5、纸箱里有红绿黄三色球,红色球的个数是绿色球的3,绿色球的个数与黄色4球个数的比是4:5,已知绿色球与黄色球共81个,问三色球各有多少个?。

小学奥数3-3-1 比例解行程问题.专项练习(精品)

1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v tv t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

模块一:比例初步——利用简单倍比关系进行解题【例 1】甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的56。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。

知识精讲教学目标比例解行程问题【例2】甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的13加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是。

小学奥数—比例解行程问题

比例解行程问题教学目标1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.知识精讲比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况: ,,v v t t s s 乙乙乙甲甲甲,;;1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

,这里因为时间相同,即,所以由 s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙t t t ==乙甲s s t t v v ==甲乙乙甲乙甲,得到,,甲乙在同一段时间t 内的路程之比等于速度比s st v v ==甲乙乙甲s v s v =甲甲乙乙2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

,这里因为路程相同,即,由 s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙s s s ==乙甲s v t s v t =⨯=⨯乙乙乙甲甲甲,得,,甲乙在同一段路程s 上的时间之比等于速度比的反比。

s v t v t =⨯=⨯乙乙甲甲v tv t =甲乙乙甲模块一:比例初步——利用简单倍比关系进行解题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的。

当两车相遇时,甲车比乙车多行驶了30千米,56则甲车开出 千米,乙车才出发。

机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等13于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是 。

小学奥数系列行程问题习题及详解

行程问题行程问题是小升初考试和小学四大杯赛四大题型之一(计算、数论、几何、行程)。

具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法。

现根据四大杯赛的真题研究和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类。

一般行程问题相遇问题(重点)与相离问题,两类问题的共同点是都用到了速度和行程问题几大题型追及问题与领先问题,两个问题的共同点是同向而行,一快一慢,有速度差“火车过桥问题”“流水行船问题”“钟表问题”行程问题是“行路时所产生的路程、时间、速度的一类应用题”,基本数量关系如下:速度×时间=路程;路程÷时间=速度;路程÷速度=时间。

注意总行程的平均速度的算法:平均速度=总路程÷总时间,而不是两个(或几个)速度相加再除以2。

行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及多个物体的运动。

涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题和领先问题)和“相背运动”(相离问题)三种情况。

但归纳起来,不管是“一个物体的运动”还是“两个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程(路程÷时间=速度,路程÷速度=时间)。

在各类行程问题中进一步推演的数量关系都依赖于这一基本思想,在学习时要多注意从“简单”到“复杂”的推导过程,重在理解,在理解的基础上形成对各类行程问题中所涉及到的关系式的记忆和正确应用;此类问题的题型非常多且富于变化,但是“万变不离其宗”,希望学习者能深入理解其中包含的数学思想的本源,从而做到“以不变应万变”!解行程问题时还要注意充分利用图示把题中的“情节”形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

相向而行的公式:相遇时间=距离÷速度和。

小学奥数比例法行程问题

小升初之行程问题的解法---比例法根据近千套各类奥数竞赛和"小升初"数学考试试题的分析,平均每套试卷按12道题,满分100分计算,就有1.8道试题为行程问题(即每120道试题中有1 8道是行程问题),分值为21分。

行程问题占一套试卷分值的1/5左右,所以行程问题不论在奥数竞赛中还是在"小升初"的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。

小学生"行程问题"普遍是弱项,有几下几个原因:一、行程分类较细,变化较多。

行程跟工程不一样,工程抓住工作效率和比例关系就可以解决绝大部分问题,但是行程则没有关键点可以抓住,因为每一个类型关键点都不一样。

二、要求对动态过程进行演绎和推理。

行程问题的题目语言叙述本身就很长,加上所描绘的是一个动态过程,一般很难从复杂的语言叙述中提炼出过程中量的变化关系。

三、行程是一个壳,可以将各类知识往里面加。

很多题目看似行程问题,但是本质不是行程问题。

因为行程的复杂,所以学习行程一定要循序渐进,掌握各类行程问题的解题关键点。

下面举例讲解用比例法求解一类行程问题。

方法指导:复杂行程问题经常运用到比例知识:速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比。

分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。

也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关系求解。

能用比例法解决的行程问题的特点:能直接或间接地求出速度比或同一时间内的路程比例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?边讲边练:1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?例2:两列火车同时从两个城市相对开出,6.5小时相遇。

相遇时甲车比乙车多行52千米,乙车的速度是甲车的23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 13 小升初之行程问题的解法---比例法 根据近千套各类奥数竞赛和"小升初"数学考试试题的分析,平均每套试卷按12道题,满分100分计算,就有1.8道试题为行程问题(即每120道试题中有18道是行程问题),分值为21分。行程问题占一套试卷分值的1/5左右,所以行程问题不论在奥数竞赛中还是在"小升初"的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。 小学生"行程问题"普遍是弱项,有几下几个原因: 一、 行程分类较细,变化较多。 行程跟工程不一样,工程抓住工作效率和比例关系就可以解决绝大部分问题,但是行程则没有关键点可以抓住,因为每一个类型关键点都不一样。 二、 要求对动态过程进行演绎和推理。 行程问题的题目语言叙述本身就很长,加上所描绘的是一个动态过程,一般很难从复杂的语言叙述中提炼出过程中量的变化关系。 三、 行程是一个壳,可以将各类知识往里面加。 很多题目看似行程问题,但是本质不是行程问题。 因为行程的复杂,所以学习行程一定要循序渐进,掌握各类行程问题的解题关键点。 下面举例讲解用比例法求解一类行程问题。 方法指导:复杂行程问题经常运用到比例知识: 速度一定,时间和路程成正比; 时间一定,速度和路程成正比; 路程一定,速度和时间成反比。 分析时可以抓住题中含有比的句子进行分析,以此作为突破口,一步一步求得结果。也可以从题意的叙述中找出等量关系,从而得出所需的数量之比,再根据比与分数的关系求解。 能用比例法解决的行程问题的特点: 能直接或间接地求出速度比或同一时间内的路程比 2 / 13

例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?

边讲边练: 1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?

例2:两列火车同时从两个城市相对开出,6.5小时相遇。相遇时甲车比乙车多行52千米,乙车的速度是甲车的23。求两城之间的距离。

边讲边练: 1、甲、乙两车分别从AB两地同时相向而行,3小时相遇。已知甲车行1小时距B地340千米,乙车行1小时距A地360千米。AB两地相距多少千米?(420)

2、客车由甲城到乙城需行10小时,货车从乙城到甲城需行15小时,两车同时相向开出,相遇时客车距离乙城还有192千米,求两城间的距离。 3 / 13

例3:甲、乙两车同时从AB两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?

边讲边练: 甲、乙两车同时从AB两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:5,乙车行完全程需多少小时?

例4:客车和货车同时从AB两地相对开出,客车每小时行60千米,货车每小时行全程的115,相遇时客车和货车所行路程的比是5:4。AB两地相距多少千米?

边讲边练: 1、客车和货车同时从甲、乙两地相对开出,客车每小时行全程的15,货车每小时行50千米。相遇时客车和货车所行的路程的比是3:2。甲、乙两地相距多少千米?

2、甲、乙两个城市相距若干千米,一列客车与一列货车同时从两个城市相对开出,3小时后相遇,相遇时客车比货车多行60千米,货车与客车速度比是9:11。货车平均每小时行多少千米? 4 / 13

3、甲、乙两车同时相对而行,甲车行全长需8小时,乙车每小时56千米,相遇时,甲、乙两车所行路程的比是3:4,这时乙车行了多少千米?

例5:甲、乙两车同时从AB两地相向而行,4小时后相遇,相遇后甲又行了3小时到达B地,这时乙车离A地70千米,AB两地相距多少千米?

边讲边练:小强和小军分别从AB两地同时相对而行,8分钟相遇,相遇后又行6分钟小军到达A地,这时小强离B地160米,AB两地相距多少米?

例6:甲、乙两车同时从AB两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?

边讲边练: 快车从A地,慢车从B地同时出发相向而行,经过4小时相遇,相遇后两车仍按原速度继续前进,又经过5小时慢车到达A地,这时快车已超过B地90千米。AB两地路程是多少千米?(360) 5 / 13

摩托车和轻骑两车同时从甲、乙两地相向而行,当摩托车到达乙地时,轻骑离甲地还有35千米;当轻骑到达甲地时,摩托车超过乙地40千米。甲、乙两地相距多少千米?

甲、乙两人各加工同样多的零件。同时开工,当甲完成任务时,乙还有150个没有完成,当乙完成任务时,甲可以超额完成250个,这批零件总数共多少个?

例7:甲、乙两车从相距180千米A地去B地,甲车比乙车晚1.5小时出发,结果两车同时到达,甲、乙两车速度的比是4:3,甲车每小时行多少千米?

边讲边练: 甲、乙两人从相距2500米的A地去B地,甲比乙晚5分钟出发,结果两人同时到达,甲、乙两人行走速度比是3:2,求甲的速度。

姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间? 6 / 13

例8:一辆汽车运一批货从江城到海乡,又从海乡运一批货返回江城,往返共用了13.5小时。去时用的时间是回来时用的时间的1.25倍,去时的速度比返回时的速度每小时慢6千米。这辆汽车往返共行了多少千米?

边讲边练:、小张爬山,下山按原路返回,往返共用了1.5小时。上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。小张上下山共行了多少米?

一辆汽车往返于甲、乙两地。去时的速度是返回速度的34,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?

、 例9:甲乙两人分别从AB两地同时出发,相向而行,乙车的速度是甲的23,两人相遇后继续前行,甲到达B地,乙到达A地后立即返回,已知两人第二次相遇的地点距离第一次相遇的地点20千米,那么AB两地相距多少千米? 7 / 13

例10:从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是1: 2: 3,某人走这三段路所用的时间之比是4: 5: 6。已知他上坡时的速度为每小时2.5千米,路程全长为20千米。此人从甲地走到乙地需要多长时间?(5小时)东分

边讲边练: 1、从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是2:3:5,小亮走这三段路所用的时间之比是6:5:4 。已知小亮走平路时的速度为每小时4.5千米,他从甲地到乙地共用了5小时。问:甲乙两地相距多少千米?

2、青青从家到学校正好要翻一座小山,她上坡每分钟行50米,下坡速度比上坡速度快40%,从家到学校的路程为2800米,上学要用50分钟。从学校回家要用多少时间?

例11:甲乙两人分别从A,B两地出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这、样当甲到达B地时,乙离A地还有14千米。那么A,B两地间的距离是多少千米?

边讲边练: 8 / 13

1、甲乙两人步行的速度比为13:11,他们分别由A,B两地同时出发相向而行,0.5小时后相遇。如果他们同向而行,那么甲追上乙需要几小时?

2、从学校到少年宫,小明要2小时,东东要1小时40分钟。若小明从A地出发8分钟后,东东学校出发追小明。东东出发多久能追上小明?

3、甲乙两车分别从AB两地出发,相向而行。出发时,甲乙的速度比为5:4,相遇后,甲的速度减少了20%,乙的速度增加了20%,这样,当甲到达B地时,乙离A地还有10千米。那么AB两地相距多少千米?

例12:一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果按照原速行驶120千米后,再将速度提高25%,则可提前40分钟到达。那么甲乙两地相距多少千米?

边讲边练: 1、一辆汽车从甲地开往乙地,如果把车速提高25%,那么可以比原定时间提前

24分钟到达,如果以原速行驶80千米后,再将速度提高31,那么可以提前10分钟到达乙地,甲乙两地相距多少千米? 9 / 13

2、一个正方形的一边减少20%,另一边增加2米,得到一个长方形,这个长方形的面积与原来正方形的面积相等,原正方形面积是多少?

3、客货两车同时从甲乙两地相对开出,相遇时客货两车所行驶的路程比为5:4,相遇后货车每小时比相遇前夺走27千米,客车仍按原速行驶,结果两车同时到达对方的出发站,已知客车一共行了10小时,甲乙两地相距多少千米?

例13、甲乙两班学生到离校24千米的飞机场参观学习,一辆汽车一次只能坐一个班的学生,为了尽快到达机场,两个班商定由甲班先坐车,乙班步行,同时出发,甲班学生在中途下车步行去机场,汽车立即返回接途中步行的乙班同学。已知两班学生步行的速度相同,汽车的速度是不行的7倍,问汽车应在距机场多少千米处返回接乙班学生?(学生上下车以及汽车换向时间不计算在内)

边讲边练: 1、红星小学有80名学生租了一辆40座的汽车去海边观看日出,未乘上车的学生步行和汽车同时出发,由汽车往返接送。学校离海边48千米,汽车的速度是步行的9倍。汽车应该在距离海边多少千米处返回接第二批学生,才能使学生同时到达海边?

相关文档
最新文档