【全国百强校】河北省衡水中学2016-2017学年高二下学期期末考试数学(理)试题(PDF)
2016-2017年河北省衡水中学高三下学期三调数学试卷与解析PDF(理科)

2016-2017学年河北省衡水中学高三(下)三调数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z满足,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知集合A={x|log3(2x﹣1)≤0},,全集U=R,则A∩(∁U B)等于()A. B.C. D.3.(5分)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.4.(5分)已知,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)+g(x)是奇函数C.h(x)=f(x)g(x)是奇函数D.h(x)=f(x)g(x)是偶函数5.(5分)已知双曲线E:﹣=1(a>0.b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为双曲线E的两个焦点,且双曲线E的离心率是2.直线AC的斜率为k.则|k|等于()A.2 B.C.D.36.(5分)在△ABC中,=,P是直线BN上的一点,若=m+,则实数m的值为()A.﹣4 B.﹣1 C.1 D.47.(5分)已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)的图象与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递减区间是()A.[6kπ,6kπ+3](k∈Z)B.[6kπ﹣3,6kπ](k∈Z) C.[6k,6k+3](k∈Z)D.[6k﹣3,6k](k∈Z)8.(5分)某旅游景点统计了今年5月1号至10号每天的门票收入(单位:万元),分别记为a1,a2,…,a10(如:a3表示5月3号的门票收入),表是5月1号到5月10号每天的门票收入,根据表中数据,下面程序框图输出的结果为()A.3 B.4 C.5 D.69.(5分)来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每人还会说其他三国语言的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言正确的推理是()A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英10.(5分)如图,已知正方体ABCD﹣A'B'C'D'的外接球的体积为,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为()A.B.或C.D.或11.(5分)如图,已知抛物线的方程为x2=2py(p>0),过点A(0,﹣1)作直线与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为﹣3,则∠MBN的大小等于()A.B.C. D.12.(5分)已知a,b∈R,且e x≥a(x﹣1)+b对x∈R恒成立,则ab的最大值是()A.B.C.D.e3二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在的展开式中,含x3项的系数为.14.(5分)在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1,k2,k3,那么k1:k2:k3=.15.(5分)由约束条件,确定的可行域D能被半径为的圆面完全覆盖,则实数k的取值范围是.16.(5分)如图,已知O为△ABC的重心,∠BOC=90°,若4BC2=AB•AC,则A 的大小为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}的前n项和为S n,a1≠0,常数λ>0,且λa1a n=S1+S n 对一切正整数n都成立.(1)求数列{a n}的通项公式;(2)设a1>0,λ=100,当n为何值时,数列的前n项和最大?18.(12分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:(1)该同学为了求出y关于x的线性回归方程=+,根据表中数据已经正确计算出=0.6,试求出的值,并估计该厂6月份生产的甲胶囊产量数;(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.19.(12分)已知多面体ABCDEF如图所示,其中ABCD为矩形,△DAE为等腰等腰三角形,DA⊥AE,四边形AEFB为梯形,且AE∥BF,∠ABF=90°,AB=BF=2AE=2.(1)若G为线段DF的中点,求证:EG∥平面ABCD;(2)线段DF上是否存在一点N,使得直线BN与平面FCD所成角的余弦值等于?若存在,请指出点N的位置;若不存在,请说明理由.20.(12分)如图,椭圆E:+=1(a>b>0)左、右顶点为A,B,左、右焦点为F1,F2,|AB|=4,|F1F2|=2.直线y=kx+m(k>0)交椭圆E于C,D两点,与线段F1F2、椭圆短轴分别交于M,N两点(M,N不重合),且|CM|=|DN|.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线AD,BC的斜率分别为k1,k2,求的取值范围.21.(12分)设函数f(x)=﹣ax,e为自然对数的底数(Ⅰ)若函数f(x)的图象在点(e2,f(e2))处的切线方程为3x+4y﹣e2=0,求实数a,b的值;(Ⅱ)当b=1时,若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的最小值.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,斜率为1的直线l过定点(﹣2,﹣4).以O为极点,x轴非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρsin2θ﹣4cosθ=0.(1)求曲线C的直角坐标方程以及直线l的参数方程;(2)两曲线相交于M,N两点,若P(﹣2,﹣4),求|PM|+|PN|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|+|3x﹣2|,且不等式f(x)≤5的解集为,a,b∈R.(1)求a,b的值;(2)对任意实数x,都有|x﹣a|+|x+b|≥m2﹣3m+5成立,求实数m的最大值.2016-2017学年河北省衡水中学高三(下)三调数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z满足,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵,∴z=,∴复数z在复平面内对应的点的坐标为(﹣1,﹣2),在第三象限.故选:C.2.(5分)已知集合A={x|log3(2x﹣1)≤0},,全集U=R,则A∩(∁U B)等于()A. B.C. D.【解答】解:∵集合A={x|log3(2x﹣1)≤0}={x|},={x|x≤0或x},全集U=R,∴C U B={x|0<x<},A∩(∁U B)={x|}=().故选:B.3.(5分)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,∵3cos2α=sin(﹣α),∴3(cos2α﹣sin2α)=(cosα﹣sinα),∴cosα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.4.(5分)已知,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)+g(x)是奇函数C.h(x)=f(x)g(x)是奇函数D.h(x)=f(x)g(x)是偶函数【解答】解:h(x)=f(x)+g(x)=+=,h(﹣x)==﹣=h(x),∴h(x)=f(x)+g(x)是偶函数;h(x)=f(x)g(x)无奇偶性,故选:A.5.(5分)已知双曲线E:﹣=1(a>0.b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为双曲线E的两个焦点,且双曲线E的离心率是2.直线AC的斜率为k.则|k|等于()A.2 B.C.D.3【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由双曲线E的离心率是2,可得e==2,即c=2a,b==a,直线AC的斜率为k==﹣=﹣=﹣.即有|k|=.故选:B.6.(5分)在△ABC中,=,P是直线BN上的一点,若=m+,则实数m的值为()A.﹣4 B.﹣1 C.1 D.4【解答】解:由题意,设=n,则=+=+n=+n(﹣)=+n(﹣)=+n(﹣)=(1﹣n)+,又∵=m+,∴m=1﹣n,且=解得;n=2,m=﹣1,故选:B.7.(5分)已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)的图象与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递减区间是()A.[6kπ,6kπ+3](k∈Z)B.[6kπ﹣3,6kπ](k∈Z) C.[6k,6k+3](k∈Z)D.[6k﹣3,6k](k∈Z)【解答】解:与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2,4,8知函数的周期为T==2(﹣),得ω=,再由五点法作图可得•+φ=,求得φ=﹣,∴函数f(x)=Asin(x﹣).令2kπ+≤x﹣≤2kπ+,k∈z,解得:6k+3≤x≤6k+6,k∈z,∴即x∈[6k﹣3,6k](k∈Z),故选:D.8.(5分)某旅游景点统计了今年5月1号至10号每天的门票收入(单位:万元),分别记为a1,a2,…,a10(如:a3表示5月3号的门票收入),表是5月1号到5月10号每天的门票收入,根据表中数据,下面程序框图输出的结果为()A.3 B.4 C.5 D.6【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出门票大于115的天数.由统计表可知:参与统计的十天中,第2、7、8这3天门票大于115.故最终输出的值为:3故选:A.9.(5分)来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每人还会说其他三国语言的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言正确的推理是()A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英【解答】解:此题可直接用观察选项法得出正确答案,根据第二条规则,日语和法语不能同时由一个人说,所以B、C、D都错误,只有A正确,再将A代入题干验证,可知符合条件.故选A10.(5分)如图,已知正方体ABCD﹣A'B'C'D'的外接球的体积为,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为()A.B.或C.D.或【解答】解:设正方体的棱长为a,则=,解得a=1.该几何体为正方体截去一角,如图则剩余几何体的表面积为S=3×12++=.故选:A.11.(5分)如图,已知抛物线的方程为x2=2py(p>0),过点A(0,﹣1)作直线与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为﹣3,则∠MBN的大小等于()A.B.C. D.【解答】解:设直线PQ的方程为:y=kx﹣1,P(x1,y1),Q(x2,y2),由得x2﹣2pkx+2p=0,△>0,则x1+x2=2pk,x1x2=2p,,,====0,即k BP+k BQ=0①又k BP•k BQ=﹣3②,联立①②解得,,所以,,故∠MBN=π﹣∠BNM﹣∠BMN=,故选D.12.(5分)已知a,b∈R,且e x≥a(x﹣1)+b对x∈R恒成立,则ab的最大值是()A.B.C.D.e3【解答】解:令f(x)=e x﹣a(x﹣1)﹣b,则f′(x)=e x﹣a,若a=0,则f(x)=e x﹣b≥﹣b≥0,得b≤0,此时ab=0;若a<0,则f′(x)>0,函数单调增,x→﹣∞,此时f(x)→﹣∞,不可能恒有f(x)≥0.若a>0,由f′(x)=e x﹣a=0,得极小值点x=lna,由f(lna)=a﹣alna+a﹣b≥0,得b≤a(2﹣lna),ab≤a2(2﹣lna).令g(a)=a2(2﹣lna).则g′(a)=2a(2﹣lna)﹣a=a(3﹣2lna)=0,得极大值点a=.而g()=.∴ab的最大值是.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在的展开式中,含x3项的系数为﹣84.【解答】解:展开式中,=•(1﹣x)9﹣k•,通项公式为T k+1令k=0,得•(1﹣x)9=(1﹣x)9,又(1﹣x)9=1﹣9x+x2﹣x3+…,所以其展开式中含x3项的系数为﹣=﹣84.故答案为:﹣84.14.(5分)在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1,k2,k3,那么k1:k2:k3=::1.【解答】解:∵V1=πR3=π()3=a3,∴k1=,∵V2=aπR2=aπ()2=a3,∴k2=,∵V3=a3,∴k3=1,∴k1:k2:k3=::1,故答案为:15.(5分)由约束条件,确定的可行域D能被半径为的圆面完全覆盖,则实数k的取值范围是.【解答】解:∵可行域能被圆覆盖,∴可行域是封闭的,作出约束条件的可行域:可得B(0,1),C(1,0),|BC|=,结合图,要使可行域能被为半径的圆覆盖,只需直线y=kx+1与直线y=﹣3x+3的交点坐标在圆的内部,两条直线垂直时,交点恰好在圆上,此时k=,则实数k的取值范围是:.故答案为:.16.(5分)如图,已知O为△ABC的重心,∠BOC=90°,若4BC2=A B•AC,则A的大小为.【解答】解:cosA=,连接AO并且延长与BC相交于点D.设AD=m,∠ADB=α.则AB2=﹣2××mcosα,AC2=m2+﹣2m××cos(π﹣α),相加可得:AB2+AC2=2m2+.m2=(3OD)2==.∴AB2+AC2=5BC2.又4BC2=AB•AC,∴cosA=,A∈(0,π)∴A=,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}的前n项和为S n,a1≠0,常数λ>0,且λa1a n=S1+S n 对一切正整数n都成立.(1)求数列{a n}的通项公式;(2)设a1>0,λ=100,当n为何值时,数列的前n项和最大?【解答】解:(1)令n=1,得,因为a1≠0,所以,当n≥2时,,,两式相减得2a n﹣2a n﹣=a n(n≥2),1所以a n=2a n﹣1(n≥2),从而数列{a n}为等比数列,所以.(2)当a1>0,λ=100时,由(1)知,a n=,b n=lg==2﹣nlg2.所以数列{b n}是单调递减的等差数列,公差为﹣lg2,所以,当n≥7时,,所以数列的前6项和最大.18.(12分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:(1)该同学为了求出y关于x的线性回归方程=+,根据表中数据已经正确计算出=0.6,试求出的值,并估计该厂6月份生产的甲胶囊产量数;(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.【解答】解:(1)==3,(4+4+5+6+6)=5,因线性回归方程=x+过点(,),∴=﹣=5﹣0.6×3=3.2,∴6月份的生产甲胶囊的产量数:=0.6×6+3.2=6.8.(2)ξ=0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,其分布列为所以Eξ==.19.(12分)已知多面体ABCDEF如图所示,其中ABCD为矩形,△DAE为等腰等腰三角形,DA⊥AE,四边形AEFB为梯形,且AE∥BF,∠ABF=90°,AB=BF=2AE=2.(1)若G为线段DF的中点,求证:EG∥平面ABCD;(2)线段DF上是否存在一点N,使得直线BN与平面FCD所成角的余弦值等于?若存在,请指出点N的位置;若不存在,请说明理由.【解答】解:(1)证明:因为DA⊥AE,DA⊥AB,AB∩AE=A,故DA⊥平面ABFE,故CB⊥平面ABFE,以B为原点,BA,BF,BC分别为x轴,y轴,z轴正方向,建立如图所示的空间直角坐标系,则F(0,2,0),D(2,0,1),,E(2,1,0),C(0,0,1),所以,易知平面ABCD的一个法向量,所以,所以,又EG⊄平面ABCD,所以EG∥平面ABCD.(2)当点N与点D重合时,直线BN与平面FCD所成角的余弦值等于.理由如下:直线BN与平面FCD所成角的余弦值为,即直线BN与平面FCD所成角的正弦值为,因为,设平面FCD的法向量为,由,得,取y1=1得平面FCD的一个法向量假设线段FD上存在一点N,使得直线BN与平面FCD所成角的正弦值等于,设,则,,所以,所以9λ2﹣8λ﹣1=0,解得λ=1或(舍去)因此,线段DF上存在一点N,当N点与D点重合时,直线BN与平面FCD所成角的余弦值为.20.(12分)如图,椭圆E:+=1(a>b>0)左、右顶点为A,B,左、右焦点为F1,F2,|AB|=4,|F1F2|=2.直线y=kx+m(k>0)交椭圆E于C,D两点,与线段F1F2、椭圆短轴分别交于M,N两点(M,N不重合),且|CM|=|DN|.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线AD,BC的斜率分别为k1,k2,求的取值范围.【解答】解:(Ⅰ)因为2a=4,2c=2,所以a=2,c=,所以b=1,所以椭圆E的方程为;(Ⅱ)直线y=kx+m(k>0)与椭圆联立,可得(4k2+1)x2+x8mk+4m2﹣4=0.设D(x1,y1),C(x2,y2),则x1+x2=﹣,x1x2=,又M(﹣,0),N(0,m),由|CM|=|DN|得x1+x2=x M+x N,所以﹣=﹣,所以k=(k>0).所以x1+x2=﹣2m,x1x2=2m2﹣2.因为直线y=kx+m(k>0)交椭圆E于C,D两点,与线段F1F2、椭圆短轴分别交于M,N两点(M,N不重合),所以﹣≤﹣2m≤且m≠0,所以()2=[]2====,所以==﹣1﹣∈[﹣2﹣3,2﹣3].21.(12分)设函数f(x)=﹣ax,e为自然对数的底数(Ⅰ)若函数f(x)的图象在点(e2,f(e2))处的切线方程为3x+4y﹣e2=0,求实数a,b的值;(Ⅱ)当b=1时,若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的最小值.【解答】解:(I)﹣a(x>0,且x≠1),∵函数f(x)的图象在点(e2,f(e2))处的切线方程为3x+4y﹣e2=0,∴f′(e2)=﹣a=,f(e2)==﹣,联立解得a=b=1.(II)当b=1时,f(x)=,f′(x)=,∵x∈[e,e2],∴lnx∈[1,2],.∴f′(x)+a==﹣+,∴[f′(x)+a]max=,x∈[e,e2].存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立⇔x∈[e,e2],f(x)min≤f (x)max+a=,①当a时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)=,解得a≥.min②当a时,由f′(x)=﹣a在[e,e2]上的值域为.(i)当﹣a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x ∈[e,e2]上为增函数,∴f(x)min=f(e)=,不合题意,舍去.(ii)当﹣a<0时,即时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈时,f′(x)>0,f(x)为增函数.∴f(x)min=f(x0)=﹣ax0,x0∈(e,e2).∴a≥,与矛盾.(或构造函数即可).综上可得:a的最小值为.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,斜率为1的直线l过定点(﹣2,﹣4).以O为极点,x轴非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρsin2θ﹣4cosθ=0.(1)求曲线C的直角坐标方程以及直线l的参数方程;(2)两曲线相交于M,N两点,若P(﹣2,﹣4),求|PM|+|PN|的值.【解答】解:(1)由斜率为1的直线l过定点(﹣2,﹣4),可得参数方程为:,(t为参数).由曲线C的极坐标方程为ρsin2θ﹣4cosθ=0,即ρ2sin2θ﹣4ρcosθ=0,可得直角坐标方程:C:y2=4x.(2)把直线l的方程代入抛物线方程可得:t2﹣12t+48=0.∴t1+t2=12,t1t2=48.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=12.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|+|3x﹣2|,且不等式f(x)≤5的解集为,a,b∈R.(1)求a,b的值;(2)对任意实数x,都有|x﹣a|+|x+b|≥m2﹣3m+5成立,求实数m的最大值.【解答】解:(1)若,原不等式可化为﹣2x﹣1﹣3x+2≤5,解得,即;若,原不等式可化为2x+1﹣3x+2≤5,解得x≥﹣2,即;若,原不等式可化为2x+1+3x﹣2≤5,解得,即;综上所述,不等式|2x+1|+|3x﹣2|≤5的解集为,所以a=1,b=2.(2)由(1)知a=1,b=2,所以|x﹣a|+|x+b|=|x﹣1|+|x+2|≥|x﹣1﹣x﹣2|=3,故m2﹣3m+5≤3,m2﹣3m+2≤0,所以1≤m≤2,即实数m的最大值为2.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2016-2017学年河北省衡水市冀州中学高二(下)期末数学试卷及答案(文科)(b卷)

2016-2017学年河北省衡水市冀州中学高二(下)期末数学试卷(文科)(B卷)一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)复数的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(4分)已知集合A={x∈R||x|≥2},B={x∈R|x2﹣x﹣2<0},则下列结论正确的是()A.A∪B=R B.A∩B≠∅C.A∪B=∅D.A∩B=∅3.(4分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B.C.4D.124.(4分)已知,则sin2α的值为()A.B.C.D.5.(4分)已知实数x,y满足,则z=x+y的取值范围为()A.[0,3]B.[2,7]C.[3,7]D.[2,0]6.(4分)已知,p:sin x<x,q:sin x<x2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(4分)某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π8.(4分)定义在R上的函数f(x)满足f(x)=则f(3)=()A.3B.2C.log29D.log279.(4分)已知圆C:x2+y2=4,直线l:y=x,则圆C上任取一点A到直线l的距离小于1的概率为()A.B.C.D.10.(4分)已知三棱锥A﹣BCD的四个顶点A,B,C,D都在球O的表面上,BC⊥CD,AC⊥平面BCD,且AC=2,BC=CD=2,则球O的表面积为()A.4πB.8πC.16πD.2π11.(4分)已知抛物线C:y2=4x的焦点为F,准线为l,过点F的直线交抛物线于A,B 两点(A在第一象限),过点A作准线l的垂线,垂足为E,若∠AFE=60°,则△AFE 的面积为()A.B.C.D.12.(4分)已知函数f(x)=A sin(πx+φ)的部分图象如图所示,点B,C是该图象与x 轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1B.C.D.213.(4分)已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的偶函数,当x>0时,f (x)=则函数g(x)=2f(x)﹣1的零点个数为()个.A.5B.6C.7D.8二、填空题:本大题共4小题,每小题4分,共16分.把答案直接答在答题纸上.14.(4分)某校有男教师80人,女教师100人现按男、女比例采用分层抽样的方法从该校教师中抽取x人参加教师代表大会,若抽到男教师12人,则x=.15.(4分)已知函数f(x)为偶函数,当x>0时,f(x)=xlnx﹣x,则曲线y=f(x)在点(﹣e,f(﹣e))处的切线方程为.16.(4分)已知数列{a n}的前n项和S n,若a n+1+(﹣1)n a n=n,则S40=.17.(4分)设函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定φ(A,B)=(|AB|为线段AB的长度)叫做曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:①函数y=x3图象上两点A与B的横坐标分别为1和﹣1,则φ(A,B)=0;②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B是抛物线y=x2+1上不同的两点,则φ(A,B)≤2;④设曲线y=e x(e是自然对数的底数)上不同两点A(x1,y1),B(x2,y2),则φ(A,B)<1.其中真命题的序号为.(将所有真命题的序号都填上)三、解答题:本大题共7小题,共82分.解答应写出文字说明,证明过程或演算步骤.18.(10分)在△ABC中,2cos2A+3=4cos A.(1)求角A的大小;(2)若a=2,求△ABC的周长l的取值范围.19.(12分)已知数列{a n}中,a1=1,a n+1=(n∈N*).(1)求证:{+}为等比数列,并求{a n}的通项公式a n;(2)数列{b n}满足b n=(3n﹣1)••a n,求数列{b n}的前n项和T n.20.(12分)“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801﹣2015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:为了了解一批空气净化器(共2000台)的质量,随机抽取n台机器作为样本进行估计,已知这n台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.2,5.7和5.9,并绘制了如下频率分布直方图.(Ⅰ)求n的值及频率分布直方图中的x值;(Ⅱ)以样本估计总体,试估计这批空气净化器(共2000台)中等级为P2的空气净化器有多少台?(Ⅲ)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P2的概率.21.(12分)已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,P A⊥平面ABCD,E,F分别是线段AB,BC的中点.(1)证明:PF⊥FD;(2)若P A=1,求点E到平面PFD的距离.22.(12分)已知动圆M恒过点(0,1),且与直线y=﹣1相切.(1)求圆心M的轨迹方程;(2)动直线l过点P(0,﹣2),且与点M的轨迹交于A、B两点,点C与点B关于y 轴对称,求证:直线AC恒过定点.23.(12分)函数f(x)=lnx+,g(x)=e x﹣(e是自然对数的底数,a∈R).(Ⅰ)求证:|f(x)|≥﹣(x﹣1)2+;(Ⅱ)已知[x]表示不超过x的最大整数,如[1.9]=1,[﹣2.1]=﹣3,若对任意x1≥0,都存在x2>0,使得g(x1)≥[f(x2)]成立,求实数a的取值范围.24.(12分)设函数f(x)=|x﹣a|,a<0.(Ⅰ)证明f(x)+f(﹣)≥2;(Ⅱ)若不等式f(x)+f(2x)<的解集非空,求a的取值范围.2016-2017学年河北省衡水市冀州中学高二(下)期末数学试卷(文科)(B卷)参考答案与试题解析一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【考点】A5:复数的运算.【解答】解:=,则复数的共轭复数是:1+i.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.【考点】1E:交集及其运算.【解答】解:集合A={x∈R||x|≥2}={x|x≥2或x≤﹣2}B={x∈R|x2﹣x﹣2<0}={x|(x﹣2)(x+1)<0}={x|﹣1<x<2},则A∩B=∅,A∪B={x|x>﹣1或x≤﹣2},对照选项,可得A,B,C均错,D正确.故选:D.【点评】本题考查集合的交集和并集的运算,同时考查绝对值不等式和二次不等式的解法,注意运用定义法,考查运算能力,属于基础题.3.【考点】9B:向量加减混合运算.【解答】解:由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B.【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.4.【考点】GS:二倍角的三角函数.【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,故选:C.【点评】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.5.【考点】7C:简单线性规划.【解答】解先根据约束条件画出不等式组表示的可行域,z=x+y的几何意义为直线在y轴上的截距.由图知,当直线z=x+y过点A(1,1)时,z最小值为2.当直线z=x+y过点B(4,3)时,z最大值为7.故选:B.【点评】本题主要考查了简单的线性规划,以及利用几何意义由平移法求最值,属于基础题.6.【考点】29:充分条件、必要条件、充要条件.【解答】解:,令f(x)=x﹣sin x,则f′(x)=1﹣cos x>0,∴函数f (x)在上单调递增,则f(x)>f(0)=0,因此命题p是真命题.而,令g(x)=x2﹣sin x,则g′(x)=2x﹣cos x,=﹣1×π<0,∴g′(x)=0有解,因此函数g(x)存在极值点,设为x0,则2x0=cos x0.g(x0)=﹣sin x0=﹣sin x0==∈,因此命题q不一定成立.∴p是q的必要不充分条件.故选:B.【点评】本题考查了利用导数研究函数的单调性极值与最值、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.【考点】L!:由三视图求面积、体积.【解答】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=π×22×2++2×4+2×4×2+2×4+2×2×2=12π+40.故选:C.【点评】本题考查了几何体的常见几何体的三视图,几何体表面积计算,属于中档题.8.【考点】5B:分段函数的应用.【解答】解:∵f(x)=,∴f(3)=f(2)=f(1)=f(0)=log28=3,故选:A.【点评】本题考查的知识点是函数求值,分段函数的应用,难度不大,属于基础题.9.【考点】CF:几何概型.【解答】解:设和直线l平行的直线的方程为x﹣y+c=0,∵圆C上任取一点A到直线l的距离小于1,∴圆心到直线x﹣y+c=0的距离小于1,∴≤1,解得|c|≤,分别做直线y=x+和y=x﹣,如图所示,∵OC=1,OB=2,∴∠CBO=30°,∴∠AOB=30°,∴符合条件的圆心角的度数为4×30°=120°,根据几何概型的概率公式得到P==,故选:D.【点评】本题考查概率的求法,解题时要认真审题,注意圆的性质及点到直线的距离公式的合理运用.10.【考点】LG:球的体积和表面积.【解答】解:由题意,AC⊥平面BCD,BC⊂平面BCD,∴AC⊥BC,∵BC⊥CD,AC∩CD=C,∴BC⊥平面ACD,∴三棱锥S﹣ABC可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为体对角线,∴4R2=AC2+BC2+CD2=16,∴R=2,∴球O的表面积为4πR2=16π.故选:C.【点评】本题给出特殊的三棱锥,由它的外接球的表面积.着重考查了线面垂直的判定与性质、勾股定理与球的表面积公式等知识,属于中档题.11.【考点】K8:抛物线的性质.【解答】解:抛物线的焦点为F(1,0),准线方程为x=﹣1.设E(﹣1,2a),则A(a2,2a),∴k AF=,k EF=﹣a,∴tan60°=,∴a=,∴A(3,2),∴△AFE的面积为=4故选:A.【点评】本题考查了抛物线的性质,三角形的面积计算,属于中档题.12.【考点】9O:平面向量数量积的性质及其运算;HL:y=Asin(ωx+φ)中参数的物理意义.【解答】解:∵函数f(x)=sin(πx+φ)的周期T==2,则BC==1,则C点是一个对称中心,则根据向量的平行四边形法则可知:=2,=∴=2•=2||2=2×12=2.故选:D.【点评】本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.13.【考点】53:函数的零点与方程根的关系.【解答】解:∵函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=,在同一坐标系画出函数的图象如下图所示,由图可得:函数f(x)图象与直线y=有6个交点,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的零点与方程根的关系,属于中档题.二、填空题:本大题共4小题,每小题4分,共16分.把答案直接答在答题纸上.14.【考点】B3:分层抽样方法.【解答】解:由题意可得=,即x=27,故答案为:27【点评】本题主要考查分层抽样的应用,根据条件建立比例关系即可得到结论.15.【考点】6H:利用导数研究曲线上某点切线方程.【解答】解:函数f(x)为偶函数,可得f(﹣x)=f(x),即有x<0时,﹣x>0,当x>0时,f(x)=xlnx﹣x,可得f(﹣x)=﹣xln(﹣x)+x=f(x),则x<0时,f(x)=﹣xln(﹣x)+x,导数为f′(x)=﹣ln(﹣x)﹣1+1=﹣ln(﹣x),可得曲线y=f(x)在点(﹣e,f(﹣e))处的切线斜率为k=﹣lne=﹣1,切点为(﹣e,0),则曲线y=f(x)在点(﹣e,f(﹣e))处的切线方程为y﹣0=﹣(x+e),即为x+y+e=0.故答案为:x+y+e=0.【点评】本题考查导数的运用:求切线的方程,考查函数的奇偶性的运用:求解析式,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.16.【考点】8H:数列递推式.【解答】解:由a n+1+(﹣1)n a n=n,∴当n=2k时,有a2k+1+a2k=2k,①当n=2k﹣1时,有a2k﹣a2k﹣1=2k﹣1,②当n=2k+1时,有a2k+2﹣a2k+1=2k+1,③①﹣②得:a2k+1+a2k﹣1=1,①+③得:a2k+2+a2k=4k+1,∴a2k﹣1+a2k+a2k+1+a2k+2=4k+2.∴S40=4(1+3+…+19)+20=+20=420.故答案为:420.【点评】本题考查数列递推式,考查了数列前n项和的求法,考查数学转化思想方法,是中档题.17.【考点】2K:命题的真假判断与应用.【解答】解:对于①,由y=x3,得y′=3x2,则k A=3,k B=3,则|k A﹣k B|=0,则φ(A,B)=0,故①正确;对于②,如y=1时,y′=0,则φ(A,B)=0,故②正确;对于③,抛物线y=x2+1的导数为y′=2x,y A=x A2+1,y B=x B2+1,y A﹣y B=x A2﹣x B2=(x A﹣x B)(x A+x B),则φ(A,B)===≤2,故③正确;对于④,由y=e x,得y′=e x,φ(A,B)=,由不同两点A(x1,y1),B(x2,y2),可得φ(A,B)<=1,故④正确.故答案为:①②③④【点评】本题是新定义题,考查了命题的真假判断与应用,考查了利用导数研究过曲线上某点的切线方程,考查了函数恒成立问题,关键是对题意的理解.三、解答题:本大题共7小题,共82分.解答应写出文字说明,证明过程或演算步骤.18.【考点】HP:正弦定理.【解答】解:(1)因为2cos2A+3=4cos A,所以,所以4cos2A﹣4cos A+1=0,所以.又因为0<A<π,所以.(2)因为,,a=2,所以,所以.因为,所以.又因为,所以,所以l∈(4,6].【点评】本题考查了倍角公式、正弦定理、和差公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.19.【考点】8E:数列的求和;8H:数列递推式.【解答】解(1)∵a1=1,a n+1═,∴,即==3(+),则{+}为等比数列,公比q=3,首项为,则+=,即=﹣+=,即a n=.(2)b n=(3n﹣1)••a n=,则数列{b n}的前n项和T n=①=+…+②,两式相减得=1﹣=﹣=2﹣﹣=2﹣,则T n=4﹣.【点评】本题主要考查等比数列的判断,以及数列的求和,利用错位相减法是解决本题的关键,考查学生的运算能力.20.【考点】B8:频率分布直方图;CC:列举法计算基本事件数及事件发生的概率.【解答】解:(Ⅰ)∵在(4,6]之间的数据一共有6个,再由频布直方图得:落在(4,6]之间的频率为0.03×2=0.06,∴n==100,由频率分布直方图的性质得:(0.03+x+0.12+0.14+0.15)×2=1,解得x=0.06.(Ⅱ)由频率分布直方图可知:落在(6,8]之间共:0.12×2×100=24台,又∵在(5,6]之间共4台,∴落在(5,8]之间共28台,∴估计这批空气净化器(共2000台)中等级为P2的空气净化器有560台.(Ⅲ)设“恰好有1台等级为P2”为事件B,依题意落在(4,6]之间共6台,属于国标P2级的有4台,则从(4,6]中随机抽取2台,基本事件总数n=,事件B包含的基本事件个数m==8,∴恰好有1台等级为P2的概率P(B)=.【点评】本题考查频率分布直方图的求法,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.21.【考点】LW:直线与平面垂直;MK:点、线、面间的距离计算.【解答】(1)证明:连接AF,则AF=,DF=,又AD=2,∴DF2+AF2=AD2,∴DF⊥AF,又P A⊥平面ABCD,∴DF⊥P A,又P A∩AF=A,∴DF⊥平面P AF,又PF⊂平面P AF,∴DF⊥PF.(2)解:∵S△EFD=2﹣=,∴V P﹣EFD==,∵V E﹣PFD=V P﹣AFD,∴,解得h=,即点E到平面PFD的距离为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,点到平面的距离距离的求法,考查计算能力以及空间想象能力.22.【考点】J3:轨迹方程;K8:抛物线的性质.【解答】解:(1)∵动点M到直线y=﹣1的距离等于到定点C(0,1)的距离,∴动点M的轨迹为抛物线,且=1,解得:p=2,∴动点M的轨迹方程为x2=4y;(2)证明:由题意可知直线l的斜率存在,设直线l的方程为:y=kx﹣2,A(x1,y1),B(x2,y2),则C(﹣x2,y2).联立,化为x2﹣4kx+8=0,△=16k2﹣32>0,解得k>或k<﹣.∴x1+x2=4k,x1x2=8.直线直线AC的方程为:y﹣y2=﹣(x+x2),又∵y1=kx1﹣2,y2=kx2﹣2,∴4ky﹣4k(kx2﹣2)=(kx2﹣kx1)x+kx1x2﹣kx22,化为4y=(x2﹣x1)x+x2(4k﹣x2),∵x1=4k﹣x2,∴4y=(x2﹣x1)x+8,令x=0,则y=2,∴直线AC恒过一定点(0,2).【点评】本题考查点的轨迹方程的求法,考查直线的方程求法,解题时要认真审题,注意根的判别式、韦达定理、抛物线定义的合理运用,属于中档题.23.【考点】6B:利用导数研究函数的单调性.【解答】解:(Ⅰ)(x>0).当x>1时,f'(x)>0,当0<x<1时,f'(x)<0,即f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以,当x=1时,f(x)取得最小值,最小值为,所以,又,且当x=1时等号成立,所以,.(Ⅱ)记当x≥0时,g(x)的最小值为g(x)min,当x>0时,[f(x)]的最小值为[f(x)]min,依题意有g(x)min≥[f(x)]min,由(Ⅰ)知,所以[f(x)]min=0,则有g(x)min≥0,g'(x)=e x﹣x﹣a.令h(x)=e x﹣x﹣a,h'(x)=e x﹣1,而当x≥0时,e x≥1,所以h'(x)≥0,所以h(x)在[0,+∞)上是增函数,所以h(x)min=h(0)=1﹣a.①当1﹣a≥0,即a≤1时,h(x)≥0恒成立,即g'(x)≥0,所以g(x)在[0,+∞)上是增函数,所以,依题意有,解得,所以.②当1﹣a<0,即a>1时,因为h(x)在[0,+∞)上是增函数,且h(0)=1﹣a<0,若a+2<e2,即1<a<e2﹣2,则h(ln(a+2))=a+2﹣ln(a+2)﹣a=2﹣ln(a+2)>0,所以∃x0∈(0,ln(a+2)),使得h(x0)=0,即,且当x∈(0,x0)时,h(x)<0,即g'(x)<0;当x∈(x0,+∞)时,h(x)>0,即g'(x)>0,所以,g(x)在(0,x0)上是减函数,在(x0,+∞)上是增函数,所以,又,所以,所以,所以0<x0≤ln2.由,可令t(x)=e x﹣x,t'(x)=e x﹣1,当x∈(0,ln2]时,e x>1,所以t (x)在(0,ln2]上是增函数,所以当x∈(0,ln2]时,t(0)<t(x)≤t(ln2),即1<t(x)≤2﹣ln2,所以1<a≤2﹣ln2.综上,所求实数a的取值范围是.【点评】本题考查函数的导数的综合应用,函数的极值以及函数的最值的应用,考查分析问题解决问题的能力,转化思想的应用.24.【考点】7E:其他不等式的解法;R5:绝对值不等式的解法.【解答】(Ⅰ)证明:函数f(x)=|x﹣a|,a<0,则f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥2=2.(Ⅱ)解:f(x)+f(2x)=|x﹣a|+|2x﹣a|,a<0.当x≤a时,f(x)=a﹣x+a﹣2x=2a﹣3x,则f(x)≥﹣a;当a<x<时,f(x)=x﹣a+a﹣2x=﹣x,则﹣<f(x)<﹣a;当x时,f(x)=x﹣a+2x﹣a=3x﹣2a,则f(x)≥﹣.则f(x)的值域为[﹣,+∞),不等式f(x)+f(2x)<的解集非空,即为>﹣,解得,a>﹣1,由于a<0,则a的取值范围是(﹣1,0).【点评】本题考查绝对值不等式的解法,通过对x的范围的分类讨论去掉绝对值符号是关键,考查不等式恒成立问题转化为求最值问题,考查分类讨论思想,属于中档题.。
河北省衡水中学2016-2017学年高二下学期期末考试数学(文)试题 ( word版含答案)

2016-2017学年度下学期高二期末考试数学(文科)试卷第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知集合2{|230}A x x x =--≤,{|ln(2)}B x y x ==-,则A B = ( ) A .(13), B .(13], C .[12)-, D .(12)-,2.如图,已知AB a = ,AC b = ,4BC BD = ,3CA CE =,则DE = ( )A .3143b a -B .53124a b -C .3143a b -D .53124b a -3.已知等比数列{}n a 的前n 项和为n S ,1352a a +=,且2454a a +=,则n n S a =( )A .14n -B .41n -C .12n -D .21n -4.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为( ) A .10 B .12 C.16 D .185.已知不等式2201x m x ++>-对一切(1)x ∈+∞,恒成立,则实数m 的取值范围是( ) A .6m >- B .6m <- C.8m >- D .8m <-6.已知函数()2cos2f x x x -的图像在区间03a ⎡⎤⎢⎥⎣⎦,和423a π⎡⎤⎢⎥⎣⎦,上均单调递增,则正数a 的取值范围是( )A .5612ππ⎡⎤⎢⎥⎣⎦,B .512ππ⎡⎤⎢⎥⎣⎦,C.4ππ⎡⎤⎢⎥⎣⎦, D .243ππ⎡⎤⎢⎥⎣⎦, 7.如图,网格纸上小正方形的边长为1,粗线画出的是几何体的三视图,则此几何体的体积为( )A .12B .18 C.24 D .308.执行如图所示的程序框图,若输入的16a =,4b =,则输出的n =( )A .4B .5 C.6 D .79.已知函数()2x xe ef x --=,1x ,2x ,3x ∈R ,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值( )A .一定等于零B .一定大于零 C.一定小于零 D .正负都有可能 10.已知点()M a b ,与点(01)N -,在直线3450x y -+=的两侧,给出以下结论: ①3450a b -+>;②当0a >时,a b +有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是9344⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,, 正确的个数是( )A .1B .2 C.3 D .411.已知函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭(0ω>)向左平移半个周期得()g x 的图像,若()g x 在[0]π,上的值域为1⎡⎤⎢⎥⎣⎦,则ω的取值范围是( )A .116⎡⎤⎢⎥⎣⎦,B .2332⎡⎤⎢⎥⎣⎦, C.1736⎡⎤⎢⎥⎣⎦, D .5563⎡⎫⎪⎢⎣⎭,12.对任意的0x >,总有()|lg |0f x a x x =--≤,则a 的取值范围是( ) A .(lg lg(lg )]e e -∞-,B .(1]-∞, C.[1lg lg(lg )]e e -, D .[lg lg(lg )]e e -+∞,第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知(12)a = ,,(11)b =,,则与2a b + 方向相同的单位向量e = .14.已知三棱锥P ABC -的三条侧棱两两垂直,且AB =BC 2AC =,则此三棱锥外接球的表面积是.15.点P 在曲线2ln y x x =-上,则点P 到直线40x y --=的距离的最小值是.16.{}n a 是公差不为0的等差数列,{}n b 是公比为正数的等比数列,111a b ==,43a b =,84a b =,则数列{}n n a b 的前n 项和等于.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量cos 1)m x x =- ,,1cos 2n x ⎛⎫= ⎪⎝⎭ ,,且()f x m n = .若ABC △的三内角A ,B ,C 的对边分别为a ,b ,c ,且3a =,212A f π⎛⎫+=⎪⎝⎭(A 为锐角),2sin sin C B =,求A ,c ,b 的值.18. 某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”. (1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动. (ⅰ)共有多少种不同的抽取方法?(ⅱ)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率. 19. 已知数列{}n a 是首项等于116且公比不为1的等比数列,n S 是它的前n 项和,满足325416S S =-(1)求数列{}n a 的通项公式;(2)设log n a n b a =(0a >且1a ≠),求数列{}n b 的前n 项和n T 的最值. 20. 已知函数2()()f x x x m =-在2x =处有极大值. (1)求实数m 的值;(2)若关于x 的方程()f x a =有三个不同的实根,求实数a 的取值范围.21. 如图,五面体ABCDE 中,四边形ABDE 是棱形,ABC △是边长为2的正三角形,60DBA ∠=︒,CD =.(1)证明:DC AB ⊥;(2)若C 在平面ABDE 内的正投影为H ,求点H 到平面BCD 的距离. 22.已知函数2()2ln f x x ax a x =++,0a ≤. (1)当2a =-时,求()f x 的单调区间;(2)若1()(21)2f x e a >+,求a 的取值范围.高二文科期末数学答案一、选择题1-5:CDDCA 6-10:BCBBB 11、12:DA二、填空题13.3455⎛⎫⎪⎝⎭, 14.8π15.(1)21n n -+三、解答题17.解1()cos cos 2f x m n x x x 2=⋅-+12cos 2sin(2)26x x x π=-=-∵()sin 212A f A π+==02A π<<,∴3A π= ∵2sin sin C B =.由正弦定理得2b c =,① ∵3a =,由余弦定理,得2292cos3b c bc π=+-,②解①②组成的方程组,得c b ⎧=⎪⎨=⎪⎩综上3A π=,b =c =.18.(1)设该校900名学生中“读书迷”有x 人,则730900x=,解得210x =. 所以该校900名学生中“读书迷”约有210人.(2)(ⅰ)设抽取的男“读书迷”为35a ,38a ,41a ,抽取的女“读书迷”为34b ,36b ,38b ,40b (其中下角标表示该生月平均课外阅读时间),则从7名“读书迷”中随机抽取男、女读书迷各1人的所有基本事件为:3534()a b ,,3536()a b ,,3538()a b ,,3540()a b ,, 3834()a b ,,3836()a b ,,3838()a b ,,3840()a b ,, 4134()a b ,,4136()a b ,,4138()a b ,,4140()a b ,,所以共有12种不同的抽取方法.(ⅱ)设A 表示事件“抽取的男、女两位读书迷月均读书时间相差不超过2小时”,1cos 21222x x +=-+则事件A 包含3534()a b ,,3536()a b ,,3836()a b ,,3838()a b ,,3840()a b ,,4140()a b ,6个基本事件.所以所求概率61()122P A ==. 19.(1)∵325416S S =-,∵1q ≠,∴3211(1)(1)541116a q a q q q --=⨯---. 整理得2320q q -+=,解得2q =或1q =(舍去). ∴1512n n n a a q --=⨯=(2)log (5)log 2n a n a b a n ==-.1)当1a >时,有log 20a >,数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为负的递增的等差数列.由0n b ≤,得5n ≤,所以()45min 10log 2n a T T T ===-,n T 的没有最大值.2)当01a <<时,有log 20a <,数列{}n b 是以log 2a 为公差的等差数列,此数列是首项为正的递减的等差数列.由0n b ≥,得5n ≤,所以()45max 10log 2n a T T T ===-,n T 的没有最小值. 20.(1)6m =;(2)032a <<.(1)22()34f x x mx m '=-+,由已知2(2)1280f m m '=-+=,∴26m =,, 当2m =时,2()384(32)(2)f x x x x x '=-+=--,∴()f x 在223x ⎛⎫∈ ⎪⎝⎭,上单调递减,在()2x ∈+∞,上单调递增,∴()f x 在2x =处有极小值,舍. ∴6m =.(2)由(1)知32()1236f x x x x a =-+=,令32()1236g x x x x a =-+-,则2()324363(2)(6)g x x x x x '=-+=--,∴()g x 在(2)x ∈-∞,上单调递增,在(26)x ∈,上单调递减,在(6)x ∈+∞,上单调增,要使方程()f x a =有三个不同的实根,则 3232(2)21223620(6)61263660g a g a ⎧=-⋅+⋅->⎪⎨=-⋅+⋅-<⎪⎩,解得032a <<. 21.(1)证明:如图,取AB 的中点O ,连OC ,OD因为ABC △是边长为2的正三角形,所以AB OC ⊥,OC 又四边形ABDE 是菱形,60DBA ∠=︒,所以DAB △是正三角形所以AB OD ⊥,OD =而OD OC O ⋂=,所以AB ⊥平面DOC 所以AB CD ⊥(2)取OD 的中点H ,连结CH 由(1)知OC CD =,所以AB OD ⊥AB ⊥平面DOC ,所以平面DOC ⊥平面ABD而平面DOC ⊥平面ABD ,平面DOC 与平面ABD 的交线为OD , 所以CH ⊥平面ABD ,即点H 是D 在平面ABD 内的正投影 设点H 到平面BCD 的距离为d ,则点O 到平面BCD 距离为2d因为在BCD △中,2BC BD ==,CD =1122BCDS =△12==在OCD △中,OC OD CD ===1sin 602OCD S =︒=△所以由O BCD B OCD V V --=得11.33BCD OCD S d S OB ⋅=△△即112133d =解得d =H 到平面BCD22.由题意得(0)x ∈+∞,,当2a =-时,2()42ln f x x x x =--,(2211242()x x x x f x x x----'==∴当(01x ∈+,时,()0f x '<,当()1x ∈++∞时,()0f x '>, ∴()f x的单调减区间是(01+,,单调增区间是()1+∞. (2)①当0a =时,2()0f x x =>,显然符合题意;②当0a <时,()222x ax af x x++'=,令2220x ax a ++=,2480a a ∆=->恒成立.∴该方程有两个不同实根,且一正一负,即存在()00x ∈+∞,,使得200220x ax a ++=,即0()0f x '=,∴当00x x <<时,()0f x '<,当0x x >时,()0f x '>,∴()()220000000000min 2ln ln ln 222a a a f x f x x ax a x x ax ax a x ax a x ⎛⎫==++=+++-+=-+ ⎪⎝⎭, ∵()()1212f x e a >+,∴00212ln 21x x e -+<+,即00ln 1x x e +<+, 由于()ln g x x x =+在()0+∞,上是增函数,∴00x e <<.由于20220x ax a ++=得200221x a x =-+,设22()21x h x x =-+,则2244()0(21)x x h x x +'=-<+. ∴函数()2221x h x x =-+在()0e ,上单调递减,∴22002202121x e x e ⎛⎫-∈- ⎪++⎝⎭,. 综上所述,实数a 的取值范围22021e e ⎛⎤-⎥+⎝⎦,。
【全国百强校】河北省衡水中学2016-2017学年高一下学期期末考试数学(理)试题(原卷版)

2016—2017学年度下学期高一年级期末考试理数试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若过不重合的,两点的直线的倾斜角为,则的取值为()A. B. C. 或 D. 或2. 在空间直角坐标系中,点与点关于()对称A. 原点B. 轴C. 轴D. 轴3. 方程与表示的曲线是()A. 都表示一条直线和一个圆B. 都表示两个点C. 前者是两个点,后者是一条直线和一个圆D. 前者是一条直线和一个圆,后者是两个点4. 在公差大于0的等差数列中,,且,,成等比数列,则数列的前21项和为()A. B. C. D.5. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体;第二次切削沿长方体的对角面刨开,得到两个三棱柱;第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为()A. B. C. D.6. 过直线上的点作圆:的两条切线,,若直线,关于直线对称,则()A. B. C. D.7. 已知函数的图象过点,令(),记数列的前项和为,则()A. B. C. D.8. 如图,直角梯形中,,,,若将直角梯形绕边旋转一周,则所得几何体的表面积为()A. B. C. D.9. 若曲线:与曲线:有三个不同的公共点,则实数的取值范围是()A. B.C. D.10. 三棱锥的三条侧棱互相垂直,且,则其外接球上的点到平面的距离的最大值为()A. B. C. D.11. 已知正项数列的前项和为,且,,现有如下说法:①;②当为奇数时,;③.学*科*网...则上述说法正确的个数为()A. 0个B. 1个C. 2个D. 3个12. 如图,三棱柱中,侧棱底面,,,,外接球的球心为,点是侧棱上的一个动点.有下列判断:①直线与直线是异面直线;②一定不垂直于;③三棱锥的体积为定值;④的最小值为.其中正确的个数是()A. 1B. 2C. 3D. 4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知直线与直线平行,则它们之间的距离为__________.14. 已知在正方体中,,,直线与直线所成的角为,直线与平面所成的角为,则__________.15. 已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.16. 已知数列满足,(),若(),,且数列是单调递增数列,则实数的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,矩形的两条对角线相交于点,边所在直线的方程为,点在边所在的直线上.(Ⅰ)求边所在直线的方程;(Ⅱ)求矩形外接圆的方程.18. 若圆:与圆:外切.(Ⅰ)求实数的值;(Ⅱ)若圆与轴的正半轴交于点,与轴的正半轴交于点,为第三象限内一点,且点在圆上,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值.19. 如图,在四棱锥中,平面,平面平面,为等腰直角三角形,.(Ⅰ)证明:平面平面;(Ⅱ)若三棱锥的体积为,求平面与平面所成的锐二面角的余弦值.20. 已知数列的前项和,且().(Ⅰ)若数列是等比数列,求的值;(Ⅱ)求数列的通项公式;(Ⅲ)记,求数列的前项和.学*科*网...21. 如图,由三棱柱和四棱锥构成的几何体中,平面,,,,平面平面.(Ⅰ)求证:;(Ⅱ)若为棱的中点,求证:平面;(Ⅲ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.22. 已知等比数列的公比,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,对任意正整数,不等式恒成立,求实数的取值范围.。
【全国百强校word】河北省衡水中学2017届高三下学期三调考试数学(理)试题

河北衡水中学2016~2017学年度 高三下学期数学第三次调研(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足iiiz 2134++=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 已知集合}0)12(log |{3≤-=x x A ,}23|{2x x y x B -==,全集R U =,则)(B C A U 等于( )A .]1,21( B .)32,0( C .]1,32( D .)32,21(3.若),2(ππα∈,且)4sin(2cos 3απα-=,则α2sin 的值为( )A .181-B .181C .1817-D .18174. 已知2)(,12)(xx g x x f x =-=,则下列结论正确的是( )A .)()()(x g x f x h +=是偶函数B .)()()(x g x f x h +=是奇函数 C. )()()(x g x f x h =是奇函数 D .)()()(x g x f x h =是偶函数5.已知双曲线E :)0,0(12222>>=-b a by a x ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为双曲线E 的两个焦点,且双曲线E 的离心率是2,直线AC 的斜率为k ,则||k 等于( )A .2B .23 C. 25D .3 6.在ABC ∆中,41=,P 是直线BN 上的一点,若m 52+=,则实数m 的值为( )A .4-B .1- C. 1 D .47.已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的图象与直线)0(A a a y <<=的三个相邻交点的横坐标分别是2,4,8,则)(x f 的单调递减区间是( )A .)](36,6[Z k k k ∈+ππB .)](6,36[Z k k k ∈-ππ C. )](36,6[Z k k k ∈+ D .)](6,36[Z k k k ∈-8. 某旅游景点统计了今年5月1号至10号每天的门票收入(单位:万元),分别记为1a ,2a ,…,10a (如:3a 表示5月3号的门票收入),下表是5月1号到5月10号每天的门票收入,根据表中数据,下面程序框图输出的结果为( )A .3B .4 C. 5 D .69.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每天还会说其他三国语言的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:①甲是日本人,丁不会说日语,但他俩都能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③甲、乙、丙、丁交谈时,找不到共同语言沟通;④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言,正确的推理是( )A .甲日德、乙法德、丙英法、丁英德B .甲日英、乙日德、丙德法、丁日英 C. 甲日德、乙法德、丙英德、丁英德 D .甲日法、乙英德、丙法德、丁法英 10.如图,已知正方体''''DC B A ABCD -的外接球的体积为π23,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )A .2329+ B .33+或2329+ C. 32+ D .2329+或32+11.如图,已知抛物线的方程为)0(22>=p py x ,过点)1,0(-A 作直线l 与抛物线相交于Q P ,两点,点B 的坐标为)1,0(,连接BQ BP ,,设BP QB ,与x 轴分别相交与N M ,两点.如果QB 的斜率与PB 的斜率之积为3-,则MBN ∠的大小等于( )A .2π B .4π C. 32π D .3π 12.已知R b a ∈,,且b x a e x+-≥)1(对R x ∈恒成立,则ab 的最大值是( )A .321e B .322e C. 323e D .3e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在92017)11(xx +-的展开式中,含3x 项的系数为 . 14. 在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3kD V =,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3kD V =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3kD V =求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得球(直径为a )、等边圆柱(底面圆的直径为a )、正方体(棱长为a )的“玉积率”分别为1k ,2k ,3k ,那么=321::k k k .15.由约束条件⎪⎩⎪⎨⎧+≤+-≤≥1330,kx y x y y x ,确定的可行域D 能被半径为22的圆面完全覆盖,则实数k 的取值范围是 .16.如图,已知O 为ABC ∆的重心,90=∠BOC ,若AC AB BC ⋅=24,则A 的大小为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列}{n a 的前n 项和为n S ,01≠a ,常数0>λ,且n n S S a a +=11λ对一切正整数n 都成立.(1)求数列}{n a 的通项公式;(2)设100,01=>λa ,当n 为何值时,数列}1{lgna 的前n 项和最大? 18.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:(1)该同学为了求出y 关于x 的线性回归方程a x b yˆˆˆ+=,根据表中数据已经正确计算出6.0ˆ=b,试求出a 的值,并估计该厂6月份生产的甲胶囊产量数; (2)若某药店现有该制药厂今年二月份的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为X ,求X 的分布列和数学期望.19.已知多面体ABCDEF 如图所示,其中ABCD 为矩形,DAE ∆为等腰等腰三角形,AE DA ⊥,四边形AEFB 为梯形,且BF AE //, 90=∠ABF ,22===AE BF AB .(1)若G 为线段DF 的中点,求证://EG 平面ABCD ;(2)线段DF 上是否存在一点N ,使得直线BN 与平面FCD 所成角的余弦值等于521?若存在,请指出点N 的位置;若不存在,请说明理由.20.如图,椭圆E :)0(12222>>=+b a by a x 左、右顶点为A 、B ,左、右焦点为1F 、2F ,4||=AB ,32||21=F F .直线m kx y +=(0>k )交椭圆E 于点D C ,两点,与线段21F F 、椭圆短轴分别交于N M ,两点(N M ,不重合),且||||DN CM =.(1)求椭圆E 的方程;(2)设直线AD ,BC 的斜率分别为21,k k ,求21k k 的取值范围. 21.设函数ax xbxx f -=ln )(,e 为自然对数的底数.(1)若函数)(x f 的图象在点))(,(22e f e 处的切线方程为0432=-+e y x ,求实数b a ,的值; (2)当1=b 时,若存在],[,221e e x x ∈,使a x f x f +≤)(')(21成立,求实数a 的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,斜率为1的直线l 过定点)4,2(--.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为0cos 4sin 2=-θθρ. (1)求曲线C 的直角坐标方程以及直线l 的参数方程;(2)两曲线相交于N M ,两点,若)4,2(--P ,求||||PN PM +的值. 23.选修4-5:不等式选讲已知函数|23||12|)(-++=x x x f ,且不等式5)(≤x f 的解集为}5354|{bx a x ≤≤-,R b a ∈,.(1)求b a ,的值;(2)对任意实数x ,都有53||||2+-≥++-m m b x a x 成立,求实数m 的最大值.试卷答案一、选择题1-5: CDCAB 6-10: BDAAB 11、12:DA二、填空题13. 84- 14.1:4:6ππ 15.]31,(-∞ 16.3π三、解答题17.解:(1)令1=n ,得0)2(,22111121=-==a a a S a λλ,因为01≠a ,所以λ21=a ,当2≥n 时,n n S a +=λ22,1122--+=n n S a λ,两式相减得)2(221≥=--n a a a n n n ,所以)2(21≥=-n a a n n ,从而数列}{n a 为等比数列, 所以λnn n a a 2211=⋅=-.(2)当01>a ,100=λ时,由(1)知,2lg 22lg 100lg 1002lg 1lg ,1002n a b a n nn n n n -=-====,所以数列}{n b 是单调递减的等差数列,公差为2lg -,所以01lg 64100lg 2100lg6621=>==>>>b b b 当7≥n 时,01lg 2100lg 77=<=≤b b n ,所以数列}1{lg n a 的前6项和最大. 18.解:(1)3)54321(51=++++=x ,5)66544(51=++++=y ,因线性回归方程a x b yˆˆˆ+=过点),(y x ,∴2.366.05ˆ=⨯-=-=x b y a ∴6月份的生产胶囊的产量数:8.62.366.0ˆ=+⨯=y. (2)3,2,1,0=X ,4254810)0(3935====C C X P ,21108440)1(392514====C C C X P ,1458430)2(391524====C C C X P ,211844)3(3934====C C X P ,其分布列为∴343211214121042)(=⨯+⨯+⨯+⨯=X E . 19.(1)因为AE DA ⊥,AB DA ⊥,A AE AB = ,故⊥DA 平面ABFE ,故⊥CB 平面ABFE ,以B 为原点,BC BF BA ,,分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系,则)0,2,0(F ,)1,0,2(D ,)21,1,1(G ,)0,1,2(E ,)1,0,0(C ,所以)21,0,1(-=EG ,易知平面ABCD 的一个法向量)0,1,0(=,所以0)0,1,0()21,0,1(=⋅-=⋅n EG ,所以n EG ⊥,又⊄EG 平面ABCD ,所以//EG 平面ABCD .(2)当点N 与点D 重合时,直线BN 与平面FCD 所成角的余弦值等于521.理由如下: 直线BN 与平面FCD 所成角的余弦值为521,即直线BN 与平面FCD 所成角的正弦值为52,因为)0,0,2(),1,2,2(=-=,设平面FCD 的法向量为),,(1111z y x n =, 由⎪⎩⎪⎨⎧=⋅=⋅0011n n ,得⎩⎨⎧==+-020221111x z y x ,取11=y 得平面FCD 的一个法向量)2,1,0(1=n 假设线段FD 上存在一点N ,使得直线BN 与平面FCD 所成角的正弦值等于52,设)10(≤≤=λλ,则),2,2()1,2,2(λλλλ-=-=,),22,2(λλλ-=+=,所以5248952)22()2(52|||||,cos sin 2222111=+-⋅=+-+⋅=>=<=λλλλλαn BN n BN n ,所以01892=--λλ,解得1=λ或91-=λ(舍去) 因此,线段DF 上存在一点N ,当N 点与D 点重合时,直线BN 与平面FCD 所成角的余弦值为521. 20.解:(1)因为322,42==c a ,所以1222=-=c a b ,所以椭圆的方程为1422=+y x . (2)将直线m kx y +=代入椭圆1422=+y x ,得0448)41(222=-+++m mkx x k . 设),(),,(2211y x C y x D ,则22212214144,418k m x x k km x x +-=+-=+, 又),0(),0,(m N k m M -,由||||DN CM =得N M x x x x +=+21,即kmk km -=+-2418,因为0,0>≠k m ,得21=k ,此时22,222121-=⋅-=+m x x m x x ,因为直线l 与线段21F F 、椭圆短轴分别交于不同两点, 所以323≤-≤-m 且0≠m ,即2323≤≤-m 且0≠m . 因为2,2222111-=+=x y k x y k ,所以)2()2(122121+-=x y x y k k ,两边平方得212121211212212222212122222221)(24)(24)2)(2()2)(2()2)(41()2)(41()2()2()(1x x x x x x x x x x x x x x x x x y x y k k +++++-=++--=----=+-= 2222)1()1(22)2(2422)2(24-+=-+-+-+--=m m m m m m ,所以1211121---=-+=m m m k k ,又因为12121---=m k k 在]23,0(),0,23[-上单调递增,所以34723123111231231347+=-+≤-+≤+-=-m m ,且111≠-+mm,即34734721+≤≤-k k ,且121≠k k ,所以]347,1()1,347[21+-∈ k k .21.解:(1)由已知得1,0≠>x x ,a x x b x f --=2)(ln )1(ln )(',则22)(2222e ae be e f -=-=,且434)('2-=-=a b e f ,解之得1,1==b a . (2)当1=b 时,a x x x f --=2)(ln 1ln )(',又a x a x x a x x x f -+--=-+-=--=41)21ln 1(ln 1)ln 1()(ln 1ln )('222+故当21ln 1=x 即2e x =时,a xf -=41)('max . “存在],[,221e e x x ∈,使a x f x f +≤)(')(21成立”等价于“当],[2e e x ∈时,有a x f x f +≤max min )(')(”又当],[2e e x ∈时,a x f -=41)('max ,∴41)('max =+a x f , 问题等价于“当],[2e e x ∈时,有41)(min ≤x f ”.①当41≥a 时,)(x f 在],[2e e 上为减函数,则412)()(22min ≤-==ax e e f x f ,故24121ea -≥; ②当41<a 时,a x x f -+--=41)21ln 1()('2在],[2e e 上的值域为]41,[a a --, (i )当0≥-a ,即0≤a 时,0)('≥x f 在],[2e e 上恒成立,故)(x f 在],[2e e 上为增函数,于是41)()(min >≥-==e ae e e f x f ,不合题意; (ii )当0<-a ,即410<<a 时,由)('x f 的单调性和值域知,存在唯一∈0x ),(2e e ,使0)('=x f ,且满足当∈0x ),(0x e 时,0)('<x f ,)(x f 为减函数;当∈0x ),(20e x 时,0)('>x f ,)(x f 为增函数. 所以),(,41ln )()(200000min e e x ax x x x f x f ∈≤-==,所以412141ln 141ln 22000-<->-≥e e x x x a ,与410<<a 矛盾. 综上,得a 的最小值为24121e -. 22.解:(1)由0cos 4sin 2=-θθρ得0cos 4sin 22=-θρθρ,所以曲线C 的直角坐标方程为042=-x y ,即x y 42=,所以直线l 的参数方程为是⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222(t 为参数). (2)将直线l 的参数方程代入x y 42=中,得到0482122=+-t t ,设N M ,对应的参数分别为21,t t ,则21221=+t t ,04821>=t t ,故212||||||||2121=+=+=+t t t t PN PM .23.解:(1)若21-≤x ,原不等式可化为52312≤+---x x ,解得54-≥x ,即2154-≤≤-x ;若3221<<-x ,原不等式可化为52312≤+-+x x ,解得2-≥x ,即3221<<-x ; 若32≥x ,原不等式可化为52312≤-++x x ,解得56≤x ,即5632≤≤x ; 综上所述,不等式5|23||12|≤-++x x 的解集为]56,54[-,所以2,1==b a . (2)由(1)知2,1==b a ,所以3|21||2||1|||||=---≥++-=++-x x x x b x a x , 故3532≤+-m m ,0232≤+-m m ,所以21≤≤m ,即实数m 的最大值为2.。
2016-2017学年河北省衡水中学高二下学期期末考试数学(文)试题(解析版)

2016-2017学年河北省衡水中学高二下学期期末考试数学(文)试题一、单选题1.已知集合2{|230}A x x x =--≤, (){|ln 2}B x y x ==-,则A B ⋂=( ) A. ()13, B. (]13, C. [)12-, D. ()12-, 【答案】C【解析】由题意可得: {}|13A x x =-≤≤, {}|2B x x =<,结合交集的定义可得: {}|12A B x x ⋂=-≤<,表示为区间的形式即: [)1,2-. 本题选择C 选项.2.如图,已知AB a = , AC b = , 4BC BD = , 3CA CE = ,则DE =( )A. 3143b a -B.53124a b - C. 3143a b - D. 53124b a -【答案】D【解析】由题意可得: ()3344DC BC b a ==- , 1133CE CA b ==-, 则: ()315343124DE DC CE b a b b a =+=--=-. 本题选择D 选项.3.已知等比数列的前n 项和为,且,,则( )A.B.C.D.【答案】D【解析】试题分析:设等比数列的公比为,则,解得,.故选D.【考点】1、等比数列的通项公式;2、等比数列的前项和公式.4.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为()A. 10B. 12C. 16D. 18【答案】C【解析】根据分层抽样性质,设抽取的一级教师人数为m,则120901207538m=++,解得16m=,故选择C.5.已知不等式2201x mx++>-对一切()1x∈+∞,恒成立,则实数m的取值范围是()A. 6m>- B. 6m<- C. 8m>- D. 8m<-【答案】A【解析】不等式即:21221111m x xx x⎛⎫>--=--++⎪--⎝⎭恒成立,则max221m xx⎛⎫>--⎪-⎝⎭结合1x>可得:10x->,由均值不等式的结论有:12112161xx⎛⎫⎛⎫--++≤-=-⎪⎪ ⎪-⎝⎭⎝⎭,当且仅当2x=时等号成立,据此可得实数m的取值范围是6m>-.本题选择A选项.点睛:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.6.已知函数()cos2f x x x=-的图象在区间0,3a⎡⎤⎢⎥⎣⎦和42,3aπ⎡⎤⎢⎥⎣⎦上均单调递增,则正数a的取值范围是()A.5,612ππ⎡⎤⎢⎥⎣⎦B.5,12ππ⎡⎤⎢⎥⎣⎦C. ,4ππ⎡⎤⎢⎥⎣⎦D.2,43ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】()cos22sin 26f x x x x π⎛⎫=-=-⎪⎝⎭,由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+,因为在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增, 533{51226a a a ππππ≤⇒≤≤≥7.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.B.C.D.【答案】C【解析】如图还原几何体,,红色线表示削下去的部分,剩下的蓝色的线为三视图的几何体,,所以几何体的体积是,故选C.8.执行如图所示的程序框图,若输入的16,4a b ==,则输出的n =( )A. 4B. 5C. 6D. 7 【答案】B【解析】 执行该程序框图,可知第1次循环: 1161624,248,22a b n =+⨯==⨯==; 第2次循环: 1242436,2816,32a b n =+⨯==⨯==;第3次循环: 1363654,21632,42a b n =+⨯==⨯==;第4次循环: 1545481,23264,52a b n =+⨯==⨯==;第5次循环: 12438181,26412822a b =+⨯==⨯=, 此时a b ≤成立,输出结果5n =,故选B.9.已知函数()2x xe ef x --=, 1x 、2x 、3x R ∈,且120x x +>, 230x x +>,310x x +>,则()()()123f x f x f x ++的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.【答案】B【解析】由已知可得()f x 为奇函数,且()f x 在R 上是增函数,由12120x x x x +>⇒>-⇒()()()122f x f x f x >-=-,同理可得()()23f x f x >-,()()()()3112f x f x f x f x >-⇒+()()()()()()()()32311230f x f x f x f x f x f x f x +>-++⇒++>.【点睛】本题考查函数的奇偶性和单调性,涉及函数与不等式思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型. 由已知可得()f x 为奇函数,且是增函数,由12120x x x x +>⇒>-()()()122f x f x f x ⇒>-=-,同理可得()()23f x f x >-, ()()31f x f x >-,三式相加化简即可得正解.10.已知点()M a b ,与点()01N -,在直线3450x y -+=的两侧,给出以下结论: ①3450a b -+>;②当0a >时, a b +有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,, 正确的个数是( )A. 1B. 2C. 3D. 4【答案】B【解析】将N 点坐标代入直线方程有: 04590++=>, 据此由M 点的坐标可得: 3450a b -+<,说法①错误; 当a>0时,结合3450a b -+<可得354a b +>,则35544a ab a ++>+>,a+b 既无最小值,也无最大值,故②错误;很明显点N 与坐标原点位于直线的同侧,设原点到直线3x−4y+5=0的距离为d,则1d ==,而点M 与坐标原点位于直线的异侧,故221a b +>,说法③正确;当a>0且a≠1时, 11b a +-表示点M(a,b)与P(1,−1)连线的斜率,如图所示: 当a=0, 54b =时,1914b a +=--,又直线3x−4y+5=0的斜率为34, 故11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,,,故④正确。