人教版七年级上册数学 有理数易错题(Word版 含答案)

合集下载

《易错题》七年级数学上册第一单元《有理数》-解答题专项(含答案)

《易错题》七年级数学上册第一单元《有理数》-解答题专项(含答案)

一、解答题1.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.2.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.3.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×54+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.4.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.5.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).请你列式计算以下问题:(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册.答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13544-- =5-1=4; (2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ =11269-+⨯⨯ =-1+43 =13; (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ =2111()1369⨯-÷ =519()3610⨯-⨯=14-; (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦=157(48)()(48)(48)2812-⨯---⨯+-⨯ =24+30-28=26.【点睛】 本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 7.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】 此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.8.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.9.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 10.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.11.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=;(2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.12.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.14.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 15.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠【分析】(1)根据平衡点的定义进行解答即可;(2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可.【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5;故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”, ∴m 的取值范围为:43m -≤≤-, 故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -, ∵点O 为点A 与点B 的平衡点, ∴点B 表示的数为:5t -, ∵点B 在线段CD 上, 当点B 与点C 相遇时,2t =, 当点B 与点D 相遇时,6t =, ∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”. 【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键. 16.计算(1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2. 【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果. 【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=- 2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.17.计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 解析:13 【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算. 【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键. 18.计算:(﹣1)2014+15×(﹣5)+8 解析:8 【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可. 【详解】 原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.19.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库) +25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费? 解析:(1)减少了34吨;(2)314吨;(3)770元 【分析】(1)求出6天的数据的和即可判断; (2)根据(1)中结果计算即可; (3)求出数据的绝对值的和,再乘5即可; 【详解】解:(1)25−22−14+35−38−20=−34<0, 答:经过6天,粮库里的粮食减少了34吨; (2)280+34=314(吨), 答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元), 答:这6天要付出770元装卸费. 【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 20.计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可; (2)先算乘方,再算乘除,最后计算加减即可. 【详解】 解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯16828=-+- 36=-;(2)20213281(2)(3)3---÷⨯-31(89)8=---⨯⨯127=-+ 26=. 【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键. 21.计算: (1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1. 【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可. 【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭ ×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4 =1. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 22.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 23.计算 (1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号. 【详解】 解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可. 24.计算:2202013(1)(2)4(1)2-÷-⨯---+-.解析:33 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:2202013(1)(2)4(1)2-÷-⨯---+-=1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+=3641-+ =33. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 解析:(1)回到了球门线的位置;(2)11米;(3)56米 【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.26.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人.故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.27.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3. 【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可. 【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3. 故答案为:-3<112-<0<112<3. 【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 28.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭.解析:(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案; (2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+ =-4-13-5+9+7 =-22+9+7 =-13+7 =-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 29.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.- 【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案. 【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭16733⎛⎫=--- ⎪⎝⎭16733=-+ 93.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 30.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-, 20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-,116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.。

人教版七年级上册数学 第一章 有理数 全章易错疑难集训

人教版七年级上册数学  第一章  有理数   全章易错疑难集训

人教版七年级上册数学第一章 有理数 全章易错疑难集训一.易错题1 对正数、负数和“0”的认识错误1. 有理数-a 是 ( )A.负数B.正数C.0D.正数或负数或02. 下列说法错误的是 ( )A.0是最小的自然数B. 某地海拔0米表示某地没有高度C. 0既不是正数,也不是负数D.0 ℃是零上温度和零下温度的分界线2 在条件|a|=a 下,误认为a 的值一定是正数3. 若|a-1|=a-1,则a 的取值范围是 ( )A.a ≥1B.a ≤1C. a>1D. a<13 对有理数的有关概念理解不透4. 在数-3,0,5,-312,3.1,12,2 020,π中,整数有( ) A.2个B.3个C.4个D.5个 5. 在-227,π3,0.62,0这四个数中,正有理数有 ( )A.4个B.3个C.2个D.1个4 混淆绝对值符号与括号6. 下列式子中成立的是 ( )A.-|-6|>5B.-8<-(-8)C.-|-7|=7D.|-8.5|<87. 下列化简错误的是 ( )A.-(-5)=5B.-|-45|=45C.-(-3.2)=3.2D.+(+7)=75 对乘方的意义理解不清8. 计算:(-23)2÷12-(-232)+(-2)2= .9. 计算:(-2)4+(-24)×14= . 6 弄错运算顺序或运算律10. 计算(-78)÷(134−78−712).下面是乐乐同学的解答过程:(-78)÷(134−78−712)=(-78)÷134-(-78)÷78-(-78)÷712=-12+1+32=2.老师看后,说他的解答错误,你知道错在哪里吗?请你把正确的解题过程写出来.11. 计算:-8÷23×32.下面是东东同学的解答过程:-8÷23×32=-8÷1=-8.你认为东东同学的解答是否正确?若不正确,请指出错在哪里,并给出正确的解题过程;若正确,请写出计算过程中每步的依据.二.疑难题1 有理数的大小比较1. 若-1<x<0,则x,1|x |,-x 的大小关系是( ) A.x>1|x |>-x B.1|x |>x>-x C.1|x |>-x>x D.-x>1|x |>x2 数轴上的点与有理数的关系2. 下列说法正确的是 ( )A.数轴上的每一个点都表示一个整数B.数轴上的每一个点都表示一个分数C.数轴上的每一个点都表示一个有理数D.每一个有理数都可以用数轴上的点表示3 绝对值问题中数形结合思想的应用3. 点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离AB=|a-b|,所以|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.(1) 若|x-3|=|x+1|,则x= .(2) 若|x-3|=5,则x= ;4 有理数的混合运算与绝对值的综合运用4. 若a,b,c为有理数,且a|a|+b|b|+c|c|=-1,求abc|abc|的值.5 含字母的乘方运算问题5. -a n与(-a)n是否相等(n为正整数)?6 数轴与有理数加减运算的综合6. 已知a,b是有理数,|a+b|=-(a+b),|a-b|=a-b,若将a,b在数轴上表示出来,则下图可能正确的是 ( )7 有计数单位的近似数的精确度7. 近似数2.89万精确到哪一位?。

《易错题》七年级数学上册第一单元《有理数》-解答题专项提高卷(含答案)

《易错题》七年级数学上册第一单元《有理数》-解答题专项提高卷(含答案)

一、解答题1.计算:(﹣1)2014+15×(﹣5)+8 解析:8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.2.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.3.321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.4.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.5.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.6.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9-【分析】(1)先算括号里面的,再算括号外面的即可;(2)根据乘法分配律计算即可;【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦, 121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-;【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.7.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.8.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.9.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+--- =1118--=18-; (2)()41151123618⎛⎫---+÷⎪⎝⎭ =115118236⎛⎫--+⨯⎪⎝⎭ =115118+1818236-⨯⨯-⨯ =1-9+6-15=-17.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.10.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.11.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.12.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.13.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13;(2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭;解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序. 17.计算:(1)157(36)2612⎛⎫--⨯- ⎪⎝⎭ (2)2138(2)3⎛⎫⨯-+÷- ⎪⎝⎭解析:(1)33;(2)1. 【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 18.计算:(1)6÷(-3)×(-32)(2)-32×29-+(-1)2019-5÷(-54)解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.计算(1)2125824(3)3 -+-+÷-⨯(2)71113 ()24 61224-+-⨯解析:(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=11 4324()33 -++⨯-⨯=8 433 -+-=11 3 -(2)71113 ()24 61224-+-⨯=71113242424 61224-⨯+⨯-⨯=-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.21.计算:(1)152|18|()263-⨯-+;(2)20203221124(2)3()3-+÷--⨯.解析:(1)6;(2)-5 【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题; (2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23 =9﹣15+12 =6;(2)20203221124(2)3()3-+÷--⨯=﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1 =﹣5. 【点睛】此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.22.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数))到终点下车还有多少 人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.23.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 24.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值. (2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+ 解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1. 【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得; (2)根据(1)中的两式的计算结果即可归纳总结出关系式; (3)原式变形后,利用完全平方公式计算可得结果. 【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49, (a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2; (3)20182−2×2018×2019+20192 =(2018−2019)2 =(−1)2 =1. 【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算. 25.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.- 【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案. 【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭;()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 93.3=-=-【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.26.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++;②0,0a b <<,==11=2a b a ba b a b+-----; ③0ab <,=1+1=0a ba b+-,综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 27.计算(1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2. 【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果. 【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.28.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒. 【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果. 【详解】 解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒. 【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.29.计算:2334[28(2)]--⨯-÷- 解析:21-. 【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得. 【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯, 912=--, 21=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键. 30.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯ 解析:(1)47;(2)4925【分析】(1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值. 【详解】 解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15 =47(2)()212|38|2455-+--÷-⨯=11452455⎛⎫-+-⨯-⨯ ⎪⎝⎭=24125+4925=【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.。

七年级数学有理数与无理数易错题含答案

七年级数学有理数与无理数易错题含答案

七年级数学有理数与无理数易错题含答案一、选择1.实数π是()A.整数B.分数C.有理数D.无理数考点】无理数.分析】由于圆周率π是一个无限不循环的小数,由此即可求解.解答】解:实数π是一个无限不循环的小数.所以是无理数.故选D.π是常见的一种无理数的形式,【点评】本题主要考查无理数的概念,比较简单.2.在数。

﹣(﹣)。

0.3,0.141 041 004…(相邻两个1,4之间的的个数逐次加1),中,有理数的个数为()A.3B.4C.5D.6考点】有理数.分析】分别根据实数的分类及有理数、无理数的概念进行解答.解答】解:在数。

﹣(﹣)。

0.3,0.141 041 004…(相邻两个0.3,1,4之间的的个数逐次加1)。

中,有理数的是。

﹣(﹣),故选D.点评】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.3.下列语句精确的是()A.是最小的数B.最大的负数是﹣1C.比大的数是正数D.最小的自然数是1考点】有理数.分析】根据正数、天然数、负数、的定义与特点划分对每项举行分析便可.【解答】解:A、没有最小的数,故本选项错误;B、最大的负整数是﹣1,故本选项错误;C、比大的数是正数,故本选项正确;D、最小的自然数是,故本选项错误;故选:C.点评】此题考察了有理数,用到的常识点是正数、天然数、负数、的定义与特点,是一道基础题.4.下列各数中无理数的个数是()0.xxxxxxxx…(省略的为1)。

2π.A.1个B.2个C.3个D.4个考点】无理数.分析】由于无理数就是无限不循环小数,由此即可判定选择项.解答】解:下列各数中,0.xxxxxxxx…(省略的为1)。

2π.无理数是2π,共1个.应选A.点评】此题主要考查了无理数的定义.初中范围内研究的无理数有:π,2π等;开方开不尽的数;以及像0.xxxxxxxx01…,等有这样规律的数.5.下列说法中,正确的是()A.有理数就是正数和负数的统称B.零不是自然数,但是正数C.一个有理数不是整数就是分数D.正分数、零、负分数统称分数考点】有理数.分析】根占有理数的定义和特点举行判断.解答】解:A、有理数包括正数、负数和,故A错误;B、零是自然数,但不是正数,故B错误;C、整数和分数统称有理数,因此一个有理数不是整数就是分数,故C正确;D、零是整数,不是分数,故D错误.应选C.点评】当真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意是整数,但不是正数.6.在,3.14.0.313 113 111.…,0.43五个数中分数有()个.A.1B.2C.3D.4考点】有理数.分析】利用分数的定义判断便可.解答】解:在,3.14.0.313 113 111.…,0.43五个数中分数有3.14,0.43,应选B.点评】此题考察了实数,闇练掌握分数的定义是解本题的关键.2、填空7.最小的正整数是1,最大的负整数是﹣1,最小的非负整数是.考点】有理数.分析】根据正整数的定义,可得答案;根据负整数的定义,可得答案;根据非负数的定义,可得答案.解答】解:最小的正整数是1,最大的负整数是﹣1,最小的非负整数是,故谜底为:1,﹣1,.点评】本题考查了有理数,利用了有理数的分类,注意没有最小的整数,没有最大的整数.8.有理数中.是整数而不是正数的数是和负整数;是整数而不是负数的数是和正整数.考点】有理数.专题】常规题型.分析】解答本题的关键是了解掌握有理数定义,和有理数包括整数和分数,零既不是正数也不是负数.解答】解:零既不是正数也不是负数故在理数中,是整数而不是正数的数是(和负整数);是整数而不是负数的数是:(和正整数).点评】本题主要考查的是有理数的定义以及零既不是正数也不是负数,题型比较容易.9.若一个正方形的面积为5,则其边长可能是无理数.考点】算术平方根;无理数.分析】直接利用正方形面积公式以及算术平方根和无理数的概念得出即可.【解答】解:∵一个正方形的面积为5。

人教版七年级数学上册 第二章 有理数的运算易错训练(单元复习 6类易错)

人教版七年级数学上册  第二章 有理数的运算易错训练(单元复习 6类易错)

第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。

最新七年级数学上册有理数易错题(Word版 含答案)

最新七年级数学上册有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.4.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.5.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.6.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.7.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.8.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.(1)数列的“关联数值”为________;(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________ (3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.【答案】(1)-4(2)7;-3、4、2(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,∴-9-a<-9<-3,∴数列3、-6、a的“关联数值”为-3,∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,∴-3<-3+a<a+3,∴数列3、a、-6的“关联数值”为a+3,∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,∴a+6>6,a+6>a+3,∴数列-6、a、3的“关联数值”为a+6,∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,∴9>9-a,9>6,∴数列-6、3、a的“关联数值”为9,∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,∴-a-9<-a-6<-a,∴数列a、-6、3的“关联数值”为-a,∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,∴-a<3-a<9-a,∴数列a、3、-6的“关联数值”为9-a,∵a>0,这些数列的“关联数值”的最大值为10,∴-3、9、-a、9-a不符合题意,∵a+6>a+3,∴a+6=10,解得:a=4.取得“关联数值”最大值的数列为-6,4、3.【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,∴数列的“关联数值”为-4.故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,由(1)得数列的“关联数值”为-4.∵-4=-4,-4+2=-2,-4+2-(-3)=1,∴数列4,2,-3的“关联数值”为1,∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,∴数列-3、4、2的“关联数值”为7,∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,∴数列-3、2、4的“关联数值”为5,∵-2=-2,-2+4=2,-2+4-(-3)=5,∴数列2、4、-3的“关联数值”为5,∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,∴数列2、-3、4的“关联数值”为-2,∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2故答案为7;-3、4、2【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.【答案】(1)-8;2(2)解:①∵AM=3BM②∵AM=2BM整理得【解析】【解答】(1),所以线段AB的中点对应的数是2故答案为-8,2【分析】(1)直接利用有理数的减法即可求出的值;即为中点对应的数;(2)①根据AM=3BM,可得出 ,利用a,b两点可求出AB之间的距离,进而可求AM的长度,则m的值可求.②可根据AM=2BM之间的关系式,找到a,b之间的一个等式,然后整体代入a+2b+20中即可求值.11.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________.A,B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.【答案】(1)-5;7;12(2)依题意得:−5−1+2−3+4−5+6−7+…+2014−2015+2016-2017+2018-2019,=−5+1009−2019,=−1015.答:点P所对应的有理数的值为−1013;(3)解:设点P对应的有理数的值为p,①当点P在点A的左侧时:PA=−5−p,PB=7−p,依题意得:7−p=3(−5−p),解得:p=−11;②当点P在点A和点B之间时:PA=p−(−5)=p+5,PB=7−p,依题意得:7−p=3(p+5),解得:p=−2;③当点P在点B的右侧时:PA=p−(−5)=p+5,PB=p−7,依题意得:p−7=3(p+5),解得:x=−11,这与点P在点B的右侧(即x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是−11和−2.【解析】【解析】解:(1)∵式子M=(a+5)x3+7x2−2x+5是关于x的二次多项式,且二次项系数为b,∴a+5=0,b=7,则a=−5,∴A、B两点之间的距离=|−5-7|=12.故答案是:−5;7;12.【分析】(1)根据多项式的项及次数的定义得到a+5=0,由此求得a、b的值,然后根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值即可求线段AB的值;(2)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可;(3)设点P对应的有理数的值为p,分情况进行解答:点P在点A的左侧,点P在点A、B之间、点P在点B的右侧三种情况,根据根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值表示出PA,PB的长度,进而根据点P到点B的距离是点P到点A的距离的3倍分别列出方程,求解即可.12.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.【答案】(1)解:由题意得:,解得:(2)解:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D 表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左侧,且DB+DA=DB+DB+AB=2DB+5=8,故 DB=1.5,即-2-(-2t)=1.5,解得t=1.75(3)解:在运动过程中,MN-2PQ=4恒成立,理由如下:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D表示的数为-2t,M表示的数为-2-t,N表示的数为3+4t;故MN的中点P表示的数为0.5+1.5t,OD的中点Q表示的数为-t;则MN-2PQ=[(3+4t)-(-2-t)]-2[(0.5+1.5t)-(-t)]=5+5t-2(0.5+2.5t)=5+5t-1-5t=4【解析】【分析】(1)根据数轴上两点之间的距离公式即可求解.(2)根据运动速度可表达出D点坐标,根据D到A、B两点的距离之和为8,可知D点在B的左侧,根据两点之间的距离公式即可求解(3)根据运动速度可表达出M、D、N点的坐标,根据中点公式求出P、Q坐标进而求出MN、PQ线段长即可求解.。

最新七年级数学有理数易错题(Word版 含答案)

最新七年级数学有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.3.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.4.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。

【精选】七年级上册有理数易错题(Word版 含答案)

【精选】七年级上册有理数易错题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.4.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.5.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.6.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.【答案】(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10(3)【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10,∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14,∴BC=14-(-10)=24,故答案为:-10;14;24( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧,∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN= - = .故答案为:【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式可求出线段MN的长.7.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A 表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.8.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)【答案】(1)解:∵a是最大的负整数,∴a=-1,∵|b-3|+(c+4)2=0,∴b-3=0,c+4=0,∴b=3,c=-4.表示在数轴上为:(2)解:BC=3-(-4)=7,则运动时间为秒(3)解:设点M表示的数为x,使P到A、B、C的距离和等于13,①当M在点B的右侧,x-(-4)+x-(-1)+x-3=13.解得x= ,即M对应的数是 .②当M在C点左侧,(-4)-x+(-1)-x+3-x=13.解得x=-5,即M对应的数是-5.综上所述,点M表示的数是或-5【解析】【分析】(1)根据最大的负整数是1,可得到a的值,再利用几个非负数之和为0,求出b,c的值,然后根据a,b,c的值在数轴上标出A、B、C的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。

请问灰太狼有几种抓羊方案?【答案】(1)解:如图:点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N 所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:解得:,则x=4,或x=5,即抓四只小羊一只老羊或抓五只小羊【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.(3)设抓小羊x只,则老羊为(5-x)只,根据“ 所抓羊的年龄之和不超过112岁且高于34岁”列不等式组,求解.3.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.4.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+= .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。

(2)根据以上规律,就可用含n的代数式表示出第n个代数式。

(3)根据以上的规律,可得出a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+×( -) +…+ ,计算即可求出结果。

5.如图A在数轴上对应的数为-2.(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.【答案】(1)2(2)解:,∴B点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A,B两点间距离是14个单位长度.(3)解:运动后的B点在A点右边4个单位长度,设经过t秒长时间A,B两点相距4个单位长度,依题意有3t=14-4,解得x= ;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有3t=14+4,解得x=6.∴经过秒或6秒长时间A,B两点相距4个单位长度.【解析】【解答】解:(1)-2+4=2,故点B所对应的数是2;【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.8.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.9.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

相关文档
最新文档