气流床气化技术特点

合集下载

国内外典型气流床煤气化技术概述

国内外典型气流床煤气化技术概述

烧室下部侧壁对置,可快速快速调节负荷范围(40%~ 100%)。但是烧 嘴隔焰罩和开工烧嘴容易产生过氧腐蚀损坏。激冷气压缩机主要是将冷 煤气送到气化炉顶部进行换热。
SHell 技术已在国内的湖北双环、神华集团、中原大化、河南永煤等 单位实现应用,全国共有 19 个项目,27 台气化炉用于合成氨、甲醇生产。
关键词:气流床 煤气化
所谓气流床煤气化是将气化剂夹带的煤粉或煤浆,通过特殊喷嘴送 入气化炉内,在高温下,煤氧等混合物迅速分解、燃烧、气化反应,产 生 CO 和 H2 为主的煤气化技术。国外 TCGP、SCGP、GSP 技术均发展成 熟,国内的多喷嘴、两段技术、HT-L、非熔渣 - 熔渣分级技术、多元料 浆技术正快速发展应用。煤气化作为煤化工的龙头,它的好坏决定着后 续工艺以及长远的经济效益。
两段技术已在内蒙古世林化工项目、华能满洲里煤化工项目、华能 绿色煤电 IGCC 项目等 5 家单位开建,部分已投产,主要用于生产甲醇、 发电等。
2.3 航天炉气化技术(HT-L)[6-7] 航天炉煤气化技术与 GSP 技术相似均采用下喷式气流床激冷流程, 但是知识产权独立。该技术对煤种要求低,热效率和碳转化率高。采用 激冷流程及灰渣水循环技术,对环境保护好。 HT-L 气化炉、烧嘴、破渣机、热风炉、激冷水循环泵等是此技术 的 核 心 设 备。 气 化 炉 采 用 盘 管 式 水 冷 壁, 四 组 管 绕 制 而 成, 盘 管 外 径 89mm,壁厚 8mm 径向热膨胀 6mm。自上而下单喷嘴喷射与 GSP 炉相同,
1.3 加压气流床(GSP)技术 [3] 合格煤粉经干燥后通过 N2 输送系统送至烧嘴,煤粉与其他气化剂(氧 气、水蒸气)经烧嘴同时喷入气化炉内的反应室,然后在高温、高压下 发生裂解、燃烧、气化反应,生成粗煤气。气化产生的熔渣以及粗煤气 一起进入气化炉下部的激冷室。冷却后的粗煤气去洗涤系统,熔渣通过 锁斗系统排出,激冷水送至污水处理系统。GSP 技术适用煤种广泛,输 送安全性高,运行周期长不需备炉,碳转化率高,合成气质量好。采用 激冷流程,工艺紧凑,流程简单,环境效益好。气化炉操作弹性大,负 荷调节灵活。点火升温迅速,设备及运行费用较低。开、停车操作方便, 时间短,从冷态达到满负荷仅需 1H。但是 GSP 技术存在工业化业绩少, 操作经验缺乏,加料计量过程复杂、投资较高,无独立灰水处理技术等 问题。 该技术设备主要包括磨煤机、给料锁斗、加料器、组合喷嘴、气化 炉、渣锁斗、破渣机、捞渣机、文丘里洗涤器、沉降槽、激冷水泵等。 气化炉上部为冷壁气化室,由水冷壁,水夹套组成。水冷壁是由特殊耐 热材料碳化硅为屏蔽涂层的盘管和翅片焊接组成的圆筒形内腔,采用以 渣抗渣的技术防止高温溶渣腐蚀及开停车产生应力对耐火材料的破坏。 下部为激冷室,内有激冷喷头和内衬筒,内衬筒与承压外壳环隙有激冷 水自下向上流动,在顶端环隙间径向流出,激冷室承压壳体的壁温不超 过 200℃。喷嘴由配有火焰检测器的点火喷嘴和生产喷嘴所组成,中心向 外环隙依次为燃料气、冷却水、氧 / 蒸汽、冷却水、煤粉通道、冷却水 6 个通道。 GSP 技术虽然进入国内较晚,但是凭借其自身优势已经在我国的山 西兰花煤化工有限责任公司醇、氨(300/100kt/a)项目、神华宁煤集团有 限责任公司(1670Kt/a)甲醇项目、贵州开阳化工有限公司(500Kt/a) 合成氨项目、淮南集团合成氨项目开始应用实施。 2 国内气流床煤气化技术 2.1 多喷嘴对置式水煤浆气化技术(OMB)[4] 多喷嘴对置式水煤浆气化技术是在 TexaCO 技术的基础上发展起来 的,其反应机理与 TexaCO 技术相同,流程相似。该技术采用多喷嘴对置 技术,雾化效果好。负荷可调节范围大,速度快,装置适应能力强,气 化效率高。洗涤冷却室采用喷淋鼓泡复合床,热质传递效果好,液位稳。 气体初步净化系统采用分级净化,系统压降低,高效节能,合成气中灰 含量低。采用蒸发热水塔的渣水处理系统,热传递效率高,水循环流程 简单,耐结垢。但是也存在炉体拱顶处耐火材料烧损快的技术问题。 OMB 技术的关键设备有:磨煤机、高压煤浆泵、气化炉、工艺喷嘴、 煤气初步净化设备、蒸发热水塔、滚筒筛、渣锁斗、捞渣机、激冷水泵。 气化炉上部为气化室,内衬耐火砖,气化室中上部布置工艺喷嘴,喷嘴 在同一水平面。气化炉下部为激冷室,采用复合床结构形式消除了带水、 带灰问题。工艺喷嘴采用外混式、新型预膜式喷嘴,喷嘴流道介质由内 向外依次为氧气、煤浆、氧气。喷嘴头部(向火面)采用盘管冷却来防 止喷嘴损坏,由 1 套单独的系统向喷嘴供应冷却水,该系统设置了复杂 的安全联锁。一般使用 3 个月后需更换喷嘴头部或在喷嘴头部堆焊的耐

西门子GSP气化技术

西门子GSP气化技术

西门子(GSP)气化技术西门子(GSP)气化技术是采用干粉进料、纯氧气化、液态排渣、粗合成气激冷工艺流程的气流床气化技术。

该流程包括干粉煤的加压计量输送系统(即输煤系统)、气化与激冷、气体除尘冷却(即气体净化系统)、黑水处理等单元。

通过此工艺,可以把价格低廉、直接燃烧污染较大的煤、石油焦、垃圾等原料转化为清洁的、高附加值的合成气,即一氧化碳与氢气,这是生产化工产品基本原料,可以用于生产化工产品如甲醇、合成氨,合成油,还可以用于发电或直接用于城市煤气,合成天然气使用。

西门子(GSP)气化工艺流程经研磨的干燥煤粉由低压氮气送到煤的加压和投料系统。

此系统包括储仓、锁斗和密相流化床加料斗。

依据下游产品的不同,系统用的加压气与载气可以选用氮气或二氧化碳。

粉煤流量通过入炉煤粉管线上的流量计测量。

载气输送过来的加压干煤粉,氧气及少量蒸汽(对不同的煤种有不同的要求)通过组合喷嘴进入到气化炉中。

气化炉包括耐热低合金钢制成的水冷壁的气化室和激冷室。

西门子(GSP)气化炉的操作压力为2.5~4.0MPa(g)。

根据煤粉的灰熔特性,气化操作温度控制在1350℃~1750℃之间。

高温气体与液态渣一起离开气化室向下流动直接进入激冷室,被喷射的高压激冷水冷却,液态渣在激冷室底部水浴中成为颗粒状,定期的从排渣锁斗中排入渣池,并通过捞渣机装车运出。

从激冷室出来的达到饱和的粗合成气输送到下游的合成气净化单元。

气化与激冷系统气体除尘冷却系统包括两级文丘里洗涤器、一级部分冷凝器和洗涤塔。

净化后的合成气含尘量设计值小于1mg/Nm3,输送到下游。

系统产生的黑水经减压后送入两级闪蒸罐去除黑水中的气体成分,闪蒸罐内的黑水则送入沉降槽,加入少量絮凝剂以加速灰水中细渣的絮凝沉降。

沉降槽下部沉降物经压滤机滤出并压制成渣饼装车外送。

沉降槽上部的灰水与滤液一起送回激冷室作激冷水使用,为控制水中总盐的含量,需将少量污水送界区外的全厂污水处理系统,并在系统中补充新鲜的软化水。

Texaco-Shell-GSP煤气化技术比较

Texaco-Shell-GSP煤气化技术比较

730 2200 小试厂
商业化装 压力 4.0MPa 1986 年 6
置,生产 温度 1500℃ 月建成,投
H2 和羰
资 2.2 亿马
基合成气

联合发电 压力 2.8-3.0 96 年 7 月 MPa,温度 投用,投资
1200-1500℃ 5.1 亿美元
小试装置 气化压力 1.4 小 试 厂 79
气化装 Φ2×10ft,二段反应
发电
年投运。 示 范 厂 83 年 7 月投运
1430 1832
商业化生 压力 2.1MPa 87 年 4 月 产装置, 一段温度 投运 联合循环 1316-1427 发电 ℃,二段
1038℃
中国水煤浆气化装置概况一览表
序 气化装 气化炉台数和形式
号置
煤浆制备
单炉干煤 用途
量(t/d)
主要工 艺条件
2、国内外水煤浆气化装置
到目前为止,国内外已建、在建和拟建德士古水煤浆加压气化装置,加上技 术上相似的道化学气化装置,已达 20 多座,如下表所示:
国外水煤浆气装置概况一览表
序 气化 气化炉台数和形式
号 装置
煤浆制备
单炉干煤 用途
量(t/d)
主要工 艺条件
备注
1 美国蒙 3 台,第 l 台为废锅 棒磨机,试烧评 15~20 中试装 第 1 台设计 3 台分别于
⑦、单台气化炉的投煤量选择范围大。根据气化压力等级及炉径的不同,单 炉投煤量一般在 400~1000t/d(干煤)左右,在美国 Tampa 气化装置最大气化能 力达到 2200t/d(干煤)。
一、Texaco 水煤浆纯氧加压气化技术
1、发展历史 鉴于在加压下连续输送粉煤的难度较大,1948 年美国德士古发展公司 (Texaco Development Corporation)受重油气化的启发,首先创建了水煤浆气化 工 艺 (Texaco coal gasification process) , 并 在 加 利 福 尼 亚 州 洛 杉 矶 近 郊 的 Montebello 建设第一套投煤量 15t/d 的中试装置。当时水煤浆制备采用干磨湿配 工艺,即先将原煤磨成定细度的粉状物,再与水等添加物混合一起制成水煤浆, 其水煤浆浓度只能达到 50%左右。为了避免过多不必要的水分进入气化炉,采取 了将人炉前的水煤浆进行预热、蒸发和分离的方法。由于水煤浆加热汽化分离的 技术路线在实际操作中遇到一些结垢堵塞和磨损的麻烦,1958 年中断了试验。 早期的德士古气化工艺存在以下明显的缺点。如①、配置煤浆不会应用水煤 浆添加剂和未掌握粒级配比技术,煤浆浓度较低;②、水煤浆制备采用干磨湿配, 操作复杂,环境较差;③、煤浆在蒸发过程中易结垢和磨损;④、分离出的部分 蒸汽(约 50%)夹带少量煤粉无法利用,且在放空时造成污染。 由于在 20 世纪 50~60 年代油价较低,水煤浆气化无法发挥资源优势,再加 上工程技术上的问题,水煤浆气化技术的发展停顿了 10 多年,直到 20 世纪 70 年代初期发生了第一次世界性石油危机才出现了新的转机。德士古发展公司重新 恢复了 Montebello 试验装置,于 1975 年建设一台压力为 2.5MPa 的低压气化炉, 采用激冷和废锅流程可互相切换的工艺,由于水煤浆制备技术得到长足的进步, 水煤浆不再经过其他环节而直接喷人炉内。1978 年和 1981 年再建两台压力为 8.5MPa 的高压气化炉,这两台气化炉均为激冷流程,用于煤种评价和其他研究。 1973 年德士古发展公司与联邦德国鲁尔公司开始合作,于 1978 年在联邦德 国建成了一套德士古水煤浆气化工业试验装置(RCH/RAG 装置),该装置是将德 士古发展公司中试成果推向工业化的关键性一步,通过实验获得了全套工程放大 技术,并为以后各套工业化装置的建设奠定了良好的基础。

气流床气化炉煤粉部分气化特性的研究

气流床气化炉煤粉部分气化特性的研究
气 中 的 C 和 H 含 量 误 差 在 ± 0 1 之 内 , S和 o .% H。
C os浓 度可 以准确地 预 测 , c 预测 值 的准确 性 但 O。
图 1 部 分 气 化 煤 制 气 再 燃 低 N 燃 烧 系 统
Fi .1 Sc m a i fpa ta sfc to c a— s e r i g g he tc o r ilga iia in o lga r bu n n lw O c m bu to y t m o N o sin s se
气 流 床 气 化 炉 部 分 气 化 模 型 见 图 1 即将 煤 粉 ,
对 于温 度高 达 14 0℃~16 0℃的煤 气化 过程 , 0 0 可
以用化 学平 衡 的方 法 建 立 简单 的数 学 模 型 , 且 提 并
出入炉 氧煤 比的改变 达 到 了分 配合 成气 热值 和显 热 的结论 ; 学 成等 基 于未 反 应碳 缩 核 模 型建 立 了 吴 动 态数 学模 型 , 究 了气 化 炉 入 口参 数对 合 成 气 成 研 分 的影 响 ; 汪洋 等 利 用 As e ls模拟 了气化 炉 p nP u 的气化 过程 , 于吉 布斯 自由能最 小 的原理 , 基 结合 气 相 化学 反应 平衡 的原 则研 究 了操作 条件 对 出 口参 数 的影 响 ; tis n等 [ 提 出的平 衡 模 型 , Wakn o 6 ] 对产 品煤
部 分气 化产 生 的煤 制 气 送 入 煤 粉 炉 的再 燃 区 , 为 作
0 引 言
燃 料分 级燃 烧 技 术 不 但 可 以使 No 的排 放 量 降低 5 ~8 , O 0 而且 设备 简 单 , 易 实 施 , 行 费 容 运
用 较 低 , 很 有 发 展 前 途 的 低 N 燃 烧 技 术 之 一 . 是 O

CCG气流床粉煤加压气化技术

CCG气流床粉煤加压气化技术

CHOREN Coal GasifierCCG气流床粉煤加压气化技术CCG煤气化技术开发历程科林粉煤加压气化炉简称为CCG(Choren Coal Gasifier),该技术起源于前东德黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)下属的燃料研究所,于上世纪70年代石油危机时期开始开发,目的是利用德国当地褐煤提供城市燃气。

1979年在弗莱贝格市建立了一套3MW中试装置,完成了一系列的基础研究和工艺验证工作。

试验煤种来至于德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家,获得了大量煤种试验数据。

1984年在黑水泵市(SCHWARZ PUMPE)建立了一套130MW(日投干褐煤量为720吨)的干煤粉水冷壁气化炉工业化装置,气化当地褐煤用作城市燃气,有运行8年的工业化生产经验。

之后改用工业废液废油为原料,继续运行。

1990年燃料研究所和黑水泵气化厂的技术骨干发起成立了科林的前身公司UET,继续致力于煤气化技术的研发,经过不断的技术优化及实践,推出了先进的粉煤加压气化技术-CCG。

煤气化工艺描述(1)工艺描述CCG气化工艺过程主要是由进料、气化与激冷系统组成。

原料煤被碾磨为100%<200u.90%<65 u的粒度后,经过干燥,通过浓相气流输入系统送至烧嘴,在反应室内与氧气(年老煤种还需添加少量水蒸气)在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气。

根据煤中灰组分和灰熔融特性,气化温度控制在1400℃—1700℃之间(高于灰熔点200度左右)。

反应温度可通过氧气流量进行调节(控制炉内化学反应剧烈程度)。

反应室内壁为水冷壁,由于形成了固态渣保护层,因此反应所产生的液态灰渣不会直接接触水冷壁,避免了水冷壁高温损坏的风险。

生成的合成气及液态灰渣离开燃烧室向下流动,在激冷室中直接被水冷却,液态灰渣被水浴固化成颗粒状,冷却后的灰渣经过锁斗排出系统,从渣池中分离并通过捞渣机运出。

流化床-气流床耦合反应器中煤气化特性

流化床-气流床耦合反应器中煤气化特性
ne wo k m o lwa s a ls e i he s u rng i h t r de s e t b i h d by usng t o t r N o s ud he r a to c r i n t e
fo i e r t d r a t r l w nt g a e e c o
C HE Xio u I Yao g 。FE N a h i,J A ln NG i ANG t n Je ,F Yii ,L e yn a IW n i g
( Ke a o ao y o o l c n ea d T c n lg Mi i r f E u a ina d S a x yL b r tr f C a i c n eh oo y, ns yo d c t n h n i S e t o P o ic ,T iu nU i es y o eh oo y,T i u n 0 0 2 , h n i h n ; r v ne ay a nv r i f T c n lg t ay a 3 0 4 S a x ,C ia
( 原理 工 大 学 煤 科 学 与技 术 教 育 部 和 山西 省 重 点 实 验 室 , 山西 太 原 0 0 2 ; 太 3 0 4 中 国科 学 院 山西 煤 炭 化 学 研 究 所 ,山 西 太 原 0 0 0 ) 3 0 1
摘 要 :利 用 化 工 动 力 学 软 件 CHE I 建 立 了流 化 床一 流 床 耦 合 反 应 器 等 效 网 络 模 型 ,在 3 0rm 反 应 器 中 MK N 气 O n 的煤 气 化 实 验 结 果 基 础 上 ,充 分 考 虑 耦合 反应 器 不 同 区 域 物 料 间 两 相 流 动 、传 质 传 热 ,对 耦 合 反 应 器 各 部 分 流 体 力 学 特 征 以及 耦 合 反 应 器 中不 同 区 域 的 化 学 反 应 进 行 了 分 析 。利 用 模 型 对 飞 灰 的碳 转 化 率 、耦 合 反 应 器 的碳 转 化 率 、耦 合 反 应 器 内温 分 布 及 物料 停 留 时 间 进 行 计 算 ,结 果 表 明 ,流 化 床 耦 合 气 流 床 反 应 器 后 ,气 流 床 可 将

德士古气化炉简介与基本原理和特点

德士古气化炉简介与基本原理和特点

德士古气化炉Texaco(德士古)气化炉德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。

德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的,1953年第一台德士古重油气化工业装置投产。

在此基础上,1956年开始开发煤的气化。

本世纪70年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Montebello)研究所建设了日处理15t的德士古气化装置,用于烧制煤和煤液化残渣。

目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉。

典型代表产品我厂制造过的德士古气化炉典型的产品有:渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。

1992年为渭河研制的德士古气化炉是国际80年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。

它的研制成功为化工设备实现国产化,替代进口做出了重要贡献。

德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。

一、德士古气化的基本原理德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。

氧气和雾状水煤浆在炉内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣罐,经排渣系统定时排放。

煤气和饱和蒸汽进入煤气冷却系统。

水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在90%左右,达到燃油等同水平。

也是一种制备相对简单,便于输送储存,安全可靠,低污染的新型清洁燃料[1]。

具有较好的发展与应用前景。

水煤浆的气化是将一定粒度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体,与氧气在加压及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注,我国也将水煤浆气化技术列为“六五”、“七五”、“八五”、“九五”的科技攻关项目。

气流床煤气化技术分析

气流床煤气化技术分析
Keywords :coal gasification ;coal water slurry ;dry pulverized在我国能源结构中 结构比较简单 ;④产气量大 ;⑤热量利用率高,冷煤气效率
仍占有主导地位,怎样合理使用煤炭资源成为我国煤炭资源 处理的首要问题。在煤炭利用技术中,煤气化技术作为煤炭 能源转化的基础技术,在煤炭能源使用方面占有重要的地位。
Shell 工艺技术特点如下 : (1)原料煤适用范围较宽,煤种适应性强,如褐煤、烟煤、 无烟煤等各种煤均可使用;对煤的性质,如粒度、结焦性、灰分、 水分、硫分、氧分等含量均不敏感。 (2)气化炉为水冷壁式,基本消除频繁检修、炉内耐火 衬里更换频繁和耗费昂贵的弊端。单台气化炉产气能力大, 具有高效、大型化和长周期运行的显著特点。 (3) 具 有 较 高 的 热 效 率, 碳 转 化 率 可 高 达 99%, 原 料 煤能量回收率高,冷煤气效率可达 86%,比煤耗可达 600kg/ 1 000m3(CO+H2), 比 氧 耗 为 365m3O2/1 000m3(CO+H2), 粗 煤气成分中,CO+H2 的比例可达 86%[2]。 2.2 航天炉HT-L粉煤加压气化技术
可达 70%~75% ;⑥有效气成分高,干基有效气中(CO+H2)≥ 80%(φ)[1] ;⑦碳转化率高,最高可达 96%。
1.2 新型(对置式多喷嘴)水煤浆加压气化
按照燃料在气化炉内的运动状态,煤气化工艺技术一般
新型(对置式多喷嘴)水煤浆加压气化技术是华东理工
分为三种类型 :移动床(也被称为固定床)、流化床和气流 大学开发的目前最先进的水煤浆气化技术之一。多喷嘴对置
GEGP 工艺 :合成气有效气(CO+H2)≥ 76% ; 晋华炉工艺 :合成气中有效气(CO+H2)≥ 80%[4] ; HT-L 工艺 :合成气中有效气(CO+H2)为 86%~92%[3]。 3.4 耗煤量和耗氧量 不同气化技术的原料(煤、氧气)消耗指标(如比煤耗和 比氧耗)主要取决于原料煤的进料形式和气化炉结构,对于 GEGP 和晋华炉同属于水煤浆湿法进料,气化炉均为气流床和 单烧嘴顶喷形式,因此,其原料煤和氧气消耗量接近,比煤 耗约 610kg/km3(CO+H2),比氧耗约 390~405m3/km3(CO+H2)。 航天炉 HT-L 采用粉煤气力输送进料,省去水煤浆加压气 化技术中水气化所需负荷,降低比氧耗和比煤耗,比煤耗约 550kg/km3(CO+H2),比氧耗约 310m3/km3(CO+H2)。 3.5 对下游装置的影响 GEGP 工艺 :气化装置出口 CO 干基含量约 52%,H2 干基 含量约 31%,由于采用全激冷流程,水气比约为 1.3~1.4,足 以满足下游变换反应对水蒸气的需要,且流程设置按耐硫中 温变换串低温变换比较顺畅。 晋华炉工艺 :气化装置出口 CO 干基含量约 52%,H2 干 基含量约 31%,由于采用废锅 + 激冷流程,水气比可调控范 围 0.5~1.0,具体可根据下游变换对合成气水气比的要求来调 整,实现在满足下游化工合成的基础上最大限度地回收合成 气中的高品位热量。 航天炉 HT-L 工艺 :气化装置出口合成气中 CO 高达 60%, 由于是 4.0MPaG 气化,则合成气中水气比约 0.9,基于高 CO 含量和中等比例水气比的特点,对于本项目下游合成气 H2/CO 要求,变换装置在设计和运行时需要特别注意防止超温的问 题,针对该工况,变换装置多采用多级变换炉串联工艺(双 等温、等温 + 绝热等流程),同时还需要可靠的变换炉急冷气 措施。 3.6 热量回收方法 GEGP 工艺 :可选用激冷流程和废锅 + 激冷两种流程,其 中绝大多数采用激冷流程。 晋华炉工艺 :可采用废锅 + 激冷流程,废锅回收的高品位 显热约相当于原料煤低温热值 15%,同时副产 10.0~12.0MPaG 高压饱和蒸汽,过热后可用于驱动空分透平。 航天炉 HT-L 工艺 :可采用激冷流程和废锅 + 激冷流程两 种,其中绝大部分为激冷流程。 3.7 装置投资 GEGP 工艺 :由于 GEGP 工艺烧嘴有效周期短,故需考虑 备炉。 晋华炉工艺 :气化炉为可靠的水冷壁结构 + 组合式烧嘴, 可考虑不留备炉,减少装置投资。 HT-L 工艺 :气化炉为可靠的水冷壁结构 + 组合式烧嘴, 可考虑不留备炉,减少装置投资。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气流床气化技术特点
煤气化是发展洁净煤技术的重要途径。

目前已实现工业化的煤气化技术主要有固定(移动)床气化技术、流化床气化技术和气流床气化技术。

而1000 t/d 以上规模的煤气化装置基本都是采用的气流床气化技术,该技术已成为国内外大规模、高效率煤气化技术的首选技术
1、气流床气化技术特点
气流床气化又称同向气化或并流气化,属高温气化范围。

以过热蒸汽和氧气为气化剂,携带煤浆或煤粉颗粒通过特殊喷嘴高速喷入气化炉内,瞬间发生火焰反应,气化反应区温度高达2000 ℃,煤粉立即气化,转化为煤气和熔渣,出炉煤气温度1400 ℃左右。

其主要特点如下:
(1)气化温度高、强度大,混合充分,(气化强度高,生产能力大)气化炉
中部温度为1500~1600 ℃,气体停留时间约为1.0~1.5 s
(2)煤种适应性强,气化指标好,有效成分高(更宜选用活性高、地质年龄低、粒度较细、低灰熔点和低灰分的煤)。

灰的质量分数>30%、灰熔点FT(流动温度)在1450 ℃以上时,则运转困难。

(3)耗氧量大;采用煤粉气力输送能耗大,设备磨损严重。

(4)出炉煤气温度很高,显热损失大;此法的缺点是飞灰带出物的质量分数
约为10%之多
(5)需配套余热回收及除尘等辅助装置。

(6)对于干粉煤气化技术,煤灰的粘温特性是非常重要的指标,它与气化炉水冷壁渣层特性具有很大的关联性,一般希望粘温曲线比较平缓,以便气化炉的操作窗口较大。

否则,厚度薄的渣层将缩短气化炉水冷壁的寿命,厚度厚的渣层将容易造成堵渣,严重时要停炉处理。

(7)均匀的原料煤是保证一体化现代煤化工装置连续、稳定运行的重要条件,由于煤炭品质的不均匀性,现代煤气化技术要求,最好对原料煤进行均质化,而均质化又受到场地和操作成本的限制。

因此,希望选定的煤气化技术能适应特定的原料煤,并对煤质波动有较强的适应性。

水煤浆和干粉煤技术为主的加压气流床技术由于技术先进,气化压力较高,符合大型化要求,近年来发展较快。

水煤浆加压气流床气化的代表
性技术包括GEGP(原Texaco)、多元料浆、多喷嘴对置和E-GAS。

干煤粉加压气流床气化的代表性技术包括Shell气化炉、西门子GSP气化炉、Prenflo炉和国内航天炉、两段炉。

相关文档
最新文档