我国循环流化床煤气化技术工艺研究现状
循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景循环流化床锅炉(Circulating Fluidized Bed Boiler,CFB)技术是一种高效的燃烧设备,经过多年的发展已成为热电领域的重点推广应用技术。
本文将从循环流化床锅炉技术的现状出发,探讨其发展前景,以及面临的挑战和解决方案。
一、技术现状1.1 技术特点CFB锅炉具有循环流化床燃烧技术的独特优势:(1) 燃烧效率高:废气中低温部分的热量可以被利用,热效率可以达到96%以上,同时降低了烟气中二氧化硫和氮氧化物的排放量。
(2) 运行灵活:能够适应不同的燃烧物料,既能够燃烧固体废弃物、木屑、秸秆等生物质能源,又能够燃烧煤炭、石油焦等传统燃料,且燃烧效果良好。
(3) 净化效果好:CFB锅炉的燃烧过程中,废气中的二氧化硫和氮氧化物可以通过床层内的石灰石和其他固体脱硫、脱氮材料进行吸收。
1.2 应用领域CFB锅炉技术在能源、化工、冶金、环保等领域有着广泛的应用:(1) 电力行业:CFB锅炉可为电厂常规电机组提供蒸汽和电力,可应用于燃煤和生物质发电厂、废物处理场等。
(2) 化工行业:CFB锅炉可用于化学合成、烟气净化、制氢等化学反应过程。
(3) 冶金行业:CFB锅炉可用于钢铁、有色金属等冶炼行业的高温加热过程。
(4) 环保行业:CFB锅炉可用于污染治理领域,如焚烧废弃物、处理工业废水等。
二、发展前景2.1 国内市场需求目前,中国热电装备市场规模逐年扩大,能源需求增加,对CFB锅炉提出了更高的要求。
据分析,未来中国应用CFB锅炉的市场需求将有以下几个方面的发展趋势:(1) 大型化倾向:随着国内能源消耗的不断升级,整个行业将向大型化发展,CFB锅炉也是如此。
(2) 多燃料开发:在中国资源丰富的条件下,CFB锅炉依靠多种燃料的灵活运用,将成为未来市场上的利润佳品。
(3) 低排放:随着环保法规的日益严格,CFB锅炉也需要适应这一趋势,保证燃烧过程中废气的低排放。
2.2 技术创新CFB锅炉技术在未来几年也将面临着技术创新的压力,以满足市场的需求。
循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景循环流化床锅炉技术是一种利用高效循环流化床燃烧技术实现煤炭、石油焦等固体燃料的洁净、高效燃烧的技术。
其主要特点是燃料与气相、固相平衡流化,燃烧效率高、燃烧温度可控、污染物排放少。
1. 技术成熟:循环流化床锅炉技术已经经过多年的研究和发展,在我国已经建成的循环流化床锅炉装机容量已达数千兆瓦,形成了一定的产业化规模。
2. 功能完善:循环流化床锅炉技术的自动化程度逐渐提高,监控系统成熟,操作方便,运行稳定可靠。
循环流化床锅炉还具备灵活燃烧、硫捕集、脱硝、脱电除尘等多种功能。
3. 效果显著:循环流化床锅炉技术在煤炭、石油焦等固体燃料的燃烧效率上有明显改善,已实现了燃烧效率高于传统锅炉的目标。
循环流化床锅炉对污染物的排放也有明显改善,特别是对于二氧化硫和氮氧化物的排放效果显著。
4. 排放达标:循环流化床锅炉技术采用先进的脱硫、脱硝、脱电除尘等技术手段,可以有效控制燃烧过程中的污染物排放,达到甚至超过国家标准的排放要求。
1. 燃料多元化:循环流化床锅炉技术适应性强,可以适应各种固体燃料的燃烧,包括煤炭、石油焦、生物质等,未来可以实现更多种类燃料的利用,提高资源利用率。
2. 清洁化发展:循环流化床锅炉技术可以通过改进燃烧方式和燃烧设备,进一步降低污染物排放,实现更清洁的能源转换。
3. 高效节能:循环流化床锅炉技术具备灵活燃烧、高效热交换等优点,未来可以进一步提高能源的利用效率,减少能源消耗。
4. 大型化发展:循环流化床锅炉技术在我国已初步形成一定的规模,未来可以进一步发展为大型化设备,满足国家能源需求。
循环流化床锅炉技术在煤炭、石油焦等固体燃料的洁净、高效燃烧方面具有显著的优势,并且具备广阔的发展前景。
随着对环境保护要求的提高和能源利用效率的追求,循环流化床锅炉技术将在未来得到更广泛的应用和推广。
浅谈我国自主研发的气流床煤气化技术现状与发展

我 国缺油少气 , 但煤炭 资源丰富 , 是世界上最大 的煤炭 生 产 国和 消费 国。据统计 ,煤炭 生产 和消费 占一次能源构 成 的 7 5%左 右 ,在 未 来 的 3  ̄5 0 0年 内 ,煤 炭 仍 将 是 我 国主 要 的一 次能源 。我 国煤炭资源 的主 要特 点是 :高硫、高灰 、低热值 , 而我 国的煤炭利用技术普遍 落后 , 这使 我国成为世界上环境污 染最 严重 的国家之一 , 同时也给 我国带来直 接和 间接 的巨大经 济损 失。因此 , 采用先进成熟 的煤炭气化技 术来提高煤炭 的洁 净高 效利用是解决这一 问题 的正 确选 择 , 气流床煤气化技术 而 是 我国煤 化工发展 的必然趋势 。我国不断吸收、消化和改进从 国外 引进 的先进气流床煤气化技术 ,并通 过 自身的技术储备 , 经过 几十年的探索研究 , 取得 了令人可 喜的成果 , 为我 国煤化 工长远 发展做出 了贡献 。 已研制成 功了 6种 , 现 包括 以水煤浆 进料 方式为主的多元料浆加压气化技术 、 多喷嘴水煤 浆加压气 化技术 , 和以粉煤 进料方式为主 的四喷 嘴对置 式干粉 煤加压气 化技术 、HTL粉 煤加压气化技术、两段式干煤粉 加压气 化技 - 术、 熔渣一 非熔渣气化 技术 。 目前 ,这 些技术正在从工业 化试 验装置 阶段稳 步进入示范厂建设 阶段 , 的已经 投产 , 中以 有 其 多喷 嘴水煤浆 加压气化技术较为成熟 。 文章对 以上 6 种煤 气化 技术现状与 发展做 个简要 的介绍 ,并提 出一 些建议 和展望 。
Ch n o d ie e eg v no t a d t ep o p c fC i a Sf w e a i c to c n l g a r c se . ia S me a v c s r i e u , n h r s e t h n ’ l w o o b d g sf a i nt h oo yw sf e a td i e o K e wo d : nr ie o b d; c a — ae h ry; d y p l e i e o l s g e t g y r s e tan d f w e l o l tr ur w s r uv r d c a ; u g si z n
气流床煤气化的技术现状和发展趋势 (1)

世界科学2005.133t 于广锁气流床煤气化的技术现状和发展趋势建设中的多喷嘴对置式水煤浆气化技术示范装置全景图前言我国的煤炭资源丰富,油气匮乏。
在未来几十年内,煤炭在我国能源结构中仍将占主导地位,它是我国战略上最安全和最可靠的能源。
但是,作为煤能源生产与消费大国,我国的煤炭利用技术总体上是落后的:效率低,造成能源浪费;污染严重,导致环境质量恶化。
煤炭气化,即在一定温度、压力条件下利用气化剂(O 2、H 2O 或CO 2)与煤炭反应生成洁净合成气(CO 、H 2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。
煤炭气化技术,尤其是高压、大容量气流床气化技术,显示了良好的经济和社会效益,代表着发展趋势,是现在最清洁的煤利用技术,是洁净煤技术的龙头和关键。
气流床煤气化的优点并不仅仅在于减少空气排放物,它也生成许多具有商业价值的副产品,如高纯度硫、CO 2和无毒炉渣。
随着环境标准的日趋严格,气流床气化的优势越来越突出。
国外技术现状和发展趋势迄今,世界上已商业化的IGCC (Integrated Gasification Combined Cy -cle)大型(250MW 以上)电站都是采用气流床煤气化炉,可见其技术上具有优势。
它们是以水煤浆为原料的ChevronTexaco(Texaco)、Global E-Gas(Destec),以干粉煤为原料的Shell 、Prenflo 、Noell(GSP)。
ChevronTexaco 气化炉美国Texaco 开发的水煤浆气化工艺是将煤加水磨成浓度为60~65%的水煤浆,用纯氧作气化剂,在高温高压下进行气化反应,气化压力在3.0~8.5MPa 之间,气化温度~1400e ,液态排渣,煤气成份CO+H 2为80%左右,不含焦油、酚等有机物质,对环境无污染,碳转化率96~99%,气化强度大,炉子结构简单,能耗低,运转率高,而且煤适应范围较宽。
循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景循环流化床锅炉技术是一种先进的锅炉燃烧技术,具有节能、环保、高效、安全等特点,被广泛应用于发电、热水供应等领域。
本文将介绍循环流化床锅炉技术的现状以及未来发展前景。
1、技术特点循环流化床锅炉技术以煤炭、煤屑、废热、废料等非化石能源为主要燃料,通过高速风流使燃料在炉内均匀分布,从而使燃料的燃烧充分、热效率高。
该技术具有以下特点:(1)熄火、剧烈爆炸等现象很少发生,能够保证燃料的可靠燃烧,从而减少污染排放。
(2)燃料颗粒大小范围较广,可处理不同种类的燃料。
(3)含硫、含氯等有害成分的排放量明显降低,可以达到环保排放标准。
(4)炉内温度均匀,使用寿命长,可靠性高。
(5)锅炉采用循环式加料,自动控制,操作简便。
(6)应用范围广泛,可以用于发电、热水供应、工业锅炉、化工等领域。
2、技术应用循环流化床锅炉技术已经被广泛应用于国内外的发电和热水供应等领域。
在中国,国内已有一些大型发电厂采用循环流化床锅炉技术。
例如,湖南金山电厂、山西黄陵发电厂以及华能大兴发电厂等发电厂都采用了循环流化床锅炉技术。
3、技术进展随着技术的不断进步,循环流化床锅炉技术也在不断完善。
近年来,循环流化床锅炉技术的主要进展包括以下方面:(1)热效率提高:目前循环流化床锅炉技术的热效率已经达到了 85%以上,在很大程度上节约了能源。
(2)技术可靠性提高:现代循环流化床锅炉技术采用先进的控制系统,可以实现全自动化控制,使得技术可靠性大大提高。
(3)减少污染排放:近年来,循环流化床锅炉技术在减少污染排放方面也取得了重大进展。
例如,采用低氮燃烧技术和脱硝技术等措施可以大幅减少氮氧化物的排放量。
循环流化床锅炉技术应用范围十分广泛,可以应用于电力、冶金、化工、建材、纺织、食品等多个行业。
随着技术的不断发展,循环流化床锅炉技术将会在更多行业中得到应用。
2、技术创新推动行业进步循环流化床锅炉技术的不断创新和发展将推动整个燃热行业的进步。
论循环流化床锅炉技术现状及发展前景

216研究与探索Research and Exploration ·探讨与创新中国设备工程 2019.09 (上)压谐波、输入侧电流谐波、输出侧电压谐波以及输出侧电流谐波都要略优于低低压变频控制柜,因此能有效地确保机组的稳定运行。
3.2 中低压变频输出力矩比较因为三相异步电机的特性,如果要保持低速输出力矩不变,必须保持磁通不变,或者说保持电机上的V/F (电压/频率)不变,所以变频器的输出方式是VVVF (变频变压),但是电缆和电机都有一定的线电阻,所以有一定的压降,为了保持电机低速是有较大的力矩输出必须采用低频电压提升的办法。
因为高低高方式输出是通过变压器,变压器是无法在低频下提升电压(如果强力提升低频电压,变压器会磁饱和,发热很厉害会很快烧坏,而且强力提升的电压也非常有限)。
所以高低高方式在低频时的输出力矩很小,在长电缆情况下,为了解决电机的启动问题采用高频直接启动(如30Hz 启动),变频器的软启动性能就完全不能实现了,对机组肯定有危害,而且因为变频器的过载能力的限制(变频器的过载能力一般是150%,电机高频启动的电流可达600%~700%),采用高频直接启动的启动力矩都小于50%的额定力矩。
可是直接中压变频器完全可以做到150%以上的启动力矩,而且是软启动,优势非常明显。
3.3 输出电压稳定变频器一般都有输出电压自动稳压功能,高低高变频器的输出是通过变压器,升压变压器必须能够承受变频器频率输出范围的大幅变动,变压器有输出阻抗,输出电压会随负全球变暖是地球面临的最大挑战,循环流化床锅以其传热率高、效率高、燃烧温度低、污染物排放量小等特点,在许多化工和能源行业中作新的能源解决方案被广泛应用。
流态化是将固体燃料颗粒转化为类似燃烧状态的流体的过程,它具有高传热率、紧凑的锅炉设计、燃料的灵活性、低品位燃料的燃烧以及硫氧化物和氮氧化物等减排的优点。
当气体速度逐渐增加时,达到床内压力降等于该高度单位面积床的重量的状态,此阶段,单个颗粒悬浮在气流中,床被称为“流化床”。
目前国内外开发循环流化床技术概况和我国循环流化床技术发展趋势

目前国内外开发循环流化床技术概况和我国循环流化床技术发展趋势目前国内外开发循环流化床技术概况和我国循环流化床技术发展趋势电力的发展给人类社会进步和文明作出了巨大的项献,但电力事业的发展,特别是火力发是电事业的发展给人类生存环境造成了严重的灾难。
随着世界上各国对环境污染控制要求越来越严格,因而寻求新型的燃烧技术已成为广大电力科技工作者孜孜以求的事业。
从本世纪七十年代起,循环流化床燃烧技术以其独有的先进性,得到世人的关注,并在近二十多年里得到飞速的发展,成为火力发电史上最有希望的燃烧技术。
有人预言,下一世纪将是循环流化床燃烧技术的天下。
一、循环流化床燃烧技术的优点循环流化床锅炉兼具泡床炉和煤粉炉的长处,又摒弃了两种炉型的不足之处,因此,循环流化床燃烧技术具有其它各种燃烧方式无与伦比的优点,所以才被世人公认为最有希望的燃烧技术,其主要优点:1、低污染燃烧。
由于循环流化床燃烧炉膛温度可控制在8500C左右,并可在投燃料的同时加投石灰石CaCO3这样可以达到去除SO2与控制NOX有害物质生成的目的,避免大气中形成酸雨造成的危害,目前世界上脱硫效率最好的可达95%,这种先进的燃烧方式为烧高硫煤电解除了后顾之优。
2、燃烧适应范围广,除了燃用一般的煤以外,还可以烧低热值的煤矸石,油页岩、煤泥等化石燃料的垃圾、树皮等,这对处理城市垃圾和综合利用能源有着显著的经济效益和社会效益。
3、适合调峰运行,循环流化床锅炉能做到在30%MCR时不投油稳燃。
所以燃料的化学不完全燃烧和机械不完全燃烧的热损失几乎可以达到的0的水平,同时灰渣的热量也能得到充分的回收。
4、锅炉热效率高,循环流化床锅炉的燃料是在多次循环中完成燃烧的,所以燃料的化学不完全燃烧和机械不完全燃烧的热损几乎可以达到“0”的水平,同时灰渣的的热量也能得充分的回收。
5、综合经济效益好。
如果燃用煤矸石、油页岩等燃料发电,燃后的灰渣可作为水泥的掺料和轻质建筑材料,这一优点对焕发老煤矿的生机大有可为。
循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景循环流化床锅炉是一种先进的燃烧技术,通过将燃烧材料与一定量的酸性氧化剂(如石灰石或石膏)一起注入锅炉中,形成循环流化床,在高温下进行燃烧过程。
这种技术具有高效、清洁、灵活等特点,广泛应用于电力、热力、化工等行业。
循环流化床锅炉技术在我国的发展非常迅速。
自20世纪80年代初引进以来,经过不断改进和技术升级,我国的循环流化床锅炉技术已经取得了很大的进展。
目前,我国在循环流化床锅炉技术领域已经具备了一定的自主研发能力,并且形成了一批具有自主知识产权的核心技术和装备。
我国的循环流化床锅炉技术已经能够满足各个领域对于高效、清洁能源的需求。
循环流化床锅炉技术的发展前景非常广阔。
循环流化床锅炉技术是一种清洁燃烧技术,采用这种技术可以有效减少燃烧产生的大气污染物排放,符合环保要求。
循环流化床锅炉技术具有高燃烧效率和灵活性,适用于各种不同的燃料,包括煤炭、生物质能源和废弃物等,可以实现能源多元化。
循环流化床锅炉技术还可以实现废弃物资源化利用,降低了废弃物处理成本,具有较大的经济效益。
随着我国不断加强对可再生能源的开发和利用,循环流化床锅炉技术在生物质能源领域的应用前景也非常广阔。
循环流化床锅炉技术在能源领域的广泛应用,也为我国实现能源清洁化、高效化和可持续发展提供了重要支持。
虽然循环流化床锅炉技术发展迅猛,但仍面临一些挑战。
技术成本较高,需要进一步降低设备的制造和运行成本。
循环流化床锅炉技术在高温、高压、高腐蚀等条件下工作,对材料和设备的要求较高,需要进一步提高技术水平。
循环流化床锅炉技术在大规模应用时还面临一些技术和管理问题,需要加强技术创新和管理能力。
循环流化床锅炉技术在我国的发展前景非常广阔。
随着我国能源需求的增长和环境保护的要求,循环流化床锅炉技术将逐渐替代传统的燃煤锅炉技术,成为未来能源领域的主力军。
随着技术的不断创新和完善,循环流化床锅炉技术将继续为我国实现能源清洁化、高效化和可持续发展做出重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国循环流化床煤气化技术工艺研究现状
张进
(化工学院能源化学工程14-1班 06142588)
摘要:第一台工业流化床自1954年投产以来,在国内外得到了迅速的推广与发展。
近年来,使用循环流化床(CFB)做气化炉的工艺得到了迅速发展,使燃烧效率、碳转换率等得到了较明显的提高。
在国内煤气化领域中,主要用流化床气化炉来气化碎煤。
流化床气化炉在气化高活性、低阶煤种方面,具有其它煤气化技术不可比拟的优势。
[1]综述了循环流化床煤气化工艺流程,并对循环流化床气化的应用情况和工艺特点加以说明。
关键词:流化床煤气化循环流化床气化炉工艺特点
煤炭气化是清洁煤利用技术之一。
流化床煤气化技术作为一种清洁煤气化技术更受到了国内外的普遍重视。
循环流化床技术是近年来在沸腾炉上发展起来的一项新技术。
在环保、能源的充分利用、热效率的提高等方面都比沸腾炉效果好,而且在气化高活性、低阶煤种方面,具有其它煤气化技术不可比拟的优势。
[1]发展循环流化床气化技术是适合我国国情的,对满足我国城市民用煤气和工业用煤气的需求、发展清洁煤利用技术有重大作用。
1循环流化床煤气化工艺流程
原料煤经皮带运输至破碎机粉碎至4mm以下,送入煤仓备用。
煤粉在开车前将经给料、输送机送入立管中。
开车过程中,细煤粉经给料器、斗式提升机送到计量煤斗,经升压后进入料煤斗,由此稳定地经旋转阀、水冷螺旋给料器进入进料管,并送入循环流化床气化炉下部。
过程中所用空气(或氧气)来自压缩机,经预热后与废热锅炉所产生的水蒸气混合,由炉底经分布板进入炉内。
如有必要可以将气化剂的一部分做为二次气化剂由炉的中下部送入。
生成的煤气由气化炉顶部引出,粗煤气中含有大量的未转化碳颗粒和水蒸气。
经过分离系统分离后,95%以上的颗粒收集下落入立管中,经返料系统返回到气化炉底部。
此外,在喇叭状炉床内还形成物料的内循环。
由于新鲜原料、气化剂和大多数炉灰的循环物质之间的迅速混合,气化反应在气化炉底部附近立即开始进行。
循环物料和新加入的原料之比可高达40,因此碳转化率较高。
底部灰经水冷螺旋出料器,由旋转阀排入灰仓送出界区。
粗煤气经废热锅炉及列管或空气预热器回收热量后,温度降低,再进入水喷淋洗涤塔。
经过进一步降温及除尘后,送入煤气储罐。
随着高温净化技术的不断发展,粗煤气可以不经过换热或少部分换热后,通过高温净化系统除尘、脱硫后,
产生高温洁净煤气,直接提供给用户。
灰由炉底或立管上部经排料系统排出。
工艺流程图如图1所示。
图1 循环流化床煤气化工艺流程
工艺包括燃料破碎给料系统、流化床气化系统、排渣系统、合成气余热回收系统、飞灰脱除循环输送利用系统、粗煤气净化分配系统等。
[2]流化床气化系统主要由气化炉本体、一级旋风分离器、二级旋风分离器、布风板、中心管、排渣套管和二次气化剂给入口组成。
排渣系统主要由高温加压冷渣器、加压集渣罐、排渣锁斗和常压低温冷渣器组成。
合成气余热回收系统主要包括辐射废锅、对流废锅、省煤器、除盐水预热器组成合汽包组成。
对流废锅设为上段高温过热段和下段低温对流换热段组成。
飞灰脱除循环输送系统主要包括飞灰脱除装置、飞灰收集罐、飞灰锁斗喷吹罐及输送管路组成。
飞灰脱除装置可采用袋式除尘或过滤器除尘等方式。
粗煤气净化分配系统主要由合成气脱硫系统和合成气气柜组成。
粗煤气脱硫系统可采用低温甲醇洗技术、脱硫技术等各类脱硫工艺。
流化床气化系统可采用空气、富氧空气氧气浓度大于或纯氧进行气化。
[3]
2 几种流化床在煤气化过程中的比较
煤气化是一个强吸热反应过程,高温有助于煤气化的进行。
从动力学角度分析,提高温度、压力,减小颗粒粒径都有利于加快气化反应速度。
另外从反应器分析得出,如果整个气化炉床内温度均一,增加气固接触效率,使反应器更接近理想反应器,有利于提高反应转化率。
因此提高气化炉的气化能力及碳转化率需要气化炉能满足以上有利于煤气化转化的工艺条件。
单从反应器结构及其工艺特性的观点上分析移动床及气流床有其固有的缺陷,鼓泡流化床由于颗粒群和流体
的返混以及速度分布的不均匀性,造成部分流体短路,床内存在大量气泡,另外由于碳颗粒在流化床稀相段的转化率低,导致设备利用率低,实现以上工艺要求有一定困难。
[4]而循环流化床反应器的结构及工艺特点在煤气化方面却显得有其独有的优越性,这是因为循环流化床反应器在其它领域应中所表现的优点正是提高煤气化碳转化率及生产能力的至关重要的因素。
高温且均一,气化反应在整个反应器内进行,使反应速度及生产能力大大提高;气固接触良好,基本上不存在外扩散影响,克服了鼓泡流化床中气泡对传质、传热的影响。
停留时间长,循环流化床存在颗粒的大量循环,使颗粒在床内总停留时间提高,有利于颗粒完全气化,提高碳利用率。
粒径小,小颗粒可以减少内扩散对气化速率的影响。
3 循环流化床锅炉技术评述
循环流化床是在煤粉炉的基础上发展起来的,燃料在锅炉炉膛、分离器、返料装置中多次循环,进行低温燃烧,炉内湍流运动强烈,使燃料燃烧完全。
[5]
(1)循环流化床锅炉采用低温燃烧,温度850~100℃间,使NO x产生量少;
(2)使燃料在炉内循环悬浮燃烧炉内紊流扰动强,有利于稳定燃料和燃烬,储热能力强,调峰能力极强;
(3)炉膛温度低于灰的软化温度,从而可以避免因锅炉受热而结焦,提高锅炉运行的安全性;
(4)循环流化床对燃料粒度要求不高,可以破碎机代替磨煤机,燃烧系统相对简单;
(5)循环流化床具有较高的效率,燃料易燃烬,有利于灰渣的综合利用;
(6)由于采用了对燃料适应性极强的循环流化床锅炉,利用目前造气系统的炉渣,可节省褐煤及购买燃料的资金,另外,还可减少炉渣的堆存量,具有较好的节能效果、经济效益和环境效益。
(7)由于采用气槽式冷渣机,渣由湿出改为干出,减少了冲渣水量,改善了出渣的劳动条件。
另一方面,由于循环流化床煤气化过程开发相对晚一些,循环流化床煤气化也存在一些问题:
(1)气化反应不如燃烧反应迅速,而循环流化床反应器属快速反应器,所以必须提高颗粒相对停留时间(停留时间与颗粒完全气化时间比);
(2)颗粒回收系统复杂,投资费用高。
循环流化床必须有高效的气固分离装置,否则碳损失严重;
(3)循环流化床气化炉出口温度过高,显热损失大,如何有效利用这部分显热仍是重要的研究课题。
4 结论
循环流化床气化技术在我国属于新型气化工艺,正处于起步阶段,距离广泛普及还有很长的一段路。
针对气化炉的具体实际应用,气化炉向着高温、高压、高生产能力的方向发展。
在应用方面,流化床气化炉工艺将根据其产气的实际应用情况而发展为具体的类型,其具体发展有待观察。
【参考文献】
[1]刘雷,李克忠,康守国,郑岩,祖静茹,侯祥生.流化床气化炉及气化系统[P].河北:CN104762108A,2015-07-08.
[2]彭敏,李新春,王人杰.循环流化床气化炉系统[P].安徽:CN205907224U,2017-01-25.
[3]倪建军,江晶亮,池国镇.一种循环流化床气化系统及其气化方法[P].上海:CN106010666A,2016-10-12.
[4]刘初平.一种流化床气化炉飞灰与灰渣的处理系统[P].北京:CN205774356U,2016-12-07.
[5]岳光溪,吕俊复,徐鹏,胡修奎,凌文,陈英,李建锋. 循环流化床燃烧发展现状及前景分析[J]. 中国电力,2016,(01):1-13.。