半导体技术对人类社会的影响

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学与人类文明

任课老师:戴长建

班级:材化一班

姓名:余伟

学号:20114203

半导体技术对人类社会的影响

材化一班余伟20114203半导体材料对20世纪的人类文明所起的巨大影响最令人惊讶。20世纪是科学技术突飞猛进的100年,原子能、半导体、激光和电子计算机被称为20世纪的四大发明,后三大发明是紧密相关的。

半导体,指常温下导电性能介于导体与绝缘体之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。

半导体电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质称为半导体:室温时电阻率约在1mΩ·cm~1GΩ·cm之间,温度升高时电阻率则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、

模拟数字混成及功能进行分类的方法。

半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。

★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

★在光照和热辐射条件下,其导电性有明显的变化。

半导体材料的制造

为了满足量产上的需求,半导体的电性必须是可预测并且稳定的,因此包括掺杂物的纯度以及半导体晶格结构的品质都必须严格要求。常见的品质问题包括晶格的错位、双晶面,或是堆栈错误都会影响半导体材料的特性。对于一个半导体元件而言,材料晶格的缺陷通常是影响元件性能的主因。目前用来成长高纯度单晶半导体材料最常见的方法称为裘可拉斯基制程。这种制程将一个单晶的晶种放入溶解的同材质液体中,再以旋转的方式缓缓向上拉起。在晶种被拉起时,溶质将会沿着固体和液体的接口固化,而旋转则可让溶质的温度均匀。

最早的实用“半导体”是「电晶体(Transistor)/ 二极体(Diode)」。

一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。

二、近来发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。

三、半导体可以用来测量温度,测温范围可以达到生产、生活、

医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。

半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。

1904年发明真空二极管,1920年无线电广播便风靡全球;1931年半导体理论提出,1948年用半导体材料锗制成了晶体管,从真空管到

晶体管,使电子工业发生了质的飞跃,具有划时代的意义;1959年硅半导体材料研制成功,为微电子工业奠定了基础,事实上也是为计算机时代的到来提供了物质条件.1946年世界上第一台电子计算机在美国问世,当时还没有半导体材料,它是由18000支真空管组成的庞然大物,每秒钟实现加法运算40000次;1948年半导体材料取得突破,随即晶体管线路普及,1956年第一台晶体管计算机问世,和第一代真空管计算机相比,体积减小上千倍,运算速度提高到每秒近100万次;第三代计算机是在硅半导体材料发明以后,集成电路得以实现,1963年出现了硅半导体集成电路计算机,体积进一步缩小,运算速度达到每秒100万一200万次;随着半导体材料质量的提高和制造技术的改进,1971年后超大规模集成电路得以实现,加上信息存储材料和超微加工技术的发展,第四代超大规模集成电路计算机问世,计算机速度高达每秒千万次。事实说明,没有半导体材料就没有微电子工业,就没有计算机的时代。20世纪初(1905年)世界上第一个真空电子管的发明,标志着人类社会进入电子化时代,电子技术实现了第一次重大技术突破。这是控制电子在真空中的运动规律和特性而产生的技术成果。从此产生了无线电通信、雷达、导航、广播、电视和各种真空管电子仪器及系统。经过第二次世界大战后,人们感觉到真空管还存在许多不足,如仪器设备体积大、重量大、耗电大、可靠性和寿命受限制等。因此,研究新型电子管的迫切需求被提出来了。1947年美国贝尔实验室两位科学家巴丁和布拉坦在做锗表面实验过程中发明了世界上第一个点接触锗晶体管。两年后被誉为电子时代先驱的科学家肖

相关文档
最新文档