formation of disk galaxies - university of arizona
施勇 教育经历:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

施勇1980年11月出生。
南京大学 天文与空间科学学院email: yong@教育经历: 1999.9-‐2003.7 北京大学,地球物理系,天文专业,学士学位。
2003.8-‐2008.8 亚利桑那大学(美国),天文学,博士学位。
工作经历: 2008.8-‐2009.8: 亚利桑那大学(美国),博士后。
2009.9-‐2013.2: 加州理工学院(美国),博士后。
2013.3至今: 南京大学,教授,博导,国家青年千人。
科研基金项目:国家自然科学基金面上项目,11373021,极端贫金属星系:尘埃特性和恒星形成,2014/01-2017/12,80 万元,在研,主持。
中国科学院战略性先导B专项,XDB09000000, 宇宙结构起源B类先导,2014/01-至今,66万,在研,参与(骨干成员)。
中央组织部青年千人项目(第四批),2013.1-2015.12, 200万,在研、主持。
江苏省基金杰出青年项目,BK20150014, 2015.7-2018.7, 100万,在研、主持。
空间望远镜项目: • P I o n H erschel O T2 y shi 3 (16.1 h rs, p riority 1):“Extremely-‐metal p oor g alaxies: m apping d ust e mission”• T echnical C ontact a nd C o-‐I o n S pitzer-‐50507, 50508 (14.2 h rs, P I: G. R ieke)“Quasar a nd U LIRG E volution”• T echnical C ontact∗ a nd C o-‐I o n S pitzer-‐50196 (25.1 h rs, P I: G. R ieke.):“Cosmic Evolution of Star Formation in Quasar Hosts from z=1 to the Present”• T echnical C ontact∗ a nd C o-‐I o n S pitzer-‐40385 (2.1 h rs, P I: G. R ieke.):“A C hallenge t o t he U nification M odel”地面望远镜项目:• K eck 10 m: D EIMOS• I RAM 30 m: 24 h rs (2014A), 59.5 h rs (2016A).• P alomar 200 i nch: D BSP; L FC; W IRC• C FHT: M egaCAM• B ok 2.3 m• A rizona R adio O bservatory N RAO-‐12m• A rizona R adio O bservatory S MT-‐10m学术服务:ApJ, A pJL, A&A, A J, S ciChina, R AA的审稿人Telescope A ccess P rogram 望远镜分配委员会委员论文发表情况汇总(共36篇)通讯作者 非通讯作者 总计Nature 1 0 1Nature子刊 0 1 117 18 35ApJ, ApJS, ApJL,MNRAS, A&A(全部为NatureIndex高影响力科学期刊)AJ 0 1 1总计 18 20 38第一或通讯作者论文: 18. Zhang, Z.; Shi, Y* et al. 2016, ApJL, 819, 27“Distributions of quasar hosts on the galaxy main-sequence plane”17. Zhou, L.; Shi, Y* et al. 2016, MNRAS, 458, 772“Spatially resolved dust emission of extremely metal poor galaxies”16. S hi, Y.*, W ang, J., Z hang, Z.-‐Y. e t a l. 2015, A pJL, 804, 11“The Weak Carbon Monoxide Emission in an Extremely Metal-‐poor Galaxy, Sextans A”15. S hi, Y.*, A rmus, L., H elou, G. e t a l. 2014, N ature, 514, 335–338“Inefficient s tar f ormation i n e xtremely m etal p oor g alaxies”14. Shi, Y.*, Rieke, G., Ogle, P. et al., 2014, ApJS, 214, 23 “Infrared spectra and photometry o f c omplete s amples o f P G a nd 2MASS q uasars”13. Shi, Y.*, Helou, G., Armus, L. 2013, ApJ, 777, 6 “A Joint Model Of X-‐ray And Infrared B ackgrounds. I I. C ompton-‐Thick A GN A bundance”12. Shi, Y.*, Helou, G., et al. 2013, ApJ, 764, 28 “A Joint Model of the X-‐Ray and Infrared E xtragalactic B ackgrounds. I. M odel C onstruc-‐ t ion a nd F irst R esults”11. Shi, Y.*, Helou, G., et al. 2011, ApJ, 733, 87 “Extended Schmidt Law: Roles Of Existing S tars I n C urrent S tar F ormation”10. Shi, Y.*, Rieke, G. H., et al. 2010, ApJ, 714, 115 “Unobscured Type 2 Active Galactic N uclei”9. Shi, Y.*, Rieke, G. H., et al. 2009, ApJ, 703, 1107 “Cosmic Evolution of Star Formation i n T ype-‐1 Q uasar H osts S ince z = 1”8. Shi, Y.*, Rieke, G. H., et al. 2009, ApJ, 697, 1764 “Role of Major Mergers In Cosmic S tar F ormation E volution”7. Shi, Y.*, Rieke, G. H. et al. 2008, ApJ, 688, 794 “BH Accretion in Low-‐Mass Galaxies S ince z∼1”6. Shi, Y.*, Ogle, P., Rieke, G. H. et al. 2007, ApJ, 669, 841 “Aromatic Features in AGN: S tar-‐Forming I nfrared L uminosity F unction o f A GN H ost G alaxies”5. Shi, Y.*, Rieke, G. H., Hines, D. C. et al. 2007, ApJ, 655, 781 “Thermal and Nonthermal I nfrared E mission f rom M87”4. Shi, Y.*, Rieke, G. H., Hines, D. C. et al. 2006, ApJ, 653, 127 “9.7 um Silicate Features i n A ctive G alactic N uclei: N ew I nsights i nto U nification M odels”3. Shi, Y.*, Rieke, G. H., Papovich, C. et al. 2006, ApJ, 645, 199 “Morphology of Spitzer 24 u m D etected G alaxies i n t he U DF: T he L inks b etween S tar F or-‐ m ation and G alaxy M orphology”2. Shi, Y.*, Rieke, G. H., Hines, D. C. et al. 2005, ApJ, 629, 88 “Far-‐Infrared Observations o f R adio Q uasars a nd F R I I R adio G alaxies”1.Shi, Y., & Xu, R. X.* 2003, ApJ, 596, 75 “Can the Age Discrepancies of NeutronStars B e C ircumvented b y a n A ccretion-‐assisted T orque?”其他作者论文:20. G uo R. e t a l. (Shi Y. 5th a uthor), 2016, A pJ a ccepted, a rXiv:1604.0712219. Chen, Y. et al. (Shi Y. 4th author), 2016, MNRAS accepted, “Boxy Hα EmissionProfiles i n S tar-‐Forming G alaxies”18. Bian, W. H. et al. (Shi Y. 4th author), 2016, MNRAS, 456, 4081, “Spectral principal component analysis of mid-infrared spectra of a sample of PG QSOs”17. Wang, J. et al. (Shi Y. 4th author), 2016, MNRAS, 455, 3986, “Dense-gas properties in Arp 220 revealed by isotopologue lines”16. Wang, J. et al. (Shi Y. 7th author), 2014, Nature Communication, 5, 5449 “SiO and C H3OH m ega-‐masers i n N GC 1068”15. Kirkpatrick, A. et al. (Shi Y. 10th author) , 2014, ApJ, 796, 135 “Early Science with the Large Millimeter Telescope: Exploring the Effect of AGN Activity on the Relationships b etween M olecular G as, D ust, a nd S tar F ormation”14. Wang, J. et al. et al. (Shi Y. 4th author) , 2014, ApJ, 796, 57 “Isotopologues o f Dense G as T racers i n N GC 1068”13. Jin, S. et al. (Shi Y. 4th author), 2014, ApJ, 787, 63 “Color-‐Magnitude Distribution o f F ace-‐on n earby G alaxies i n S loan D igital S ky S urvey D R7”12. D ale, D. e t a l. (Shi Y. 6th a uthor), 2014, A pJ, 784, 83 “A T wo-‐parameter M odel for the Infrared/Submillimeter/Radio Spectral Energy Distributions of Galaxies and A ctive G alactic N uclei”11. Wang, J. et al. (Shi Y. 3rd author), 2013, ApJL, 778, 39 “A SiO 2-‐1 Survey toward G as-‐rich A ctive G alaxies”10. Magdis, G. E. et al. (Shi Y. 22th author), 2013, A&A, 558, 136 “Mid-‐ to far infrared p roperties o f s tar-‐forming g alaxies a nd a ctive g alactic n uclei”9. Kim, Ji Hoon, et al. (Shi Y. 16th author), 2012, ApJ, 760, 120 “The 3.3 m Polycyclic A romatic H ydrocarbon E mission a s a S tar F ormation R ate I ndicator”8. Wang, J., et al. (Shi Y. 3rd author) 2011, MNRAS, 416, 21 “CS (5-‐4) survey towards n earby i nfrared b right g alaxies”7. T yler, K. D., R ieke, G. H. e t a l. (Shi Y. 9th a uthor) 2011, A pJ, 738, 56 “The N ature of S tar F ormation a t 24 m i n t he G roup E nvironment a t 0.3 < z < 0.55”6. Wu, Y., et al. (Shi Y. 2nd author) 2011, ApJ, 734, 40 “The Mid-‐infrared Luminosity Function at z < 0.3 from 5MUSES: Understanding the Star Formation/Active G alactic N ucleus B alance f rom a S pectroscopic V iew”5. W u, Y., e t a l. (Shi Y. 5th a uthor) 2010, A pJ, 723, 895 “Infrared L uminosities a nd Aromatic F eatures i n t he 24um F lux L imited S ample o f 5MUSES”4. Mason, R. E., et al. (Shi Y. 3nd author) 2009, ApJ, 693, 136 “The Origin of the Silicate E mission F eatures i n t he S eyfert 2 G alaxy N GC 2110”3. B allantyne, D. R., e t a l. (Shi Y. 2nd a uthor) 2006, A pJ, 653, 1070 “Does t he A GN Unified M odel E volve w ith R edshift? U sing t he X-‐Ray B ackground t o P re-‐ d ict t he Mid-‐Infrared E mission o f A GNs”2. J iang, L. e t a l. (Shi Y. 4th a uthor) 2006, A J, 132, 2127 “Probing t he E volution o f Infrared P roperties o f z ∼6 Q uasars: S pitzer O bservations”1. Wu, Y. et al. (Shi Y. 4th author) 2004, A&A, 426, 503 “A study of high velocity molecular o utflows w ith a n u p-‐to-‐date s ample”。
地球的演化与地质时代

§2 地球的早期演化
行星地球形成以后,地球在内、外两部发动机的联合驱动下,才得以开始不 懈的运动与演化过程。这两部发动机联合驱动,又各司其职,将地球系统的 运动和演化过程从性质上划分为外动力作用过程和内动力作用过程,从时间 上划分为短期过程(天至几百年)和长期过程(百万年至几十亿年)。
早
地核-地幔过程
陨石的年龄 已收集到的不同陨石群的年龄不同,但用不同方 法测定的陨石的最老年龄集中于45-47亿年;推测地球的形成年 龄即为46-47亿年。
相对地质年代
相对地质年代确定的依据:岩层的沉积顺序、生物演化和地 质体之间的相互关系。 了解相对地质年代,必须了解地层与化石的概念。 必须掌 握地层层序律、化石层序律和和生物演化律的基本内涵。
宙代纪世
时间地层单位:与地质年代单位相对应。一个时间地层 单位代表了一定时间范围内形成的全部岩层。具有全球 对比意义。 划分等级:
宇界系统
岩石地层单位:以地层的岩石特征作为划分依据的地层 单位。它不考虑其年龄,具有地方性,使用范围有限。 划分等级:
群组段层
组是基本岩石地层单位。命名:地名+等级名 如蒲圻群、 临湘组、邵东段等。
地质年代和三种地层单位的异同与对比
地质年代
年代地层
岩石地层
(时间单位) (地层单位) (地层单位)
宙(eon)
宇(eonothem ) 群(group)
代(era)
界(erathem)
组formation)
纪(period) 系(system) 段(member)
世(epoch)
统(serios) 层(bed)
§5 地质时期的重大转折期与地质事件
在46亿年的漫长地质时期中,曾经出现过多次重大的地史 转折和全球性事件。这些事件造就了今天的陆洋格局,奠 定了我们生活其间的生命世界。然而,其中还有许多事件 的起因和过程,至今仍是未解之谜。
牛津译林版八年级英语上册阅读理解专项强化训练(二)

⽜津译林版⼋年级英语上册阅读理解专项强化训练(⼆)DAY ONETraining in first aidFirst aid is a very useful skill to have. By learning it, you could save someone’s life someday. But in China, less than 1 percent of adults (成年⼈) have first aid knowledge, according to the China Science Communication website.The Ministry of Education (MOE) has realized this. On Aug 24, it issued (发布) a statement (通知) along with the Red Cross Society of China. It has asked all public schools in China to provide first aid courses, including CPR (⼼肺复苏) training, as part of their health classes.A 2019 survey by the State Council showed that 64.6 percent of schools already have these courses. However, the results have not been good. According to the MOE statement, future results are expected (预计) to be better.Other countries have also made efforts (努⼒) to provide first aid training to theircitizens (公民). In 1966, the US government said police officers, firefighters, middle school teachers and college instructors (教师) must receive CPR training. A 2017 survey showed that 65 percent of Americans have received CPR training.In Switzerland, all citizens learn first aid skills. In Germany, 80 percent of people have received first aid training, according to CGTN.How does CPR help?CPR is an important first aid skill that can save victims (受害者) of cardiac arrest (⼼脏骤停). The first few minutes are very important. If CPR is correctly performed on the victim within the first four to six minutes, the victim has a better chance of surviving (幸存).1. The MOE is bringing first aid training to schools because _____.A. few Chinese people have first aid knowledgeB. the World Health Organization said it is neededC. there are not enough doctors and nursesD. it can help people live longer lives2. What might we know from the 2019 survey?A. Students didn’t get high scores in their courses.B. The first aid training courses didn’t go well.C. The first aid training went better than expected.D. Students were interested in learning first aid.3. The last two paragraphs are written to show _____.A. first aid training is common in Asian countriesB. teaching first aid is not easyC. people in some fields should learn first aid knowledgeD. other countries have provided first aid training to their citizens4. What is the story mainly about?A. We can save others with first aid knowledge.B. More people will need first aid in the future.C. We need more time to train people in first aid.D. China is making first aid training part of its school courses.DAY TWOLearn to skate againIn 2018, I saw Canadian ice skater Tessa Virtue and her partner Scott Moir performMoulin Rouge at the PyeongChang Winter Olympic Games. It encouraged me to realize my dream of skating. When I was just a little girl, I practiced skating for three years, but had to give it up and focus on (专注) school.Relearning figure skating (花样滑冰) at an older age is not easy. While standing on the thin steel blades (冰鞋⼑) for the first time in years, I felt both excited and scared.I couldn’t remember any jumps or spins (旋转). Younger skaters learn difficult rotation jumps (旋转跳跃). Could I still do that?“You have as much right to be here as anyone else,” my coach said to me. I felt better and decided to work harder. I fell many times while learning new jumps, spins and dance movements (舞蹈动作). Each fall only hurts more because you are already bruised (淤青的). But I still practice for hours each day.I’ve doubted (怀疑) myself and the pain is hard. But the feeling of joy is amazing. Fall down seven times, get up eight!1. After watching the two famous skaters perform, the writer _____.A. gave up her dreamB. decided to focus on schoolC. decided to relearn figure skatingD. wanted to learn something else2. When the writer got ready to start skating, _____.A. she was too excited to moveB. she found it difficult to put on her skatesC. she thought it might be too late to learnD. she felt both excited and scared3. What do we know from Paragraph 3?A. The coach didn’t think much of the writer.B. The writer couldn’t work hard.C.The writer’s early experience helped her.D. The writer wasn’t scared of pain4. From the story, we know that the writer _____.A. wants to compete in the Olympic GamesB. will stick to figure skatingC. will give up figure skatingD. is 100-percent sure she will succeedDAY THREEHelp scientists make progressIf you think doing scientific research (研究) is only for great scientists like Newton or Einstein, you might be wrong.In fact, if you like to play with insects or take pictures of wild animals, you might be able to help scientists do research yourself!The Shanghai Natural History Museum recently made an app called “Find Nature (听见万物)”. The app’s users can upload (上传) photos, sounds and locations (位置) of frogs, birds and other animals they see around them. These data (数据) can be used by scientists to study biodiversity (⽣物多样性) and better protect animals that live in cities.The concept of having people take part in scientific research, no matter what their background is, is called “citizen science”. The tasks are often easy and fun, but at the same time, you can become a big part of scientific studies.Of course, citizen science is not only about frogs or birds. There are also projects (项⽬) about watching stars and clouds, counting (数) penguins, or listening to laughs (笑声). Citizen science shows us that science can be fun and is for everyone!What citizen scientists have doneDataGalaxy Zoo invites people to help classify (分类) large numbers of galaxies. It has received 50 million classifications from more than 150,000 people!PapersWith the help of Cornell Lab citizen science data, more than 60 scientific papers have been written. The data used to write them has been collected by birdwatchers since 1997.DiscoveriesFoldit is an online puzzle game (智⼒游戏) about protein-folding (蛋⽩质折叠). Its players helped find the structure of an enzyme (酶) from an AIDS-like virus (病毒) in just three weeks.Where can I find my own projects?There are many websites (⽹站) where you can look for cool citizen science projects. They include Zooniverse, SciStarter, iNaturalist, and others. Just type (输⼊) in keywords that you’re interested in and you’ll see many projects. Here are some examples.Whale Song ProjectHave you ever heard whales singing beautiful songs? Do you want to know what they are singing? The Whale Song Project invites you to listen to whale calls and help scientists study how whales communicate with each other.When you visit the site, you’ll see an image (图像) that stands for a whale sound. Click on it and you’ll hear the sound. Under the image, there are several smaller images. Listen to each one and see if any of them matches the first one you heard.Age GuessAge Guess is an online game where you guess the ages of other people by looking at their pictures. You can also post your own photos and have other people guess yourage. In just a few minutes, you can help create (创造) research data for the study of human aging. The project studies the differences between how old you look to others and your real age.Answer the questions:1. How do people help scientists do research through Find Nature?_______________________________________2.What does the term “citizen science” mean?_______________________________________3. What does citizen science show us?_______________________________________4. What does the Whale Song Project study?_______________________________________5. How do people collect data for the project Age Guess?_______________________________________DAY FOURBack when our world was coldThese days, we often talk about global warming. In fact, the Earth was once the opposite (相反的事情) – it was cooling down instead of warming up. Scientists call this period the Ice Age (冰河时代). So far, Earth has gone through five Ice Ages. But how cold was this period? Was everything covered in ice and snow?According to a study by scientists at the University of Arizona, US, the average global temperature (全球温度) during the most recent Ice Age, which was about 20,000 years ago, was 7.8 C. This is about 6 degrees colder than today’s average temperature.You might just take off your T-shirt and put on a sweatshirt (运动衫) if the temperature drops by 6 degrees. However, on a global scale (范围), this is a hugechange.At the time, glaciers (冰川) covered about half of the Americas and Europe as well as many parts of Asia, according to Jessica Tierney, lead scientist of the study. The greatest cooling happened at higher latitudes (纬度). The Arctic (北极), for example, was about 14 degrees colder than today.Tierney said that past temperatures show us what really happens when the Earth cools or warms to a large degree (程度). It can help us know what to expect in the future.How did scientists find the average temperature?Scientists used ocean animal fossils (化⽯) and climate models (⽓候模型). The structures of fats from the fossils show changes in water temperature. Then they put this information into the models to get the global average temperature.1. The average global temperature today is about _____.A. 1.8 ℃B. 6 ℃C. 7.8 ℃D. 13.8 ℃2. When the average global temperature goes down, _____A. the temperature will drop by the same amount everywhereB. we won’t notice much of a change in temperatureC. all land will be covered with glaciersD. higher latitudes will experience greater changes3. Tierney thinks that _____.A. we can learn from past temperature changesB. we are about to go through a new Ice AgeC. we can do nothing to change global weatherD. we don’t have to worry about global warming4. What is the point of the story?A. Earth will cool down again in the future.B. Global warming isn’t a big problem.C. Earth has experienced cold periods before.D. The Ice Age is not over yet.DAY FIVEOnce upon a time, there lived a king named Minos. He ruled the island of Crete. He had a 1 monster called the Minotaur. The Minotaur lived in a maze (迷宫). He had the body of a man, but the head of a bull (公⽜).Minos was a cruel (残忍的) king. 2 he was bored, he would fight the people of a nearby island called Athens. To 3 him, they made a deal. They would give seven boys and seven girls to the Minotaur each year as a sacrifice (献祭). Minos agreed.The prince of Athens, Theseus, was mad about this. He told his father to 4 him to Crete as the seventh boy, for he wanted to kill the Minotaur.When Minos’ daughter, Adriadne, saw Theseus arriving to be sacrificed, s he wanted to 5 him. That morning, she 6 went to Theseus and gave him a sword (剑) and a ball of string (细绳).No one knew how to 7 the Minotaur’s maze. Minos threw the seven boys and seven girls in and laughed. Theseus, though, had a 8 . He left a line of string behind him. After a long fight, he killed the monster. Then, he 9 the string and found hisway out of the maze. Adriadne was 10 him there. They ran away together before Minos could stop them.1. A. traditional B. horrible C. cute D. lovely2. A. Whenever B. Wherever C. Whatever D. However3. A. refuse B. push C. stop D. leave4. A. bring B. send C. catch D. lend5. A. help B. leave C. catch D. kill6. A. carefully B. similarly C. clearly D. secretly7. A. get out of B. make up with C. come up with D. get along with8. A. tool B. view C. problem D. plan9. A. lost B. threw C. opened D. followed10. A. pulling up B. waiting for C. hearing from D. depending onDAY SIX应⽤⽂实战演练:为新⾐发愁Dear Murray,Autumn has come and my blouses (⼥式衬衫) are all too small. However, my mother wants to save money and refuses to buy new clothes for me. What can I do?Jelly Dear Jelly,If your blouses are so small that you can’t wear them, I suggest that you ask your mother to find some new blouses that are within her budget (预算). There are lots of ways to get cheap clothing, such as by buying second-hand clothes. It’s important to have a healthy lifestyle, too. If you are trying to lose weight so you can fit in your blouses, do it in a healthy way.Murray1. Jelly’s mother refuses to buy Jelly new clothes because _____.A. Jelly wants expensive clothesB. Jelly has enough clothesC. she thinks Jelly is growing too fastD. she wants to save money2. What is Murray’s first suggestion?A. Jelly shouldn’t ask for new clothes.B. Jelly can wear her mother’s clothes.C. Jelly can find cheaper clothes.D. Jelly should make a budget.3. According to Murray, Jelly _____.A. can exchange clothes with friendsB. can fit in her clothes by losing weightC. doesn’t stay fit in a healthy wayD. can earn money on her own4. What do we know from the text?A. Jelly’s family might not have much money.B. Jelly is often laughed at because of her clothes.C. Jelly often argues with her mother.D. Jelly is not in good health.参考答案:Day 1: ABDDDay 2: CDDBDay 3:1. They upload photos, sounds and locations of animals around them.2. It means common people can take part in scientific research, no matter what their background is.3. Science can be fun and it is for everyone.4. It studies how whales communicate with each other.5.They can guess others’ ages or post their own pictures and let others guess.Day 4: DDACDay 5: 1-5 BACBA 6-10 DADDBDay 6:应⽤⽂实战演练:DCBA。
alfred wegner雅思阅读

Alfred Wegener是20世纪初期德国地质学家,号称“大陆漂移学说之父”。
他提出了“大陆漂移学说”,并在1915年出版了专著《大陆的诞生和漂移》(Die Enstehung der Kontinente und Ozeane)。
这一学说一度遭到学术界的质疑和反对,但是在后来的发展中证明了其具有重要的科学意义。
大陆漂移学说认为地球上的大陆并不是固定不动的,而是在漫长的地质历史中发生了移动和漂移。
以下是关于Alfred Wegener雅思阅读的相关内容:一、Alfred Wegener的主要观点1. 大陆漂移的提出:Wegener通过对大洋地形、动植物分布、地质构造等多方面的综合研究,提出了大陆漂移的概念。
他认为地球的大陆并非一成不变,而是在演化的过程中发生了位置的变化。
2. 大陆漂移的机制:Wegener认为大陆漂移的原因是地球自转导致的离心力作用,推动了大陆的移动。
他通过对大陆边缘地质形态的比较研究,提出了大陆漂移的构造机制。
二、Alfred Wegener的大陆漂移证据1. 地质构造相似性证据:Wegener在研究大陆边缘的地质结构时发现了非常相似的地质构造,如南美洲和非洲大陆的西侧地质结构非常相似,这为大陆漂移提供了重要的地质证据。
2. 动植物分布的相似性证据:通过对古生物学的研究,Wegener发现了跨大洋分布的相似动植物化石,这一发现证实了大陆漂移学说的合理性。
3. 地质年代学的证据:Wegener通过对不同大陆上相似地质时代的地质岩石进行比较研究,发现它们呈现出非常相似的地球物理性质,这为大陆漂移提供了地质年代学的证据。
三、Alfred Wegener的学说发展和影响1. 学说的发展:虽然Wegener的大陆漂移学说一度受到学术界的质疑和反对,但是随着后来地球科学研究的深入,大陆漂移学说逐渐得到了证实和肯定。
20世纪60年代,海洋地质学的发展为大陆漂移提供了新的证据,加强了对该学说的认同。
天体尺度上的重大灾变事件——太阳系演化的插曲

时收缩过程 中星 云的 自转 渐 而变快 , 围部 分物 质最 终演 外
变 为 扁 平 状 , 成 一 个 星 云 盘 ( 1见 彩 插 一 ) 形 图 , 。
太 阳形 成后 , 于太 阳 辐 射 和 太 阳风 的作 用 , 云 由 星
盘 中靠近 太 阳 的气 体被 向外 推 离 , 这 部 分 盘 区 内 的尘 使
拉 出一长 条物 质并 绕 太 阳转 , 随着 恒 星 的远 离 拉 出 物渐
而变 长并 与 太 阳本 体 脱 离 , 终 凝 聚 为行 星 。不 过 , 最 后 来 的理论 工 作否 定 了这种 可 能性 。
结 合 成大 小 不 同的颗 粒 。较 大 的 固体 颗 粒 在 太 阳引 力 、 离 心 力 、 体 压 力 等 因 素 的 作 用 下 , 渐 沉 到 盘 的 中 央 气 逐
星云说 基础 上发 展 起 来 的 , 能 解 释 太 阳系 内 的大 部 分 它
1 太 阳 系起 源 的 星 云 说
太 阳系的起源与演化 , 是天 体物理 学 的一个 重要 研究 内容 。从历史上看有 关 太 阳系起源 的学 说不 下数 十种 , 它 们大体上可 以分 为三大类 , 即灾变说 、 俘获说 和星云说 。 I4 7 5年 , 国动 物学 家布 丰首 次 提 出关 于太 阳系起 法 源 的灾 变 说 。他 受 1 8 6 0年 一 颗 大 彗 星 接 近 太 阳 的启 发 , 想遥 远 的过 去 曾有 一 颗 大 彗 星 擦 撞 太 阳的 外 缘 , 设
星云 说最早 由德 国哲 学 家 康 德 ( 7 5年 ) 法 国数 15 和 学 家拉 普拉 斯 ( 7 6年 ) 立 提 出 , 们 的 观念 本 质 上是 19 独 他 相同的, 即太 阳 系天体 起 源 于 同一 原始 太 阳星 云 。康 德 的学说 侧 重于哲 理 , 普 拉斯 则 从 数 学 和 力 学上 进 行 论 拉 述 。鉴 于拉 普拉 斯 的学 术威 望 比康 德 高 得 多 , 学 说 得 使
地球历史及其生命的奥秘2020尔雅答案

-----------------------------------------------------------------------------------------------------------------------------古老的美好神话1【单选题】在宇宙空间弥漫着形形色色的物质,如银河系、太阳系、恒星、行星、气体、尘埃、电磁波等,它们都是( )。
答案:运动的A、静止的B、运动的C、有时静止D、有时运动2【多选题】关于宇和宙的错误解释是()。
ACDA、宇是无边无际的时间,宙是无始无终的空间B、宇是无边无际的空间,宙是无始无终的时间C、宇是无限空间和无限时间的统一D、宙是无限空间和无限时间的统一3【判断题】宇宙是无限空间和无限时间的统一。
答案:对4【判断题】宇宙万物都是由大爆炸产生的,大爆炸是宇宙的起源,但不是时间的起点。
答案:错1.1.2最具影响力的宇宙大爆炸学说1【单选题】1929年发现了普遍的星系红移,推测宇宙在膨胀,这个著名的定律叫做( )。
答案:哈勃定律A、哈勃定律B、相对论C、宇宙大爆炸D、黑洞理论2【多选题】1978年的诺贝尔物理学奖授予了( )。
ACA、彭齐亚斯B、伽莫夫C、威尔逊D、哈勃3【多选题】1964年,美国贝尔电话实验室两位工程师意外地发现了()CDA、鸽子的粪便效应B、有问题的仪器C、3.5K的黑体辐射D、宇宙大爆炸的证据4【判断题】两位美国通讯工程师获1978年诺贝尔物理学奖是因为发现了宇宙大爆炸的证据。
答案:对5【判断题】二十世纪初人类认为宇宙是运动的,不断变化的。
答案:错6【判断题】宇宙背景中残留下的热辐射是宇宙大爆炸曾经发生过的证据。
答案:对1.1.3银河系与太阳王国1【单选题】银河系向外伸出的四条旋臂组成的旋涡结构反映了银河系( )。
答案:存在自转运动A、具有漂亮的外形B、存在自转运动C、是一个巨大气云D、旋臂的物质密度低2【单选题】银河系是星系的典型代表,大约是由()颗恒星和大量星际物质组成的庞大天体系统。
天文学名词英汉对照表
天文学名词英汉对照表【推荐][名词委审定]汉英天文学名词(定义版, 1998)Ⅰ1054超新星||supernova of 1054(CM T au); 公元1054年出现在金牛座ζ星附近的超新星。
160分钟振荡||160-minute oscillation; 在太阳光球上观测到的周期约为 160分钟的速度起伏。
5分钟振荡||five-minute oscillation; 在太阳光球上观测到的周期约为 5分钟的速度起伏。
Ap星||Ap star; 光谱型B5—F5的特殊主序星,具有异常强的和可变的锰、硅、铕、铬、锶谱线和较强且变化的磁场。
与金属线星类似,自转速度较小,但多半是单星。
BN天体||BN object; 美国天文学家贝克林(Becklin )和诺伊格鲍尔(Neugebauer)在猎户星云中发现的一个点状红外源。
被认为是恒星刚形成阶段的候选者。
Be星||Be star; 光谱中出现(或曾出现)氢的巴耳末发射线,光度级为Ⅱ—Ⅴ,主要为B型的恒星。
B型星||B star; 光谱型为B的恒星。
光谱主要特征为中性氦吸收线和氢吸收线。
CCD 摄谱仪||CCD spectrograph; 用CCD(电荷耦合器件)作为辐射接收器的摄谱仪。
CCD 照相机||CCD camera; 用CCD(电荷耦合器件)作为辐射接收器的照相装置。
CCD测光||CCD photometry; 利用CCD 进行的二维光度测量。
CCD天文学||CCD astronomy; 用CCD (电荷耦合器件)作为辐射接收器和探测器的实测天文学。
CH星||CH star; 光谱中CH分子的G带(430.3nm)特强,422.6nm中性钙线与CN分子带偏弱的G3 —K4型星族Ⅱ巨星。
E冕||E corona; 由日冕自身的高次电离原子辐射形成的日冕成分。
F 冕||F corona; 由行星际尘埃云散射太阳光球辐射形成的日冕成分。
G型星||G star; 光谱型为G的恒星。
天文学专用词汇
Galactic aggregate 银河星集Galactic astronomy 银河系天文Galactic bar 银河系棒galactic bar 星系棒galactic cannibalism 星系吞食galactic content 星系成分galactic merge 星系并合galactic pericentre 近银心点Galactocentric distance 银心距galaxy cluster 星系团Galle ring 伽勒环Galilean transformation 伽利略变换Galileo 〈伽利略〉木星探测器gas-dust complex 气尘复合体Genesis rock 创世岩Gemini Telescope 大型双子望远镜Geoalert, Geophysical Alert Broadcast 地球物理警报广播giant granulation 巨米粒组织giant granule 巨米粒giant radio pulse 巨射电脉冲Ginga 〈星系〉X 射线天文卫星Giotto 〈乔托〉空间探测器glassceramic 微晶玻璃glitch activity 自转突变活动global change 全球变化global sensitivity 全局灵敏度GMC, giant molecular cloud 巨分子云g-mode g 模、重力模gold spot 金斑病GONG, Global Oscillation Network 太阳全球振荡监测网GroupGPS, global positioning system 全球定位系统Granat 〈石榴〉号天文卫星grand design spiral 宏象旋涡星系gravitational astronomy 引力天文gravitational lensing 引力透镜效应gravitational micro-lensing 微引力透镜效应great attractor 巨引源Great Dark Spot 大暗斑Great White Spot 大白斑grism 棱栅GRO, Gamma-Ray Observatory γ射线天文台guidscope 导星镜GW Virginis star 室女GW 型星habitable planet 可居住行星Hakucho 〈天鹅〉X 射线天文卫星Hale Telescope 海尔望远镜halo dwarf 晕族矮星halo globular cluster 晕族球状星团Hanle effect 汉勒效应hard X-ray source 硬X 射线源Hay spot 哈伊斑HEAO, High-Energy Astronomical 〈HEAO〉高能天文台Observatoryheavy-element star 重元素星heiligenschein 灵光Helene 土卫十二helicity 螺度heliocentric radial velocity 日心视向速度heliomagnetosphere 日球磁层helioseismology 日震学helium abundance 氦丰度helium main-sequence 氦主序helium-strong star 强氦线星helium white dwarf 氦白矮星Helix galaxy (NGC 2685 )螺旋星系Herbig Ae star 赫比格Ae 型星Herbig Be star 赫比格Be 型星Herbig-Haro flow 赫比格-阿罗流Herbig-Haro shock wave 赫比格-阿罗激波hidden magnetic flux 隐磁流high-field pulsar 强磁场脉冲星highly polarized quasar (HPQ )高偏振类星体high-mass X-ray binary 大质量X 射线双星high-metallicity cluster 高金属度星团;高金属度星系团high-resolution spectrograph 高分辨摄谱仪high-resolution spectroscopy 高分辨分光high - z 大红移Hinotori 〈火鸟〉太阳探测器Hipparcos, High Precision Parallax 〈依巴谷〉卫星Collecting SatelliteHipparcos and Tycho Catalogues 〈依巴谷〉和〈第谷〉星表holographic grating 全息光栅Hooker Telescope 胡克望远镜host galaxy 寄主星系hot R Coronae Borealis star 高温北冕R 型星HST, Hubble Space Telescope 哈勃空间望远镜Hubble age 哈勃年龄Hubble distance 哈勃距离Hubble parameter 哈勃参数Hubble velocity 哈勃速度hump cepheid 驼峰造父变星Hyad 毕团星hybrid-chromosphere star 混合色球星hybrid star 混合大气星hydrogen-deficient star 缺氢星hydrogenous atmosphere 氢型大气hypergiant 特超巨星Ida 艾达(小行星243号)IEH, International Extreme Ultraviolet 〈IEH〉国际极紫外飞行器HitchhikerIERS, International Earth Rotation 国际地球自转服务Serviceimage deconvolution 图象消旋image degradation 星象劣化image dissector 析象管image distoration 星象复原image photon counting system 成象光子计数系统image sharpening 星象增锐image spread 星象扩散度imaging polarimetry 成象偏振测量imaging spectrophotometry 成象分光光度测量immersed echelle 浸渍阶梯光栅impulsive solar flare 脉冲太阳耀斑infralateral arc 外侧晕弧infrared CCD 红外CCDinfrared corona 红外冕infrared helioseismology 红外日震学infrared index 红外infrared observatory 红外天文台infrared spectroscopy 红外分光initial earth 初始地球initial mass distribution 初始质量分布initial planet 初始行星initial star 初始恒星initial sun 初始太阳inner coma 内彗发inner halo cluster 内晕族星团integrability 可积性Integral Sign galaxy (UGC 3697 )积分号星系integrated diode array (IDA )集成二极管阵intensified CCD 增强CCDIntercosmos 〈国际宇宙〉天文卫星interline transfer 行间转移intermediate parent body 中间母体intermediate polar 中介偏振星international atomic time 国际原子时International Celestial Reference 国际天球参考系Frame (ICRF )intraday variation 快速变化intranetwork element 网内元intrinsic dispersion 内廪弥散度ion spot 离子斑IPCS, Image Photon Counting System 图象光子计数器IRIS, Infrared Imager / Spectrograph 红外成象器/摄谱仪IRPS, Infrared Photometer / Spectro- 红外光度计/分光计meterirregular cluster 不规则星团; 不规则星系团IRTF, NASA Infrared Telescope 〈IRTF〉美国宇航局红外Facility 望远镜IRTS, Infrared Telescope in Space 〈IRTS〉空间红外望远镜ISO, Infrared Space Observatory 〈ISO〉红外空间天文台isochrone method 等龄线法IUE, International Ultraviolet 〈IUE〉国际紫外探测器ExplorerJewel Box (NGC 4755 )宝盒星团Jovian magnetosphere 木星磁层Jovian ring 木星环Jovian ringlet 木星细环Jovian seismology 木震学jovicentric orbit 木心轨道J-type star J 型星Juliet 天卫十一Jupiter-crossing asteroid 越木小行星Kalman filter 卡尔曼滤波器KAO, Kuiper Air-borne Observatory 〈柯伊伯〉机载望远镜Keck ⅠTelescope 凯克Ⅰ望远镜Keck ⅡTelescope 凯克Ⅱ望远镜Kuiper belt 柯伊伯带Kuiper-belt object 柯伊伯带天体Kuiper disk 柯伊伯盘LAMOST, Large Multi-Object Fibre 大型多天体分光望远镜Spectroscopic TelescopeLaplacian plane 拉普拉斯平面late cluster 晚型星系团LBT, Large Binocular Telescope 〈LBT〉大型双筒望远镜lead oxide vidicon 氧化铅光导摄象管Leo Triplet 狮子三重星系LEST, Large Earth-based Solar 〈LEST〉大型地基太阳望远镜Telescopelevel-Ⅰcivilization Ⅰ级文明level-Ⅱcivilization Ⅱ级文明level-Ⅲcivilization Ⅲ级文明Leverrier ring 勒威耶环Liapunov characteristic number 李雅普诺夫特征数(LCN )light crown 轻冕玻璃light echo 回光light-gathering aperture 聚光孔径light pollution 光污染light sensation 光感line image sensor 线成象敏感器line locking 线锁line-ratio method 谱线比法Liner, low ionization nuclear 低电离核区emission-line regionline spread function 线扩散函数LMT, Large Millimeter Telescope 〈LMT〉大型毫米波望远镜local galaxy 局域星系local inertial frame 局域惯性架local inertial system 局域惯性系local object 局域天体local star 局域恒星look-up table (LUT )对照表low-mass X-ray binary 小质量X 射线双星low-metallicity cluster 低金属度星团;低金属度星系团low-resolution spectrograph 低分辨摄谱仪low-resolution spectroscopy 低分辨分光low - z 小红移luminosity mass 光度质量luminosity segregation 光度层化luminous blue variable 高光度蓝变星lunar atmosphere 月球大气lunar chiaroscuro 月相图Lunar Prospector 〈月球勘探者〉Ly-α forest 莱曼-α 森林MACHO (massive compact halo 晕族大质量致密天体object )Magellan 〈麦哲伦〉金星探测器Magellan Telescope 〈麦哲伦〉望远镜magnetic canopy 磁蓬magnetic cataclysmic variable 磁激变变星magnetic curve 磁变曲线magnetic obliquity 磁夹角magnetic period 磁变周期magnetic phase 磁变相位magnitude range 星等范围main asteroid belt 主小行星带main-belt asteroid 主带小行星main resonance 主共振main-sequence band 主序带Mars-crossing asteroid 越火小行星Mars Pathfinder 火星探路者mass loss rate 质量损失率mass segregation 质量层化Mayall Telescope 梅奥尔望远镜Mclntosh classification 麦金托什分类McMullan camera 麦克马伦电子照相机mean motion resonance 平均运动共振membership of cluster of galaxies 星系团成员membership of star cluster 星团成员merge 并合merger 并合星系; 并合恒星merging galaxy 并合星系merging star 并合恒星mesogranulation 中米粒组织mesogranule 中米粒metallicity 金属度metallicity gradient 金属度梯度metal-poor cluster 贫金属星团metal-rich cluster 富金属星团MGS, Mars Global Surveyor 火星环球勘测者micro-arcsec astrometry 微角秒天体测量microchannel electron multiplier 微通道电子倍增管microflare 微耀斑microgravitational lens 微引力透镜microgravitational lensing 微引力透镜效应microturbulent velocity 微湍速度millimeter-wave astronomy 毫米波天文millisecond pulsar 毫秒脉冲星minimum mass 质量下限minimum variance 最小方差mixed-polarity magnetic field 极性混合磁场MMT, Multiple-Mirror Telescope 多镜面望远镜moderate-resolution spectrograph 中分辨摄谱仪moderate-resolution spectroscopy 中分辨分光modified isochrone method 改进等龄线法molecular outflow 外向分子流molecular shock 分子激波monolithic-mirror telescope 单镜面望远镜moom 行星环卫星moon-crossing asteroid 越月小行星morphological astronomy 形态天文morphology segregation 形态层化MSSSO, Mount Stromlo and Siding 斯特朗洛山和赛丁泉天文台Spring Observatorymultichannel astrometric photometer 多通道天测光度计(MAP )multi-object spectroscopy 多天体分光multiple-arc method 复弧法multiple redshift 多重红移multiple system 多重星系multi-wavelength astronomy 多波段天文multi-wavelength astrophysics 多波段天体物。
第七章星系系统的介绍
17
棒旋星系 (Barred spiral galaxies)
Type SBa
Type SBb
Type SBc
18
银河系主要成分 (1) 银盘 (disk) (旋臂spiral arm)、 (2) 核球 (bulge) 、 (3) 银晕 (halo) 、(4) 银 冕 (corona)
19
星际物质(星际介质,Interstellar Medium) 星系内分布在恒星与恒星之间(~ 6-10 ly)的物质。 包括星际气体、星际尘埃、宇宙线与星际磁场。 星际物质的质量约为银河系恒星质量的10%。 主要分布在距离银道面约1000 ly的范围内。
33
所有这些激烈的物理过程主要是集中在星系的 核心,或者是由核心引发的。 通常也称这类星系为活动星系核(Active Galactic Nuclei,简称AGN) 只要不是专门讨论活动星系本身的结构,两者 之间不再严格加以区分
34
1918年(美)柯 蒂斯(Curtis)发 现星“云”M87的 光学喷流
28
星系质量测量结果
正常旋涡星系质量~ 109 -1012 M⊙ 椭圆星系质量~ 105 -1013 M⊙ 不规则星系质量~ 106 -1010 M⊙ 星系团质量~ 1013 -1014 M⊙ 星系和星系团的引力质量大约是可见质量的10倍。
29
星系的大小变化很大: 不规则星系,只有银河系的1%-25%; 巨椭圆星系,银河系大小的5倍; 矮椭圆星系,银河系大小的1%。
10
哈勃的裁决
1924年,哈勃 (Edwin Hubble) 分解出 “仙女座大星云” (M31) 中的造父变星, 证实它确实是恒星系统。 由造父变星周光关系哈勃估计M31的距 离285 kpc(实际距离778 kpc) > 最远 的球状星团的距离 (100 kpc) 。
绪论
参考教材
5. Joel H.Ferziger,Milovan Peric . Computational Methods for Fluid Dynamics.Springer,2001 6.(美)约翰 D.安徳森著,吴颂平等译.计 算流体力学基础及其应用.机械工业出版社, 2008
参考网站
1.流体中文网(介绍流体力学理论及研究) / 2.江苏省力学学会——流体力学 / 3.CFD Online /
Gas Dynamics Laboratory in the Department of Mechanical and Aerospace Engineering at Princeton University [Non-UK] 美国Princeton大学航空航天机械工 程系空气动力学实验室 湍流边界层 管道流动 激波等等 /~gasdyn/ Institute of Fluid Mechanics at the German Aerospace Centre [Non-UK] 德国航 空宇航中心流体机械研究所 计算流体力学 涡轮动力学 气体热力学 http://www.sm.go.dlr.de/ University of Maryland: Alfred Gessow Rotorcraft Center [Non-UK] 美国马里兰大 学 Alfred Gessow旋翼飞机中心 空气动力学 计算流体力学 /AGRC/ Aircraft Aerodynamics and Design Group at Stanford University 美国Stanford大 学飞行器气动设计中心 空气动力学 飞行器设计及优化 / Aerodynamics For Students 澳大利亚悉尼大学航空工程系空气动力学小组(学 生组织)流体机械 空气动力学 飞行动力学 风洞试验 .au/aero/contents.html FoilSim - Basic Aerodynamics Software 美国nasa空气动力学基础软件-FoilSim 这是一个计算机翼的空气动力的通用软件,主要用于翼型的研究 /WWW/K-12/aerosim/ Wolfson Unit For Marine Technology And Industrial Aerodynamics at the University of Southampton 英国Southampton大学工程应用科学系海运专业的空 气动力研究中心 风洞试验研究计算空气动力学 /~shipsci/wumtia/index.html