初二下学期期末考试数学试卷)
八年级数学下学期期末考试试卷及答案解释

八年级数学下学期期末考试试卷及答案解释八年级数学下学期期末考试试卷及答案解释引导语:只要有勇气,就一定能掌握自己的前途和命运。
以下是店铺分享给大家的八年级数学下学期期末考试试卷及答案解释,欢迎阅读!一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于( )A.﹣lB.1C.D.02.下列根式中,与是同类二次根式的是( )A. B. C. D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.4.已知1A.2x﹣5B.﹣2C.5﹣2xD.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A. B. C. D.6.在函数 (k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),( ,y3),函数值y1,y2,y3的大小为( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( )A. B. C. D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是( )A.△AED≌△BFAB.DE﹣BF=EFC.△BGF∽△DAED.DE﹣BG=FG10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为( )A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y= 中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= .15.代数式a+2 ﹣ +3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式 + 的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△P RM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ= CE时,EP+BP= .三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1) ﹣( )2﹣ +| ﹣2|(2)( ﹣)÷ .20.解分式方程:(1) =(2) = ﹣1.21.先化简,再求值:(1﹣)÷ ,其中a= ﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为( ).25.如图在平面直角坐标系xOy中,反比例函数y1= (x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC= AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的`值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于( )A.﹣lB.1C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是( )A. B. C. D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、 =2 ,故A选项不是;B、 =2 ,故B选项是;C、 = ,故C选项不是;D、 =3 ,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1A.2x﹣5B.﹣2C.5﹣2xD.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A. B. C. D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为 = .故选C.6.在函数 (k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),( ,y3),函数值y1,y2,y3的大小为( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵( ,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB= = ,AC= ,BC=2,∴AC:BC:AB= :2: =1::,A、三边之比为1::2 ,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( )A. B. C. D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y= (k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是( )A.△AED≌△BFAB.DE﹣BF=EFC.△BGF∽△DAED.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为( )A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM= CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC= = =4 .故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y= 中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为 4 .【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是 =0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2 .【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF= AD,∵EF=1,∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2 ﹣ +3的值等于 4 .【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2 ﹣ +3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+ 的值等于﹣3 .【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为 = ,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式= = =﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为( ,0),易证Rt△OQP∽Rt△MRP,根据三角形相似的性质得到 = = ,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入 (k>0)求出k的值.【解答】解:对于y= x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x= ,∴P点坐标为( ,0),即OP= ;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴ = = ,∴PM= OP= ,RM= OQ=1,∴OM=OP+PM= ,∴R点的坐标为( ,1),∴k= ×1= .故答案为 .18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ= CE时,EP+BP= 8 .【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出 = =2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ= EC,∴EQ=2CQ,∵EG∥BC,∴ = =2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1) ﹣( )2﹣ +| ﹣2|(2)( ﹣)÷ .【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3 +2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式= ﹣3﹣3 +2﹣=﹣1﹣3 ;(2)原式= ﹣= .20.解分式方程:(1) =(2) = ﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x= ,经检验,x= 是原方程的解.21.先化简,再求值:(1﹣)÷ ,其中a= ﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式= ÷= ×=a+1.当a= ﹣1时,原式= ﹣1+1= .22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365× =292;(3)随机选取这一年内某一天,空气质量是“优”的概率为: = .24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5 ),B′(5,5 ),C′(7,3 );(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为( 2a﹣1,2b﹣1 ).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1= (x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y= (x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y= (x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴ ×2CP+ ×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时 =7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a= m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时, (不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC= AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B 的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC= AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y= x+ ;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴ ,即 = ,解得,CD= ,∴ ,∴点D的坐标为( ,0);(3)在Rt△ABC中,由勾股定理得AB= =5,如图2,当PQ∥BD时,△APQ∽△ABD,则 = ,解得,m= ,如图3,当PQ⊥AD时,△APQ∽△ADB,则 = ,解得,m= ,所以若△APQ与△ADB相似时,m= 或 . 下载全文。
北京西城初二年级下学期期末考试数学试题 含答案

北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 函数11y x =+中,自变量x 的取值范围是( ).A. x ≠1-B. x ≠1C. x >1-D. x ≥1- 2. 一次函数+3y x =的图象不经过...的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,30OCB ∠=︒,如果OE =2,那么对角线BD 的长为( ).A. 4C. 8D. 105. 如果关于x 的方程220x x k --=有两个相等的实数根,那么以下结论正确的是( ).A. 1k =-B. 1k =C. k >1-D. k >16. 下列命题中,不正确...的是( ). A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分7. 北京市6月某日10个区县的最高气温如下表:(单位:℃)则这10个区县该日最高气温的中位数是( ).A. 32 C. 308. 如图,在Rt△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则α等于( ).A. 150°B. 90°C. 60°D. 30°9. 教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为万人,而2016年各类留学回国人员总数为万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为().A. 36.48(1)=43.25xx++ B. 36.48(12)=43.25C. 2x36.48(1)=43.25-36.48(1)=43.25+ D. 2x路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是().二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 如果关于x的方程2320-++=有一个根为0,那么m的值等于 .x x m12. 如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于2cm.13. 在平面直角坐标系xOy中,直线24=-+与x轴的交点坐标为,y x与y轴的交点坐标为,与坐标轴所围成的三角形的面积等于 .14.如图,在Y ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果1=70ADC∠∠,那么=∠°.ABC∠︒,=3215.如图,函数2=-的图象交于点P,那y kx=+与函数1y x b么点P的坐标为_______,关于x的不等式12->+的解集kx x b是.16. 写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,2)-的点. 你写出的解析式为 .17. 如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_______cm.18. 利用勾股定理可以在数轴上画出表示图,并保留画图痕迹:第一步:(计算)=,使其中a,b都为正整数.你取的正整数a=____,b= ;以第一步中你所取的正整数a,b为两条直第二步:∠︒,则斜边OFOEF=90请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)M,并描述第三步:第三步...的画图步骤:.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. 解方程:2610--=.x x20.如图,在四边形ABCD中,AD21.《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰好能出去.解决下列问题:(1)示意图中,线段CE的长为尺,线段DF的长为尺;(2)求户斜多长.22. 2016年9月开始,初二年级的同学们陆续到北京农业职业技术学院进行了为期一周的学农教育活动.丰富的课程开阔了同学们的视野,其中“酸奶的制作”课程深受同学们喜爱.学农1班和学农2班的同学们经历“煮奶—降温—发酵—后熟”四步,制作了“凝固型”酸奶.现每班随机抽取10杯酸奶做样本(每杯100克),记录制作时所添加蔗糖克数如表1、表2所示.表 1 学农1班所抽取酸奶添加蔗糖克数统计表(单位:克)表 2 学农2班所抽取酸奶添加蔗糖克数统计表(单位:克)据研究发现,若蔗糖含量在5%~8%,即100克酸奶中,含糖5~8克的酸奶口感最佳.两班所抽取酸奶的相关统计数据如表3所示.表3 两班所抽取酸奶的统计数据表根据以上材料回答问题:(1)表3中,x=:(2)根据以上信息,你认为哪个学农班的同学制作的酸奶整体..口感较优?请说明理由.23. (1)阅读以下内容并回答问题:小雯用这个方法进行了尝试,点(1,2)A -向上平移3个单位后的对应点A '的坐标为 ,过点A '的直线的解析式为 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线2y x =-向右平移1个单位,平移后直线的解析式为 ,另外直接将直线2y x =-向 (填“上”或“下”)平移 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy 内的图形M ,将图形M 上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M 的一次..“斜平移”. 求将直线2y x =-进行两次..“斜平移”后得到的直线的解析式.(3)解:24.(1)画图-连线-写依据:先分别完成以下画图..(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线..,并写出判定依据(只将最后一步判定特殊平行..........四边形的依据......填在横线上).①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.(2)请从图1、图2的结论中选择一个进行证明.证明:25. 如图所示,在平面直角坐标系x O y中,B,C两点的坐标分别为(4,0)B,(4,4)C,CD⊥y轴于点D,直线l 经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出45∠=︒,从而证明结论.CFB思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.……请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为.(2)①补全图形.②直线BF与直线l的位置关系是.③证明:北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学 附 加 题试卷满分:20分一、填空题(本题6分)1. 如图,在平面直角坐标系xOy 中,点1(2,2)A 在直线y x =上,过点1A 作11A B ∥y 轴,交直线12y x =于点1B ,以1A 为直角顶点,11A B 为直角边,在11A B 的右侧作等腰直角三角形111A B C ;再过点1C 作22A B ∥y轴,分别交直线y x =和12y x =于2A ,2B 两点,以2A 为直角顶点,22A B 为直角边,在22A B 的右侧作等腰直角三角形222A B C ,…,按此规律进行下去,点1C 的横坐标为 ,点2C 的横坐标为 ,点 n C 的横坐标为 .(用含n 的式子表示,n 为正整数)二、操作题(本题6分)2.如图,在由边长都为1个单位长度的小正方形组成的66⨯正方形网格中,点A ,B ,P 都在格点上.请画出以AB 为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件: 条件1:点P 到四边形的两个顶点的距离相等; 条件2:点P 在四边形的内部或其边上; 条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个Y ABCD , 使点P 在所画四边形的内部; (2)在图②中画出符合条件的一个四边形ABCD ,使点P 在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.三、解答题(本题8分)3.如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.解:①②北京市西城区2016-2017学年度第二学期期末试卷八年级数学参考答案及评分标准一、选择题(本题共30分,每小题3分)题号12345678910答案A D B C A B A C C D二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 2-. 12. 12. 13. (2,0),(0,4),4.(各1分)14. 60. 15.(1,2)-(2分),x<1(1分).16. 答案不唯一,如2=-等.(只满足一个条件的y x得2分)17. 2.18. 第一步:a= 4 ,b= 2 (或a= 2 ,b= 4 );…………2分第二步:如图1. ……………………………………… 3分第三步:如图1,在数轴上画出点M. ………………………………………………………4分第三步的画图步骤:以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M. ………………………………………………………………………………………… 5分说明:其他正确图形相应给分,如2OE =,4EF =.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. (本题5分) 解:1a =,6b =-,1c =-. …………………………………………………………………… 1分224(6)41(1)40b ac ∆=-=--⨯⨯-=>0. …………………………………………………2分 方程有两个不相等的实数根x = ……………………………………………………………………… 3分(6)6322--±±===所以原方程的根为13x =+,23x =-………………………………………… 5分20.(本题5分)解:(1)如图2.∵ △ABC 中,AB=10,BC=6,AC =8,∴222AC BC AB. ……………………… 1分+=∴△ABC是直角三角形,=90∠︒.……2分ACB(2)∵AD==90∠∠︒…………………………………………………………… 3分CAD ACB∵在Rt△ACD中,=90∠︒,AC=AD=8,CAD∴CD=…………………………………………………………… 4分=………… 5分21.(本题7分)解:(1)4,2.…………………………………………………………………………………2分(2)设户斜x尺.…………………………………… 3分则图3中BD=x,BC BE CE x=-=-,(x>4)4=-=-.(x>2)2CD CF DF x又在Rt△BCD中,=90∠︒,BCD由勾股定理得222BC CD BD.+=所以222(4)+(2)=x x x--.………………… 4分整理,得212200x x-+=.因式分解,得(10)(2)=0x x--.解得110x=,22x=.……………………………………………………………… 5分因为x> 4 且x>2,所以2x=舍去,10x=.…………………………………… 6分答:户斜为10尺.…………………………………………………………………… 7分22.(本题5分)解:(1)6.…………………………………………………………………………………………1分(2)学农2班的同学制作的酸奶整体口感较优.………………………………………… 2分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定.……………………5分23.(本题7分)解:(1)(1,1),y x=-+.…………………………………………………………………… 2分23(2)22=-+,上,2.(各1y x 分)…………………………………………………………5分(3)直线2=-上的点(1,2)A-进行一次“斜平移”后的对应点的坐标为y x(2,1),进行两次“斜平移”后的对应点的坐标为(3,4).设经过两次“斜平移”后得到的直线的解析式为2=-+.y x b 将(3,4)点的坐标代入,得234-⨯+=.b解得10b=.所以两次“斜平移”后得到的直线的解析式为210=-+.y x……………………… 7分说明:其他正确解法相应给分.24.(本题7分)解:(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据的答案不唯一)(2)①如图4.∵ NP ∥DE ,EQ ∥DN ,NP 与EQ 的交点为点M ,∴ 四边形DEMN 为平行四边形.∵ D 为矩形ABEN 对角线的交点,∴ AE=BN ,12DE AE =,12DN BN =.∴ DE= DN .∴ 平行四边形DEMN 是菱形.……………………………………………………… 7分②如图6,连接AF ,BG ,记交点为H .∵ D ,N 两点分别为AB ,GA 边的中点,∴ DN ∥BG ,12DN BG =.同理,EM ∥BG ,12EM BG =,DE ∥AF ,12DE AF =.∴ DN ∥EM ,DN =EM .∴ 四边形DEMN 为平行四边形.∵ 四边形ABFG 是菱形,∴ AF ⊥BG .∴90∠=︒.AHB∴118090∠=︒-∠=︒.AHB∴2180190∠=︒-∠=︒.∴平行四边形DEMN是矩形. ………………………………………………………7分25.(本题8分)解:(1)(0,4).……………………………………………………………………………………1分(2)①补全图形见图7.……………………………………………………………………… 2分②BF⊥直线l.…………………………………………………………………………… 3分③法1:证明:如图8,作CM⊥CF,交直线l于点M.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC DC OD∵CE⊥直线l,CM⊥CF,45∠=︒,ECF可得△CEF,△CEM 为等腰直角三角形,=45∠∠=︒,CMD CFECF=CM.①∵=90∠︒-∠,DCM DCFBCF DCF∠︒-∠,=90∴=∠∠.②BCF DCM又∵CB=CD,③∴△CBF≌△CDM.…………………………………………………………6分∴∠∠=︒.……………………………………………………7分CFB CMD=45∴=90∠∠+∠=︒.BFE CFB CFE∴BF⊥直线l.………………………………………………………………8分法2:证明:如图9,作BN⊥CE,交直线CE于点N.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC CD OD∵CE⊥直线l,BN⊥CE,∴90BNC CED∠=∠=︒.①∴1390∠+∠=︒.∠+∠=︒,2390∴12∠=∠.②又∵CB=DC,③∴△BCN≌△CDE.………………6分∴BN= CE.又∵45∠=︒,ECF可得△CEF为等腰直角三角形,EF = CE.∴BN= EF.又∵180BNE NED∠+∠=︒,∴BN∥FE.∴四边形BFEN为平行四边形.又∵90CEF∠=︒,∴平行四边形BFEN为矩形.…………………………………………………7分∴=90BFE∠︒.∴BF⊥直线l.……………………………………………………………… 8分北京市西城区2016-2017学年度第二学期期末试卷八年级数学附加题参考答案及评分标准一、填空题(本题6分)1.解:3,92,322n⎛⎫⨯ ⎪⎝⎭.(各2分)二、操作题(本题6分)2. 解:(1)答案不唯一,如:或其他.(2)答案不唯一,如:或其他.(3)说明:每图2分,答案不唯一时,其他正确答案相应给分.三、解答题(本题8分)3.解:(1)如图 1.由△OFF≌1△1BOB ,及B (m, n )可得点F 的坐标为(,)n m -,同理可得点D 的坐标为(,)a n a m +-. (全等1分,两个坐标各1分)…………………3分(2)①设点M 的坐标为(,)M x y .∵ 点M 为线段FD 的中点,(,)F n m -,(,)D a n a m +-,可得点M 的坐标为(,)22a a . …………………………………………………… 5分 ∴ ,2.2a x a y ⎧=⎪⎪⎨⎪=⎪⎩消去a ,得y x =.所以,当点A 在x 轴的正半轴上指定范围内运动时,相应的点M 在运动时总落在直线y x =上,即点M 总落在函数y x =的图象上. ………………………6分②如图2,当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,点A 运动的路径为线段12A A ,其中1(2,0)A ,2(8,0)A ,相应地,点M 所经过的路径为直线y x =上的一条线段12M M ,其中1(1,1)M ,2(4,4)M .……………………………… 7分 而12M M =∴ 点M 所经过的路径的长为……………………………………………8分。
初二数学期末考试数学试卷及答案

初二数学期末考试数学试卷及答案一、选择题(共10题,每题2分,共20分)1. 24 ÷ 6 + 2 × 3 = ()A. 32B. 14C. 18D. 122. ⒍ be worth 100 yuan. I paid 150 yuan for it. San Lan gave me some change. How much change did San Lan give me? ()A. 200 B.50 C.150 D. 1003. 填出恒等式:6×4 = 12×( )A. 4 B.6 C. 2 D. 84. 在逗号所在的空格中,填入适当的数:120 ÷()= 12A. 10 B.5 C. 12 D.65. 求下列各组数字的最小公倍数:18,20A. 18B. 20C. 180D. 3606. 两个数的比是5:6,如果较小的一个数为15,较大的那个数是多少?()A. 12B. 18C. 20D. 257. 祖玛有1小时50分钟的自行车课,比王涛多1小时15分钟的课,他俩的课时谁多?()A. 祖玛B. 王涛C. 相同D. 不确定8. 如图,下列哪一个是在圆角方形中?A. B. C. D.9. 一个由8位数组成的最小的两位自然数是()A. 01B. 10C. 11D. 0810. 若其中 m>=4,n<=5 ,则下列等式中成立的是()A. 7m+n<43B. 7m+n=43C. 7m+n>43D. 7m-n=43二、计算题(共7题,每题10分,共70分)1. 小梁的绳子长82厘米,他的弟弟的绳子长53厘米,比小梁的绳子短多少?2. 某限决策仿公司的単弯时效:如果101秒生产48道工序产品,则1秒生产多少道产品?3. 成千作图如为下图,其中亚四好一,比亚二大三"画图"请你画出亚五和亚七。
4. 小梁参加长跑比赛,先跑200米,然后每天增加100米,请问他跑到第10天后共跑了多少米?5. 某银行收到一笔800元等谁存款,共有100元,50元,10元等钞,共有30个(可不全是100元),每种各多少?6. 如图,五角星巾件入右面的三个编号分别是: (1),(2),(3)"图"请你写出五角星巾的右首名称,右图次序与右首名称顺序是否一致?7. 用黑色2B铅笔在红色的底字线上填写黑字名3个,红字名3个(黒色恒在上)。
安徽省太和县2021年初二下期末考试数学试卷及答案

第9题HGFEDBA 第8题OE DCBA安徽省太和县2021年初二下期末考试数学试卷及答案八年级数学试卷B卷一、选择题(下列各题所给答案中,中有一个答案是正确的。
每小题3分,共30分)1.假如分式x-11有意义,那x 的取值范畴是( ) A.1>x B.1<x C.1≠x D.1=x2.已知反比例函数xky =的图象过点)4,2(,则下面也在反比例函数图象上的点是( )A.)4,2(- B.)2,4(- C.)8,1(- D.)21,16(3.下列各组数据中能作为直角三角形的三边长的是( )A.5,11,13 B.3,2,5 C.9,12,15 D.23,24,254.一直角三角形两边分别为3和5,则第三边长为( )A.4 B.34 C.4或34 D.2 5.在下列命题中,其真命题的是( )A.有一个角是直角的四边形是矩形;B.有一个角是直角且一组邻边相等的四边形是正方形; C.有两边平行的四边形是平行四边形;D.两条对角线互相垂直平分的四边形是菱形.6.菱形的面积为2,其对角线分别为x ,y ,则y 与x 的图象大致为( )DC B A7.已知四边形ABCD 中,BD AC ⊥,且8=AC ,10=BD ,E 、F 、M 、N 分别为AB 、BC 、CD 、DA 的中点,那么四边形EFMN 的面积等于( ) A.40 B.220 C.20 D.2108.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,BD AE ⊥于点E ,oAOB 45=∠,则BAE ∠的大小为( ) A.o15 B.o5.22第12题第13题PE DCBAC.o 30 D.o459.如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是( )A.一组对边平行而另一组对边不平行 B.对角线相等 C.对角线互相垂直 D.对角线互相平分10.已知甲、乙两班学生测验成绩的方差分别为1542=甲S 、922=乙S ,则两个班的学生成绩比较整齐的是( ) A.甲班 B.乙班 C.两班一样D.无法确定二、填空题(每小题4分,共16分)11.已知03|2|=-+-b a ,则22222ba aba b ab a --⨯+的值为 . 12.如图,已知直线b kx y +=图象与反比例函数xky =图象交于),1(m A 、),4(n B -,则不等式kb kx >+的解集为 .13.如图,正方形ABCD 的面积为25,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PE PD +的和最小,则那个最小值为 . 14.一组数据8、8、x 、10的众数与平均数相等,则=x . 三、解答与证明(共54分)15.(6分)先化简再求值:22244422-÷⎪⎪⎭⎫ ⎝⎛+--+--x x x x x x x ,其中21=x .16.(6分)解方程13321-+=+x x x x .第17题FE D C B A17.(8分)如图所示,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知 cm AB 8=,cm BC 10=.求CE 的长.18.(8分)如图已知反比例函数)0(>=k xky 的图象通过点),2(m A ,过点A 作x AB ⊥轴于点B ,且3=∆AOB S . (1)求k 与m 的值;(2)若一次函数1+=ax y 的图象通过点A ,同时与x 轴相交于点C .求ACB ∠的度数.19.(8分)某班为了从甲、乙两同学中选出班长,C 、D 、E民主测评得分=“好”票数⨯2分+(1)求甲、乙两位选手各自演讲答辩的平均分; (2)试求民主测评统计图中a 、b 的值是多少;(3)若按演讲答辩得分和民主测评4:6的权重比运算两位选手的综合得分,则应选取哪位选手当班长.20.(8分)太和县开发某工程预备招标,现在甲、乙两个工程队参与投标,开发部从标书得知:乙队单独完成这项工程所需天数是甲队单独完成所需天数的2倍.该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天能够完成.甲、乙两队单独完成这项工程各需要多少天?21.(10))某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD (BC AB <)的对角线的交点O 旋转(①→②→③),图中的M 、N 分别为直角三角形的直角边与矩形ABCD 的边CD 、BC 的交点. (1)该学习小组成员意外的发觉图①(三角板一直角边与OD 重合)中,222CN CD BN +=, 在图③中(三角板一边与OC 重合),222CD BN CN +=,请你对这名成员在图①和图③中发觉的结论选择其一说明理由.(2)试探究图②中BN 、CN 、CM 、DM 这四条线段之间的数量关系,写出你的结论,并说明理由.MNNABCDOCDOBA图① 图② 图③太和县2020—2020学年度第二学期期末考试八年级数学试卷B卷参考答案1.C2.D3.C4.C5.D6.C7.C8.B9.C 10B11.9412.04<<-x 或1>x 13. 5 14. 6 15.51616.43-17.cm 318.(1)6=k 3=m(2)o4519.(1)甲 92 乙 89 (2)7=a 4=b (3)甲20.甲 30天 乙 60天 21.(1) 略(2)2222CM CN DM BN +=+。
辽宁省朝阳市八年级下学期数学期末考试试卷

八年级下学期数学期末考试试卷一、选择题(共10题;共20分)1.不等式的解集是()A. B. C. D.2.若分式中的、的值都变为原来的3倍,则此分式的值()A. 不变B. 是原来的3倍C. 是原来的D. 是原来的3.下列图案中,不是中心对称图形的是()A. B. C. D.4.多项式各项的公因式是()A. B. C. D.5.如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为()A. 10°B. 15°C. 25°D. 40°6.如果一个多边形的每一个内角都是,那么这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形7.如图,中,的垂直平分线交于,如果,,那么的周长是()A. B. C. D.8.若解分式方程= 产生增根,则m=()A. 1B. 0C. ﹣4D. ﹣59.下列命题中是真命题的是()A. 若,则B. 有两个角为的三角形是等边三角形C. 一组对边相等,另一组对边平行的四边形是平行四边形D. 如果,那么,10.如图,在中,,,将绕点逆时针旋转,得到,连接,则的长是()A. B. C. D.二、填空题(共6题;共9分)11.分解因式:________.12.关于x的不等式组的解集为-3<x<3,则a,b的值分别为________.13.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为________。
14.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书的数量________本.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=________度.16.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为________.三、解答题(共9题;共63分)17.先化简,再求值:.其中,.18.解不等式组:,并把它的解集在数轴上表示出来19.解分式方程:.20.如图是一种儿童的游乐设施—儿童荡板.小明想验证这个荡板上方的四边形是否是平行四边形,现在手头只有一根足够长的绳子,请你帮助他设计一个验证方案,并说明理由.21.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的格点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC从开始变换到A1 C2的过程中扫过区域的面积(重叠部分不重复计算)23.如图,在中,平分,,交的延长线于点,点在上,且,求证:点是的中点.24.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=________ cm;DP=________ cm;BQ=________ cm;CQ=________ cm. (2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?25.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(/个)使用农户数(户1520已知可供建造沼气池的占地面积不超过,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.答案解析部分一、选择题1.【解析】【解答】解:−3x<−2,不等式两边同除以−3,得,故答案为:A.【分析】根据不等式的性质,在不等式的两边都除以-3,不等号方向改变即可得出答案.2.【解析】【解答】解:∵分式中的、的值都变为原来的3倍∴∴此分式的值不变.故答案为:A【分析】用3x,3y替换原题中的x、y,再分子、分母分别分解因式后约分即可得出答案.3.【解析】【解答】解:A、是中心对称图形,故A选项错误;B、是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项正确;D、是中心对称图形,故D选项错误.故答案为:C.【分析】中心对称图形是图形绕某一点旋转180°后与原来的图形完全重合,再对各选项逐一判断即可。
朝阳市2020年八年级下学期数学期末考试试卷(I)卷

朝阳市2020年八年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共29分)1. (3分) (2019八下·北京期末) 与是同类二次根式的是()A .B .C .D .2. (3分)方程5x2=6x-8化成一般形式后,其各项系数分别是()A . 5,6,-8B . 5,-6,-8C . 5,-6,8D . 6,5,-83. (3分)(2020·扬州) 如图,小明从点A出发沿直线前进10米到达点B,向左转后又沿直线前进10米到达点C,再向左转后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A . 100米B . 80米C . 60米D . 40米4. (3分)估算的值()A . 在7和8间B . 在8和9之间C . 在9和10之间D . 在10和11之间5. (3分) (2020九下·吉林月考) 为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的约用水量,下列说法错误的是()A . 中位数是5吨B . 极差是3吨C . 平均数是5.3吨D . 众数是5吨6. (2分) (2019八上·盐田期中) 已知a,b为直角三角形的两边, +(b-4)2=0,则这个三角形第三边的长是()A . 25B . 5C .D . 5或7. (3分)某商场将进价为元∕件的玩具以元∕件的价格出售时,每天可售出件,经调查当单价每涨元时,每天少售出件.若商场想每天获得元利润,则每件玩具应涨多少元?若设每件玩具涨元,则下列说法错误的是()A . 涨价后每件玩具的售价是元B . 涨价后每天少售出玩具的数量是件C . 涨价后每天销售玩具的数量是件D . 可列方程为8. (3分)(2020·海门模拟) 勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A . 40B . 44C . 84D . 889. (3分)设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣.其中正确的是()A . ①②④B . ①③④C . ②③D . ②④10. (3分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论的个数有()个A . 5B . 4C . 3D . 2二、填空题 (共6题;共22分)11. (4分) (2019九下·徐州期中) 若在实数范围内有意义,则的取值范围是________.12. (4分) (2017八下·越秀期末) 一组数据:2017、2017、2017、2017、2017,它的方差是________.13. (4分)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动________秒时,△DEB与△BCA全等.14. (4分)(2014·无锡) 如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.15. (2分) (2019八上·潮州期中) 如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有________个(不含△ABC).16. (4分)(2019·苏州模拟) 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD 边上一动点,将四边形APQD沿直线PQ折叠,A的对应点为A′,则CA′的长度最小值为________.三、计算题 (共1题;共10分)17. (10分)计算(1)﹣ +(2)(3+2 )(2 ﹣3)(3)﹣3(4) | ﹣2|+ ﹣(﹣3)0 .四、解答题(本大题共5小题,共56分) (共5题;共56分)18. (10分) (2019九上·下陆月考) 若m、n是方程x2+2x﹣2019=0的两根.求:(1)求 + 的值;(2) m2+m﹣n的值.19. (10分)(2016·陕西) 问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH 部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.20. (10分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.求配色条纹的宽度;21. (12分)(2020·河南模拟) 为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数ABCDE调查结果扇形统计图请根据以上图表,解答下列问题:(1)这次被调查的同学共有________人, ________, ________;(2)求扇形统计图中C所在的扇形的圆心角度数;.(3)该校共有学生人,请估计每月零花钱的数额在范围内的人数.22. (14.0分)(2019·营口) 在平面直角坐标系中,抛物线过点,,与y轴交于点C,连接AC,BC,将沿BC所在的直线翻折,得到,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设的面积为S1 ,的面积为S2 ,若,求a的值.参考答案一、选择题 (共10题;共29分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共22分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共1题;共10分)17-1、17-2、17-3、17-4、四、解答题(本大题共5小题,共56分) (共5题;共56分)18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、。
黑龙江省牡丹江市2020年八年级下学期数学期末考试试卷A卷
黑龙江省牡丹江市2020年八年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(每小题2分,共20分) (共10题;共20分)1. (2分) (2018九上·青浦期末) 下列各式中,的有理化因式是()A .B .C .D .2. (2分) (2019八下·东台月考) 下面四个英文大写字母中,既是中心对称图形,又是轴对称图形的是()A . SB . YC . XD . R3. (2分)(2019·宁津模拟) 下列计算,正确的是()A . a2·a2=2a2B . 3 - =3C . (-a2)2=a4D . (a+1)2=a2+14. (2分)(2019·抚顺模拟) 下列一元二次方程有两个相等实数根的是()A .B .C .D .5. (2分)(2020·武汉模拟) 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x台其他电脑,由题意列方程应为()A . 1+2x=100B . x(1+x)=100C . (1+x)2=100D . 1+x+x2=1006. (2分)下列说法错误的是()A . 一组数据的众数,中位数和平均数不可能是同一个数B . 一组数据的平均数既不可能大于,也不可能小于这组数据中的所有数据C . 一组数据的中位数可能与这组数据的任何数据都不相等D . 众数,中位数和平均数从不同角度描述了一组数据的集中趋势7. (2分)如图,在平行四边形ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°,AC=2,则BD的长为()A . 6B . 2C .D . 38. (2分)下列命题中,真命题是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相平分的四边形是平行四边形D . 对角线互相垂直平分的四边形是正方形9. (2分) (2018九上·长春开学考) 如图,在中,,平分 .若则的长为()A .B .C .D .10. (2分)(2017·十堰模拟) 如图,在平行四边形ABCD中,DE平分∠ADC,BE=2,DC=4,则平行四边形ABCD 的周长为()A . 16B . 24C . 20D . 12二、填空题(每小题3分,共30分) (共10题;共30分)11. (3分) (2019九上·呼兰期末) 函数中,自变量x的取值范围是________.12. (3分) (2020八上·自贡期末) 如图,蚂蚁点出发,沿直线行走4米后左转36°,再沿直线行走4米,又左转36°,照此走下去,他第一次回到出发点 ,一共行走的路程是________ .13. (3分)请写一个图象在第二、四象限的反比例函数解析式:________14. (3分)已知x=2是关于x的方程x2﹣6x+m=0的一个根,则m=________.15. (3分) (2019七下·鼓楼月考) 试说明命题“任何数a的平方都是正数”是假命题,可以举的反例是a =________.16. (3分) (2019八上·海港期中) 如图,AB∥CD,AD∥BC,EF过AC与BD的交点O.图中全等三角形有________对17. (3分)(2014·衢州) 如图,点E,F在函数y= (x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是________,△OEF的面积是________(用含m的式子表示)18. (3分)小刚在一次考试中,语文、数学、英语三门学科的平均成绩为80分,物理、化学两门学科的平均成绩为85分,你认为小刚这5门学科的平均成绩是________ 分.19. (3分)(2017·鄞州模拟) 如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y= (x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).则点F的坐标是________.20. (3分) (2017七上·温州月考) 如图,在纸面上有一数轴,点A表示的数为,点B表示的数为,点C表示的数为.若小米同学先将纸面以点B为中心折叠,然后再次折叠纸面使点A和点B重合,则此时数轴上与点C重合的点所表示的数是________.三、解答题(第21-25题每小题8分) (共6题;共50分)21. (8分)计算:(1)(3 ﹣)(﹣3 ﹣);(2) + × ÷ .22. (8分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.23. (8.0分)(2019·凤翔模拟) 中国飞人苏炳添以6秒47获得2019年国际田联伯明翰室内赛男子60米冠军,苏炳添夺冠掀起跑步热潮某校为了解该校八年级男生的短跑水平,全校八年级男生中随机抽取了部分男生,对他们的短跑水平进行测试,并将测试成绩(满分10分)绘制成如下不完整的统计图表:组别成绩/分人数/人A536B632C715D88E95F10m请你根据统计图表中的信息,解答下列问题:(1)填空:m=________,n=________;(2)所抽取的八年级男生短跑成绩的众数是________分,扇形统计图中E组的扇形圆心角的度数为________°;(3)求所抽取的八年级男生短跑的平均成绩.24. (8分)(2017·浦东模拟) 已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.(1)求证:AB=BF;(2)如果BE=2EC,求证:DG=GE.25. (8分)(2017·盘锦模拟) 有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y= 上的概率.26. (10.0分)如图,在平面直角坐标系中,O为坐标原点,点N的坐标为(20,0),点M在第一象限内,且OM=10,sin∠MON= .求:(1)点M的坐标;(2)cos∠MNO的值.四、附加题 (共4题;共20分)27. (3分)将抛物线y=2x2-12x+16绕它的顶点旋转180°,所得抛物线的解析式是().A . y=-2x2-12x+16B . y=-2x2+12x-16C . y=-2x2+12x-19D . y=-2x2+12x-2028. (3分) (2019九上·硚口月考) 二次函数的图象如图所示,对称轴为直线,下列结论不正确的是()A .B . 当时,顶点的坐标为C . 当时,D . 当时,y随x的增大而增大29. (3分) (2016八上·重庆期中) 如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA 和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A . 25°B . 30°C . 35°D . 40°30. (11.0分)(2017·日照) 如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.参考答案一、选择题(每小题2分,共20分) (共10题;共20分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题3分,共30分) (共10题;共30分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题(第21-25题每小题8分) (共6题;共50分) 21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、四、附加题 (共4题;共20分) 27-1、28-1、29-1、30-1、30-2、30-3、。
2022-2023第2学期初2年级数学期末考试题-平谷答案
平谷区2022-2023第二学期初二年级期末质量抽测 数学试卷参考答案及评分标准 .7一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 题号910111213141516答案 (2,3) X ≠2答案不 唯一如y=-x+11<k 5⎩⎨⎧==2y 1x 乙,甲乙两班平均水平一样,但乙班方差小,成绩比较均衡。
(或甲,甲乙两班平均水平一样,但甲班中位数大,高分段人数多)四条边都相等的四边形是菱形;菱形的对角线互相垂直 (答案不 唯一)三、解答题(本题共68分,第17—20题每小题5分;21—28题每小题6分) 17.解:18. 证明:∵ 四边形ABCD 为平行四边形∴AB //CD ,AB =CD ..........................................................1 ∴∠1=∠2. ...................................................................2 ∵BE=DF . (3)∴ △ABE ≌△CDF (SAS ) (4)∴ AE =CF (5)题号 1 2 3 4 5 6 7 8 答案DACCBABD3-21,214)1(41232032212222=--==+-==+=++=+=-+x x xx x x x x x ......................................................2 ......................................................1 (5)......................................................4 (3)19.解:(1)∵直线x 32y =过点A (-3,m ) ∴-2(-3)32m =⨯=..........................1 ∴A (-3,-2)∵直线()0y kx b k =+≠过点A (-3,-2)和点B (0,1)∴⎩⎨⎧=-=+-123b b k (2)解得:⎩⎨⎧==11b k∴y=x+1 (3)(2)P (-4,0)或P (2,0) (5)20.证明:在△ABC 中,∵点D 、E 分别为AB 、AC 边中点,BC=6∴DE= BC=3………………2 在Rt △ABC 中, ∵ F 为DE 中点, ∴ AF=DE=23 (5)21.(1)设该一次函数的表达式为)(0≠+=k b kx y (1)∵ 图象经过点(0,32)和(5,41) ∴⎩⎨⎧=+=41532b k b (3)解得:⎪⎩⎪⎨⎧==3259b k∴3259+=x y ………………………………………………4 FE DB(2)当x=-5时,y=23∴当摄氏温度 5℃时,其所对应的华氏温度为23℉ (6)22. (1)0)1(2=+++k x k x 方程总有两个实数根∴≥∆-=+-=-++=-+=∆0)1(124124)1(2222 k k k k k k k k0k 0-k 222111222112)1()1(21<∴>∴-=-=+---=-=-=-+--=-±+-=方程有一个根是正数 kk k k x k k x k k x23. (1)证明:∵四边形ABED 是平行四边形∴BE //AD ,BE=AD ....................1 ∵AD=DC∴BE //DC ,BE=DC∴四边形BECD 是平行四边形 (2)在△ABC 中, ∵AB =BC ,AD=DC∴∠BDC=90°................................3 ∵∠BDC=90° ∴四边形BECD 是矩形(2)证明:∵ 四边形BECD 是矩形∴ ∠ACE=∠BDC=90° (4)∵∠BAC=60°∴△ABC 是等边三角形∴∠BCD =60°BC=AB=4 ∴∠CBD =30° (1) (2) (3) (4)……………………………………………………………5 FACDE (6)频数成绩x /分121086401009080706021416∴CD=BC=2 .....................................................5 由勾股,BD=32 ∴CE=BD=32,AC=AB=4由勾股,AE=72.............................................6 24.解:设这两年每年屋顶绿化面积的增长率是x (1)2000×(1+x )2=2880 (4)解得:x 1=20%,x 2=﹣220%(舍去) (5)答:这两年每年屋顶绿化面积的增长率是20% (6)25.解:(1)a = 0.15 ,b = 8 , c = 12 ,d = 0.3 ;………… 2 (2) (5)(3)估计参加这次比赛的400名学生中成绩“优”等的约有120人. (6)26.(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:x /cm0 1.0 2.0 3.0 4.0 4.9 5.5 6.0 6.5 7.0 7.5 8.0 y /cm6.2 5.5 4.9 4.3 4.0 3.9 4.0 4.1 4.24.4 4.75.0某区初二年级40名学生数学学科知识大赛成绩统计图: (2)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;4(3)结合画出的函数图象,解决问题:① 4.9 (4.5至5.4均可) (5)② 2.3(2.1至2.8均可) (6)27.解:(1)如图; (1)(2)连接DF,MC①利用轴对称性,得到DC=DF,MF= MC,∠DCM=∠DFM ;②再由正方形的性质,得到△DAF是等腰三角形,∠DAM=∠DF A ; (2)③因为四边形AMCD的内角和为360 °,而∠DAM+∠DCM=∠DF A+∠DFM = 180 °;④得到∠AMC+∠A DC= 180 °,即可得∠AMC等于90 °;⑤再由轴对称性,得∠AMD的度数=45 ° (3)(3)结论:AM=2D N. (4)证明:作AH⊥DE于点H.∴∠AHD=∠AHM=90°.∵正方形ABCD,∴∠ADC =90°.又∠DNC=90°.∴∠HAD+∠ADH=90°,∠ADH+∠NDC=90°.∴∠HAD=∠NDC.∵AD=DC,∴在△ADH和△DNC中,∠HAD=∠NDC,∠AHD=∠DNC,AD=DC,∴△ADH≌△DNC. (5)∴AH=DN.∵Rt△AMH中,∠AHM=90°,∠AMD=45°,∴AM=2AH.∴AM=2DN. (6)(其他证法相应给分.)28.解:(1)2 (1)(2)①2 (2)②5≤-b (4)1≤(3)3-≤-t23≤3............................. (6)。
内蒙古赤峰市2020版八年级下学期数学期末考试试卷(I)卷
内蒙古赤峰市2020版八年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算正确的是()A .B .C .D .2. (2分)下列二次根式中,不能与合并的是()A .B .C .D .3. (2分) (2019九上·潮南期末) 如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的大小为A .B .C .D .4. (2分)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为()A . 5B . 3C . 4D . 75. (2分) (2017八下·汇川期中) 下列各式是最简二次根式的是()A .B .C .D .6. (2分)一次函数与的图象如图1,当时,则下列结论:①;②;③中,正确的个数是()A . 0B . 1C . 2D . 37. (2分) (2018九上·江干期末) 如图,E是平行四边形ABCD的BA边的延长线上的一点,CE交AD于点F.下列各式中,错误的是().A .B .C .D .8. (2分)如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A . (0,0)B . (, -)C . (-,-)D . (-,-)9. (2分) (2019八上·绍兴月考) 如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C,D,E,F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A . ①②③B . ①②④C . ①②D . ①②③④10. (2分) (2017九上·灌云期末) 把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A . 120°B . 135°C . 150°D . 165°二、填空题 (共6题;共6分)11. (1分) (2019七上·昌平期中) 已知,化简 ________.12. (1分) (2018八下·宁波期中) 当时,二次根式的值为________。
湖南省株洲市八年级下学期数学期末考试试卷
湖南省株洲市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·陆川期末) 下列式子中,属于最简二次根式的是()A .B .C .D .2. (2分) (2020八上·沈阳期中) 下列四组数中,能作为直角三角形三边长的是()A . 1,2,3B . 2,3,4C . 1,,D . ,,,3. (2分) (2017八下·巢湖期末) 如果数据1,2,2,x的平均数与众数相同,那么x等于()A . 1B . 2C . 3D . 44. (2分) (2020八上·陈仓期末) 一次函数的图象大致是()A .B .C .D .5. (2分) (2019八下·龙州期末) 数据3,2,0,1,的方差等于()A . 0B . 1C . 2D . 36. (2分) (2020八下·三台期中) 如图,顺次连接四边形ABCD各边中点,得到四边形EFGH,下列条件中,可使四边形EFGH是矩形的是()A . AB=CDB . AC⊥BDC . AC=BDD . AD∥BC7. (2分)函数y=2x,y=﹣3x,y=﹣x的共同特点是()A . 图象位于同样的象限B . y随x的增大而减小C . y随x的增大而增大D . 图象都过原点8. (2分)(2016·藁城模拟) 将矩形纸片ABCD按如图所示的方式折叠,AE,EF为折痕,∠BAE=30°,AB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A .B . 2C . 3D . 29. (2分) (2020八上·南宁期末) 工人师傅常用角尺平分一个角,具体做法如下:如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,则过角尺顶点P的射线OC便是∠AOB 的平分线,其中证明△MOP≌△NOP时运用的判定定理是()A . SSSB . SASC . ASAD . AAS10. (2分)(2019·叶县模拟) 如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A . ( , )B . ( , )C . ( , )D . ( , )二、填空题 (共6题;共6分)11. (1分)(2020·绥化) 在函数中,自变量x的取值范围是________.12. (1分) (2019八下·宽城期末) 如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是________.13. (1分) (2020八上·黄陂开学考) 将y=2x﹣3的图象向上平移2个单位长度得到的直线表达式为________.14. (1分)(2017·黄州模拟) 如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式组0<kx+b < x的解集为________.15. (1分) (2020八下·龙江月考) 在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A、O、B、C为顶点的四边形为平行四边形,则点C的坐标为________16. (1分)(2017·深圳模拟) 如图,一只小猫被关在正方形ABCD区域内,点O是对角线的交点,∠MON=90°,OM、ON分别交线段AB、BC于M、N两点,则小猫停留在阴影区域的概率为________.三、解答题 (共10题;共96分)17. (10分) (2020八上·碑林期末) 计算:(1)(2).18. (5分)如图,在平面直角坐标系xoy中,⊙A与y轴相切于点B(0,),与x轴相交于M、N两点.如果点M 的坐标为(,0),求点N的坐标.19. (5分) (2019九下·中山月考) 如图,在□ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边AD、AB于点M、N,再分别以点M、N为圆心,以大于 MN长为半径画圆弧,两弧交于点P,作射线AP交边CD于点E,过点E作EF//BC交AB于点F.求证:四边形ADEF是菱形.20. (11分)某市的7月中旬最高气温统计如下(1)在这十个数据中,34的权是________,32的权是________.(2)该市7月中旬最高气温的平均数是________,这个平均数是________平均数.21. (10分)(2020·郑州模拟) 如图,AB为⊙O的直径,DB⊥AB于B,点C是弧AB上的任一点,过点C作⊙O的切线交BD于点E.连接OE交⊙O于F.(1)求证:CE=ED;(2)填空:①当∠D=________时,四边形OCEB是正方形;②当∠D=________时,四边形OACF是菱形.22. (15分)(2020·南昌模拟) 如图,一次函数的图象与反比例函数的图象交于两点.(1)求一次函数和反比例函数的解析式;(2)若是反比例函数图象上任意两点,且满足,求的值.23. (10分) (2020八下·宜兴期中) 如图,在菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,∠E=50°.(1)求证:BD=EC;(2)求∠BAO的大小.24. (10分) (2019八下·贵池期中) 如图,在四边形ABCD中,AB=BC=2,CD=3,DA=1,且AB⊥BC于B .求:(1)∠BAD的度数;(2)四边形ABCD的面积.25. (10分) (2020七下·滨州月考) 如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 初二下学期期末考试数学试卷 一、选择题(每小题3分,共36分) 1.在式子22,2,,3,1yxxabbacba中,分式的个数为( )
A.2个 B.3个 C.4个 D.5个 2.下列运算正确的是( )
A.yxyyxy B.3232yxyx C.yxyxyx22 D.yxyxxy122
3.若A(a,b)、B(a-1,c)是函数xy1的图象上的两点,且a<0,则b与c的大小关系为( ) A.b<c B.b>c C.b=c D.无法判断
4.如图,已知点A是函数y=x与y=x4的图象在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为( ) A.2 B.2 C.22 D.4
第4题图 第5题图 第8题图 第10题图 5.如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为( ) A.1 B.2 C.3 D.2 6.△ABC的三边长分别为a、b、c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③))((2cbcba;④13:12:5::cba,其中能判断△ABC是直角三角形的个数有( )
A.1个 B.2个 C.3个 D.4个 7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( ) A.① B.② C.③ D.④ 8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( ) A.20º B.25º C.30º D.35º 9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( ) A.众数是80 B.平均数是80 C.中位数是75 D.极差是15 10.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( ) A.33吨 B.32吨 C.31吨 D.30吨
11.如图,直线y=kx(k>0)与双曲线y=x1交于A、B两点,BC⊥x轴于C,连接AC交y轴于D,
下列结论:①A、B关于原点对称;②△ABC的面积为定值;③D是AC的中点;④S△AOD=21. 其中
A B O
y
x A
B
C D
E A B E
D
C - 2 -
正确结论的个数为( ) A.1个 B.2个 C.3个 D.4个
第11题图 第12题图 第16题图 第18题图 12.如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是( ) A.①②③ B.②③④ C.①③④ D.①②③④ 二、填空题(每小题3分,共18分) 13. 已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是 .
14.观察式子:ab3,-25ab,37ab,-49ab,……,根据你发现的规律知,第8个式子为 . 15.已知梯形的中位线长10cm,它被一条对角线分成两段,这两段的差为4cm,则梯形的两底长分别为 .
16直线y=-x+b与双曲线y=-x1(x<0)交于点A,与x轴交于点B,则OA2-OB2= .
17. 请选择一组,ab的值,写出一个关于x的形如2abx的分式方程,使它的解是0x,这样的分式方程可以是______________. 18.已知直角坐标系中,四边形OABC是矩形,点A(10,0),点C(0,4),点D是OA的中点,点P是BC边上的一个动点,当△POD是等腰三角形时,点P的坐标为_________.
三、解答题(共6题,共46分) 19.( 6分)解方程:011)1(222xxxx
20. (7分) 先化简,再求值:2132446222aaaaaaa,其中31a. 21.(7分)如图,已知一次函数y=k1x+b的图象与反比例函数y=xk2的图象交于A(1,-3),B(3,m)两点,连接OA、OB. (1)求两个函数的解析式;(2)求△AOB的面积.
A B C D
O x
y A
B C
E
D O A
B O x
y
A B O x y X Y
A D B C P
O - 3 - 22.(8分)小军八年级上学期的数学成绩如下表所示: 测验 类别 平 时 期中 考试 期末 考试 测验1 测验2 测验3 测验4
成绩 110 105 95 110 108 112 (1)计算小军上学期平时的平均成绩; (2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分?
23.(8分)如图,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF. (1)判断四边形ADEF的形状,并证明你的结论; (2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?
24.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克. (1)求喷洒药物时和喷洒完后,y关于x的函数关系式; (2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室? (3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
期末 50% 期中
40%
平时 10%
A F E D
C B
10 8 O x
y
(分钟) (毫克) - 4 -
B D A F E G C
四、探究题(本题10分) 25.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF. (1)FG与DC的位置关系是 ,FG与DC的数量关系是 ; (2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.
五、综合题(本题10分) 26.如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=x2于点D,过D作两坐标轴的垂线DC、DE,连接OD. (1)求证:AD平分∠CDE; (2)对任意的实数b(b≠0),求证AD²BD为定值; (3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
B A C
A B C
E O
D
x
y - 5 -
参考答案 一、选择题(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D B C D C C C C B C D 二、填空题(每小题3分,共18分)
13.10 14.-817ab 15.6cm,14cm, 16.2,17.略,18.(2,4),(2.5,4),(3,4),(8,4) 三、解答题(共6题,共46分)
19. X=-32
20.原式=-a1,值为-3 21.(1)y=x-4,y=-x3. (2)S△OAB=4 22.(1)平时平均成绩为:)分(105411095105110 (2)学期总评成绩为:105³10%+108³40%+112³50%=109.7(分) 23.(1)(略) (2)AB=AC时为菱形,∠BAC=150º时为矩形.
24.(1)y=x54(0<x≤10),y=x80. (2)40分钟
(3)将y=4代入y=x54中,得x=5;代入y=x80中,得x=20. ∵20-5=15>10. ∴消毒有效. 四、探究题(本题10分)
25.(1)FG⊥CD ,FG=21CD. (2)延长ED交AC的延长线于M,连接FC、FD、FM. ∴四边形 BCMD是矩形. ∴CM=BD. 又△ABC和△BDE都是等腰直角三角形. ∴ED=BD=CM. ∵∠E=∠A=45º ∴△AEM是等腰直角三角形. 又F是AE的中点. ∴MF⊥AE,EF=MF,∠E=∠FMC=45º. ∴△EFD≌△MFC. ∴FD=FC,∠EFD=∠MFC. 又∠EFD+∠DFM=90º ∴∠MFC+∠DFM=90º 即△CDF是等腰直角三角形. 又G是CD的中点.
∴FG=21CD,FG⊥CD. 五、综合题(本题10分) 26.(1)证:由y=x+b得 A(b,0),B(0,-b). ∴∠DAC=∠OAB=45 º