2018年全国高考数学试题汇编必修1,2,4,5考题

合集下载

2018年高考数学全国Ⅰ卷[文][解析版]

2018年高考数学全国Ⅰ卷[文][解析版]

2018年普通高等学校招生全国统一考试文科数学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则()A.B.C.D.2.设,则()A.0 B.C.D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆:的一个焦点为,则的离心率()A.B.C D5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(){}02A=,{}21012B=--,,,,A B={}02,{}12,{}0{}21012--,,,,121iz ii-=++z=121C22214x ya+=()2,0C13121O2O12O OA .B .C .D .6.设函数.若为奇函数,则曲线在点处的切线方程为( ) A .B .C .D .7.在中,为边上的中线,为的中点,则( ) A . B . C .D .8.已知函数,则( ) A .的最小正周期为,最大值为3 B .的最小正周期为,最大值为4C .的最小正周期为,最大值为3D .的最小正周期为,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )A .B .C .D .210.在长方体中,,与平面所成的角为,则该长方体的体积为( ) A .B .C .D .11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,12π10π()()321f x x a x ax =+-+()f x ()y f x =()00,2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +()222cos sin 2f x x x =-+()f x π()f x π()f x 2π()f x 2πM A N B M N 31111ABCD A BC D -2AB BC ==1AC 11BB C C 30︒8αx ()1,A a,且,则( )A .BCD .12.设函数,则满足的的取值范围是( )A .B .C .D .二、填空题(本题共4小题,每小题5分,共20分)13.已知函数,若,则________.14.若满足约束条件,则的最大值为________.15.直线与圆交于两点,则 ________.16.的内角的对边分别为,已知,,则的面积为________.三、解答题(共70分。

2018高考全国卷1理科数学试题及答案解析教学内容

2018高考全国卷1理科数学试题及答案解析教学内容

2018高考全国卷1理科数学试题及答案解析WORD格式整理2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i|z| z1iA.0B.12C.1D.22.已知集合220A x x x,则e R AA.x1x2B.x1x2C.x|x1x|x2D.x|x1x|x23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半专业技术参考资料WORD 格式整理4.设S n 为等差数列a n 的前n项和,若3S3 S2 S4 ,a1 2,则a5A.12 B.10 C.10 D.125.设函数 3 2f x x a x ax ,若 f ( x) 为奇函数,则曲线y f (x) 在点(0,0) 处的切线方程为( ) ( 1)A.y2x B.y x C.y2x D.y x6.在△ABC中,AD为B C 边上的中线, E 为A D 的中点,则EBA.3 1AB AC B.4 41 3AB AC C.4 43 1AB AC D.4 41 3AB AC4 47.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为 A ,圆柱表面上的点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.2 17 B.2 5 C.3 D.28.设抛物线C:y2=4x 的焦点为F,过点(–2,0)且斜率为2=4x 的焦点为F,过点(–2,0)且斜率为23的直线与 C 交于M,N 两点,则FM FN =A.5 B.6 C.7 D.89.已知函数f (x)x xe ,0,g( x) f (x) x a .若g(x)存在 2 个零点,则 a 的取值范围是ln x,x 0,A.[–1,0)B.[0,+∞)C.[ –1,+∞)D.[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III .在整个图形中随机取一点,此点取自I,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p3专业技术参考资料11.已知双曲线C:2x32 1y ,O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别为M、N.若△OMN 为直角三角形,则|MN |=A .32B.3 C.2 3 D.412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .3 34B.2 33C.3 24D.32二、填空题:本题共 4 小题,每小题 5 分,共20 分。

2018年高考真题——理科数学(全国卷Ⅰ)+Word版含解析

2018年高考真题——理科数学(全国卷Ⅰ)+Word版含解析

2018年高考真题——理科数学(全国卷Ⅰ)+Word版含解析2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设121iz i i-=++,则z =( ) A .0 B .12C .1D 25.设函数()()321f x xa x ax=+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217 B .25 C .3 D .2 8.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .8 9.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( )A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC△的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p = B .13p p = C .23pp =D .123p p p =+11.已知双曲线2213x C y-=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32 B .3 C .23 D .4 12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32 二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记nS 为数列{}na 的前n 项和.若21nn Sa =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案) 16.已知函数()2sin sin 2f x x x=+,则()f x 的最小值是________.三、解答题(共70分。

2018年高考数学试题及答案word版

2018年高考数学试题及答案word版

2018年高考数学试题及答案word版一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2等于多少?A. 1B. 2C. 3D. 4答案:B2. 已知向量a = (1, 2),向量b = (3, 4),向量a与向量b的点积为多少?A. 5B. 6C. 7D. 8答案:C3. 在一个等差数列中,首项为3,公差为2,第10项的值是多少?A. 23B. 24C. 25D. 26答案:A4. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 3答案:A5. 一个圆的半径为5,圆心到直线x + y - 7 = 0的距离为多少?A. 3B. 4C. 5D. 6答案:B6. 若复数z = 1 + i,则|z|等于多少?A. √2B. 2C. √3D. 3答案:A7. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。

A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^3 - 3x^2答案:A8. 已知双曲线方程为x^2/9 - y^2/16 = 1,其渐近线方程为多少?A. y = ±(4/3)xB. y = ±(3/4)xC. y = ±(4/3)x + 1D. y = ±(3/4)x + 1答案:A9. 已知正方体的体积为8,求其表面积。

A. 12B. 16C. 24D. 32答案:C10. 已知函数f(x) = ln(x),求f'(1)。

A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求第5项的值。

答案:48612. 已知三角形的三边长分别为3, 4, 5,求其面积。

答案:613. 已知函数f(x) = x^2 - 6x + 8,求其对称轴方程。

2018年全国卷1理科数学含答案

2018年全国卷1理科数学含答案

A . 01 { }{}{ }D . x| x ≤ -1}U x | x ≥ 2}绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设 z = 1 - i+ 2i ,则 | z |=1 + i2C .1D . 22.已知集合 A = x x 2 - x - 2 > 0 ,则 R A =A . x -1 < x <2 B . x -1 ≤ x ≤ 2C . {x | x < -1}U {x | x > 2}{ {3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:= S + S , a = 2 ,则 a =B . y = -xEB r r r r建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设 S 为等差数列{a n}的前 n 项和,若 3S n32 4 1 5A . -12B . -10C .10D .125.设函数 f ( x ) = x 3 + (a - 1)x 2 + ax ,若 f ( x ) 为奇函数,则曲线 y = f ( x ) 在点 (0,0) 处的切线方程为A . y = -2xC . y = 2x6.在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 uuur=D . y = x3 uuu1 uuur A . AB - AC4 41 uuu3 uuur B . AB - AC4 4 3 uuu1 uuur C . AB + AC4 4 1 uuu3 uuur D . AB + AC4 47.某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到 N 的路径中,最短路径的长度为11.已知双曲线 C : - y 2 = 1 ,O 为坐标原点,F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点2B .3A . 2 17B . 2 5C .3D .28.设抛物线 C :y 2=4x 的焦点为 F ,过点(–2,0)且斜率为 23uuuur uuur 的直线与 C 交于 M ,N 两点,则 FM ⋅ FN =A .5B .6C .7D .8⎧e x ,x ≤ 0,9.已知函数 f ( x ) = ⎨g ( x ) = f ( x ) + x + a .若 g (x )存在 2 个零点,则 a 的取值范围是 ⎩ln x ,x > 0,A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB ,AC △. ABC 的三边所围成的区域记为 I ,黑色部分记为 II ,其余部分记为 III .在整个图形中随机取一点,此点取自 I ,II ,III 的概率分别记为 p 1,p 2,p 3,则A .p 1=p 2C .p 2=p 3B .p 1=p 3D .p 1=p 2+p 3x 23分别为 M 、 N .若 △ OMN 为直角三角形,则|MN |=A .3C . 2 3D .412.已知正方体的棱长为 1,每条棱所在直线与平面 α 所成的角相等,则 α 截此正方体所得截面面积的最大值为4B . 3C . 4D . 13.若 x , y 满足约束条件 ⎨ x - y + 1 ≥ 0 ,则 z = 3x + 2 y 的最大值为_____________. ⎪ y ≤ 0 4A . 3 32 33 232二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

【高考】2018年高考全国卷一理科数学含答案

【高考】2018年高考全国卷一理科数学含答案

【关键字】高考绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7 D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。

(完整word)2018年高考全国卷1理科数学试题及答案,推荐文档

(完整word)2018年高考全国卷1理科数学试题及答案,推荐文档

2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮 擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3 •考试结束后,将本试卷和答题卡一并交回。

、选择题:本题共 12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目 要求的。

1 i1•设 z2i ,则 |z|1 iA • 0 2.已知集合A 2X X 1 B •-2 x 20,则金Ac.1DA •X1 x 2B • x | 1 x 2C . X|X1 U x x 2D .x | x1 U x|x23 •某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:A •新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D •新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半建设前经济收入构成比例 则下面结论中不正确的是建设后经济收入构成比例C . p 2=p 3D . p 1 = p 2+p 3设S n 为等差数列a n 的前n 项和,若3S 3 S S 4, a 1 2,则a 5A .12B .10C . 10D . 12设函数f(x) (a 1)x 2 ax ,若f(x)为奇函数,则曲线y f (x)在点(0,0)处的切线方程为A . y 2x 在△ ABC 中,C . y 2xAD 为BC 边上的中线,E 为AD 的中点,贝U EB3 uuu 1 uur A . -AB -AC4 41 uur 3 uuir B . AB AC 4 43 uuu C . - AB 4 1 uuur-AC41 uuu D . — AB43 uuur -AC 4某圆柱的高为 2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为 A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为A .2 .17B .2.5 C . 3D . 28.设抛物线 C : y 2=4x 的焦点为F , 过点(—,20 )且斜率为- 3的直线与C 交于M , uuuu N 两点,贝U FM A . 5B.6 C . 7D . 89.已知函数 f(x) xe , x 0, ln x , x 0,g(x) f(x) x a.若 g (x )存在2个零点,则 a 的取值范围是A .[-, 0)B [0, +m )C . [-,+m )D . [1 , +〜 10 •下图来自古希腊数学家希波克拉底所研究的几何图形•此图由三个半圆构成,三个半圆的直径分别为 uur FN = 直角三角形 ABC 的斜边BC ,直角边AB , AC . △ABC 的三边所围成的区域记为 I ,黑色部分记为 II ,其余部分记为III .在整个图形中随机取一点,此点取自 I ,11 , III 的概率分别记为P 1, P 2, P 3,则 P 1=P2B . p 1=p 3211.已知双曲线C:— y21 , O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点3分别为M、N.若厶OMN为直角三角形,则|MN|=A . 32B . 3C. 2 3D. 41 2 .已知正方体的棱长为1,每条棱所在直线与平面a所成的角相等,则a截此正方体所得截面面积的最大值为A . B.二C. 口 D . -J4342_、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年全国高考数学试题汇编必修1,2,4,5部分(除立体几何)
1.(2018全国卷Ⅰ文数1)已知集合BABA则},2,1,0,1,2{},2,0{( )

A.}2,0{ B.}2,1{ C.}0{ D.}2,1,0,1,2{
2.(2018全国卷Ⅰ文7/理6)EBADEBCADABC的中点,则为边上的中线,为中,
A.ACAB4143 B. ACAB4341 C.ACAB4143 D.ACAB4341
3.(2018全国卷Ⅰ文数8)已知函数2sincos2)(22xxxf,则( )
A.)(xf的最小正周期为,最大值为3. B.)(xf的最小正周期为,最大值为4.
C.)(xf的最小正周期为2,最大值为3. D.)(xf的最小正周期为2,最大值为4.
4.(2018全国卷Ⅰ文数11)已知的顶点为坐标原点,始边与x轴的非负半轴重合,终边上
有两点),2(),,1(bBaA,且||,322cosba则( )

A.51 B.55 C. 552 D.1
5.(2018全国卷Ⅰ文数12)设函数0,10,2)(xxxfx,则满足)2()1(xfxf的x的取
值范围是( )
A.]1,( B.),0( C.)0,1( D.)0,(

6.(2018全国卷Ⅰ文数13)已知函数afaxxf则若,1)3(),(log)(23 .

7.(2018全国卷Ⅰ文数14/理数13)若yx,满足约束条件001022yyxyx,则yxz23的
最大值为 .
8.(2018全国卷Ⅰ文数15)直线1xy与圆03222yyx交于A,B两点,则||AB

9.(2018全国卷Ⅰ文数16)ABC的内角CBA,,的对边分别为cba,,,已知
,sinsin4sinsinCBaBcCb
8222acb
,则ABC的面积为 .
10.(2018全国卷Ⅰ文数17)已知数列}{na满足,,)1(2,111nabannaannnn
(1)求;,,321bbb
(2)判断数列}{na是否为等比数列,并说明理由;
(3)求}{na的通项公式.

11.(2018全国卷Ⅰ理数2)已知集合},02|{2xxxA则ACR( )
A.}21|{xx B.}21|{xx
C.}2|{}1|{xxxx D.}2|{}1|{xxxx
12.(2018全国卷Ⅰ理数4)记nS为等差数列}{na的前n项和,53423,2,3aaSSS则
A.12 B.10 C.10 D.12

13.(2018全国卷Ⅰ理数9)已知函数0,ln0,)(xxxexfx,,)()(axxfxg若)(xg存
在两个零点,则a的取值范围是( )
A.)0,1[ B.),0[ C.),1[ D.),1[

14.(2018全国卷Ⅰ理数14)记nS为等差数列}{na的前n项和,若,12nnaS则nS= .
15.(2018全国卷Ⅰ理数16)已知函数,2sinsin2)(xxxf则)(xf的最小值是 .
16.(2018全国卷Ⅰ理数17)在平面四边形ABCD中,.5,2,45,9000BDABAADC
(1)求;cosADB(2)若,22DC求BC.
17.(2018全国卷Ⅱ理数2)已知集合},,322|),{(ZyZxyxyxA,则A中元素的
个数为( )
A. 9 B.8 C.5 D.4

18.(2018全国卷Ⅱ理数4)已知向量ba,满足,1,1||baa则)2(baa( )
A. 4 B.3 C. 2 D.0

19.(2018全国卷Ⅱ理数6)在ABC中,,5,1,552cosACBCC则AB( )

A.24 B.30 C.29 D.52
20.(2018全国卷Ⅱ理数10)若xxxfsincos)(在],[aa上是减函数,则a的最大值
是( )
A.4 B.2 C.43 D.

21.(2018全国卷Ⅱ理数11)已知)(xf是定义域为)(,的奇函数,满足
,2)1(),1()1(fxfxf若
则)50()3()2()1(ffff( )

A. 50 B.0 C.2 D.50

22.(2018全国卷Ⅱ理14)若yx,满足约束条件05032052xyxyx,则yxz的最大值为

23.(2018全国卷Ⅱ理15)已知,0sincos,1cossin则)sin( .
24.(2018全国卷Ⅱ文/理17)记nS为等差数列}{na的前n项和,已知.15,731Sa
(1)求}{na的通项公式;(2)求nS,并求nS的最小值.
25.(2018全国卷Ⅲ文/理1)已知集合},2,1,0{},01|{BxxA则BA( )
A. }0{ B.}1{ C.}2,1{ D.}2,1,0{
26.(2018全国卷Ⅲ文/理4)若31sin,则2cos( )
A. 98 B.97 C.97 D.98
27.(2018全国卷Ⅲ文6)函数xxxf2tan1tan)(的最小正周期为( )
A. 4 B.2 C.  D.2
28.(2018全国卷Ⅲ文7)下列函数中,其图像与函数xyln的图像关于直线1x对称的
是( )
A. )1ln(xy B.)2ln(xy C.)1ln(xy D.)2ln(xy

29.(2018全国卷Ⅲ文9/理7)函数2-26xxy的图像为( )

30.(2018全国卷Ⅲ文11/理9)ABC的内角CBA,,的对边分别为cba,,,若ABC的面
积为,4222cba则C( )
A. 2 B. 3 C. 4 D.6
31.(2018全国卷Ⅲ文/理13)已知向量),,1(),2,2(),2,1(cba若),2//(bac则

32.(2018全国卷Ⅲ文15)若变量yx,满足约束条件,0204-2032xyxyx则yxz31的最大
值是 .
33.(2018全国卷Ⅲ文16)已知函数,4)(,1)1ln()(2afxxxf则)(af .
34.(2018全国卷Ⅲ理6/文8)直线02yx分别与x轴,y轴交于BA,两点,点P在
圆2)2(22yx上,则ABP面积的取值范围是( )
A.]6,2[ B.]8,4[ C.]23,2[ D.]23,22[
35.(2018全国卷Ⅲ理12)设,3.0log,3.0log22.0ba则( )
A.0abba B. 0baab C.abba0 D.baab0
36.(2018全国卷Ⅲ理15)函数)63cos()(xxf在],0[的零点个数为 .

37.(2018全国卷Ⅲ文/理17)等比数列}{na中,.4,1351aaa
(1)求}{na的通项公式;(2)记nS为}{na的前n项和,若,63mS求m的值.

相关文档
最新文档