材料工程基础答案,考试必备

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料工程基础

1.材料科学与材料工程研究的对象有何异同?

材料科学侧重于发现和揭示组成与结构、性能、使用效能,合成与加工等四要素之间的关系,提出新概念、新理论。而材料工程指研究材料在制备过程中的工艺和工程技术问题,侧重于寻求新手段实现新材料的设计思想并使之投入使用,两者相辅相成。2.材料的制备技术或方法主要有哪些?

金属:铸造(砂型铸造、特种铸造、熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、连续铸造、消失模铸造),塑性加工(锻造、板料冲压、轧制和挤压、拉拔),热处理,焊接(熔化焊、压力焊、钎焊)

橡胶:塑炼、混炼、压延、压出、硫化五部分

高分子:挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型

3.如何区分传统材料与先进材料?

传统材料指已经成熟且已经在工业批量生产的材料,如水泥、钢铁,这些材料量大,产值高,涉及面广,是很多支柱产业的基础,先进材料是正在发展,具有优异性能和应用前景的一类材料。二者没有明显界限,传统材料采用新技术,提高技术含量、性能,大幅度增加附加值成为先进材料;先进材料长期生产应用后成为传统材料,传统材料是发展先进材料和高技术基础,先进材料推

动传统材料进一步发展。

4.纳米材料与纳米技术的异同?它们对科技发展的作用?

纳米材料指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。纳米技术:能操作细小到1-100nm物件的一类新发展的高技术。作用:对于高端的技术,如在超导的应用方面,集成电路的发展方面纳米技术有重要作用。

5.简述芯片的主要制备工艺步骤?

步骤如下:1、氧化;2、光刻;3、浸蚀;4、扩散;5、离子注入;

6、互连;

7、封装;

8、装配。

6.简述熔体法生长单晶的特点以及主要方法?

答:特点:液相是均匀的单相熔体,熔点以下不发生相变。方法:提拉法,坩埚下降法,水平区熔法,浮区法,尖端形核法。

7.为什么纤维通常具备高强度、高模量且韧性好的特点?

当纤维材料制成时,拉伸强度变大是因为物体愈小,表面和内部包含一个能导致其脆性断裂的危险裂纹的可能性越小。对高聚物材料,在成纤过程中高分子链沿纤维轴向高度取向,而强度大大减少。

8.简述纤维的主要制备方法?

抽丝:使高聚物熔体或是高聚物溶液通过一个多孔的喷丝头并使之冷却或通过凝固浴凝固形成细丝。

牵挂:将丝轴向拉伸形成纤维。

定型:使合成纤维在某一温度下作极短时间的处理,使纤维具有

良好的柔软性和弹性。

9.什么是复合材料?如何设计和制备复合材料?

复合材料:两种或两种以上在物理和化学上不同的物质组合起来而得到的一种多相固体。

如何设计制备:根据组分的性能、形状、分布与取向、组成对比等比复合材料的性能影响规律,设计所需性能充分考虑任意程度及后续加工的可能性,在此基础上进行制备与加工工艺的选择设计。

10.简述复合材料的强韧化机理?

主要有三种:1、弥散增强复合材料:基体-受外来载荷的主要相;

颗粒-体位错成分子链运动,阻碍裂纹的扩展。2、颗粒增强复合材料:基体和颗粒共同承受外来载荷;颗粒-限制颗粒邻近基体运动,阻碍裂纹扩展。3、纤维增强复合材料:基体-传递载荷到增强、保护纤维,组织裂纹扩展,纤维-承受由基体传递来的有效载荷。

材料的液态成形技术

1、影响液态金属充型能力的因素有哪些?如何提高充型能力?

A、金属的流动性、铸型的性质、浇注条件、铸件结构

B、正确选择合金的成分和采用合理的熔炼工艺

调整铸型的性质

改善浇注条件

合理设计铸件结构

2、铸件的凝固方式有哪些?其主要的影响因素?

A、依据凝固区的宽窄分为逐层凝固、糊状凝固、中间凝固。

B、合金的凝固温度范围铸件凝固期间固液相界面前沿的温度梯度

3、什么是缩松和缩孔?其形成的基本条件和原因是什么?

A、液态金属在凝固过程中,由于液态收缩和凝固收缩,往往在铸件最后凝固的部位出现大而集中的孔洞,称为缩孔;细小而分散的孔洞则称为缩松。

B、缩孔:

形成的基本条件是金属在恒温或很窄的温度范围内结晶,铸件由表及里逐层凝固。产生的基本原因是金属的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。缩孔产生的部位在铸件最后凝固区域。

缩松:

形成的基本原因是金属的液态收缩和凝固收缩大于固态收缩。

形成的基本条件是金属的结晶温度范围较宽,呈糊状凝固。

4、常见的特种铸造方法有哪些?各有何特点?

A、金属型铸造:

1、可重复使用,生产效率高,劳动条件好;

2、铸件精度高,表面粗糙度较低;

3、金属散热性能好,晶粒细化,力学性能好;

4、不透气且无退让性,易造成浇不足或开裂。

5、适于生产大批量有色金属铸件。

B、熔模铸造/失蜡铸造:

1、铸件尺寸精度高,表面光洁;

2、可铸造形状复杂零件;

3、工艺过程复杂,生产周期长,成本高;

4、适于铸造小尺寸的各类合金铸件,特别是少切削或无切削精密铸件。

C、压力铸造(卧式压铸、立式压铸、热室压铸)

1、浇注时间短,易于机械化、自动化作业;

2、铸型散热快,晶粒细化,耐磨、耐蚀性好;

3、铸件尺寸精度高,表面光洁;

4、凝固速度快,排气困难,易形成缩松和缩孔;

5、模具成本高,铸件尺寸受限;

D、低压铸造

1、充型压力和速度易于控制,气孔、夹渣较少,组织致密,力学性能好;

2、无需冒口设置,金属利用率高;

3、适应性强,金属型、砂型和熔模型均可使用;

4、铸件尺寸精度高,表面光洁;

相关文档
最新文档