间歇振荡器工作原理7页

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

间歇振荡器工作原理

晶体管工作于共发射极方式, 其集电极电压通过变压器T反馈回基极, 而变压器绕组的接法应实现正反馈。当电路一接通, 立即产生强烈的自激振荡, 晶体管迅速进入饱和工作区, 集电极电压uce达到饱和电压0.3V左右。该正反馈过程对应脉冲上升沿。时间很短,因此上升沿很陡。当晶体管进入饱和区后, ib就失去了对ic的控制作用。但ic仍可稍有增大, 因为变电器的电感(磁通)使ic不能突然停止增长。ic的继续增长(但小得多)使变压器绕组上维持感应电压, 极性不变, 但同时基极电容CB被充电, 所以基极电压ube在下降。ube的下降使基极电流ib减小。这个过程需要一定时间, 对应于脉冲的平顶阶段。

当ib减小到ic /β时, 晶体管又进入放大状态, 于是ib的减小引起ic的减小, 造成变压器绕组上感应电动势方向的改变, 这一改变的趋势进一步引起ib的下降。如此又开始强烈地循环, 直到晶体管迅速地改变成截止状态。这个过程也很快, 它对应脉冲的下降沿。在这个过程结束时, 变压器上的压降方向与图1(a)中标的方向相反, 并且很大, 因此ube变成一个很负的负值。

当晶体管截止后, ic =0。但变压器中的磁通不能立即消失, 这些储藏的能量通过集电极分布电容(和变压器的电感)形成高频谐振, 造成反峰。这些高频振荡被变压器耦合到基极去, 基极承受反向电压的能力低, 故往往在绕组两端并上二极管来衰减振荡。常用2AP9型锗二极管作为阻尼二极管。

晶体管截止后, 振荡器进入休止阶段。此时电容CB通过RB、RW和电源放电, 由于RC时间常数大, 这个过程是较慢的。放电时ube逐渐上升, 当ube升到0.6V左右时, 晶体管重新开始导通, 于是下一周期开始, 重复上述各阶段。

间歇振荡器的计算是很复杂的。平顶阶段时间T1与变压器磁化电流、电感量和基极RC时间常数等有关, 间歇时间T2与RC放电时间常数有关。振荡周期T= T1 + T2 。实际电路中发射极还接有ReCe, 它的充、放电也起作用。这里不再详细讨论。应当指出的是变压器工作在脉冲状态, 所以是脉冲变压器。

从上述各阶段的工作情况可知, 基极电路中接上可调电位器RW可以改变充放电时间常数, 因此改变了振荡周期。

间歇振荡器工作原理

作者: | 出处:维库开发网 | 2019-10-11 11:01:34 | 阅读438 次间歇振荡器工作原理,在图1(a)中, 晶体管工作于共发射极方式, 其集电极电压通过变压器T反馈回基极, 而变压器绕组的接

在图1(a)中, 晶体管工作于共发射极方式, 其集电极电压通过变压器T反馈回基极, 而变压器绕组的接法应实现正反馈。当电路一接通, 立即产生强烈的自激振荡, 晶体管迅速进入饱和工作区, 集电极电压uce达到饱和电压0.3V左右。该正反馈过程对应脉冲上升沿。时间很短,因此上升沿很陡。见图1(b)。当晶体管进入饱和区后, ib就失去了对ic的控制作用。但ic仍可稍有增大, 因为变电器的电感(磁通)使ic不能突然停止增长。ic的继续增长(但小得多)使变压器绕组上维持感应电压, 极性不变, 但同时基极电容CB被充电, 所以基极电压ube在下降。ube的下降使基极电流ib减小。这个过程需要一定时间, 对应于脉冲的平顶阶段。

图1

当ib减小到ic /β时, 晶体管又进入放大状态, 于是ib的减小引起ic的减小, 造成变压器绕组上感应电动势方向的改变, 这一改变的趋势进一步引起ib的下降。如此又开始强烈地循环, 直到晶体管迅速地改变成截止状态。这个过程也很快, 它对应脉冲的下降沿。在这个过程结束时, 变压器上的压降方向与图1(a)中标的方向相反, 并且很大, 因此ube变成一个很负的负值。

当晶体管截止后, ic =0。但变压器中的磁通不能立即消失, 这些储藏的能量通过集电极分布电容(和变压器的电感)形成高频谐振, 造成反峰。这些高频振荡被变压器耦合到基极去, 基极承受反向电压的能力低, 故往往在绕组两端并上二极管来衰减振荡。常用2AP9型锗二极管作为阻尼二极管。

晶体管截止后, 振荡器进入休止阶段。此时电容CB通过RB、RW和电源放电, 由于RC时间常数大, 这个过程是较慢的。放电时ube逐渐上升, 当ube升到0.6V左右时, 晶体管重新开始导通, 于是下一周期开始, 重复上述各阶段。

间歇振荡器的计算是很复杂的。平顶阶段时间T1与变压器磁化电流、电感量和基极RC时间常数等有关, 间歇时间T2与RC放电时间常数有关。振荡周期T= T1 + T2 。实际电路中发射极还接有ReCe, 它的充、放电也起作用。这里不再详细讨论。应当指出的是变压器工作在脉冲状态, 所以是脉冲变压器。

从上述各阶段的工作情况可知, 基极电路中接上可调电位器RW可以改变充放电时间常数, 因此改变了振荡周期。

(变形)间歇振荡器

2019-04-15 22:27:35| 分类:电子| 标签:|字号大中小订阅

间歇振荡器是利用脉冲变压器和单级放大器组成强正反馈的振荡器。其特点是,输出矩形脉冲宽度窄,占空比大,效率高。

间歇振荡器可分为它激式和自激式两种。通常用作脉冲的产生和整形,本节只讨论自激式间歇振荡器。

共射极自激间歇振荡电路如图Z1630所示。

波形如下:

Tγ为脉冲变压器,用于传输脉冲信号,其工艺结构比普通变压器要求高。Rb、C为定时元件,决定振荡频率,D为阻尼二极管。输出脉冲的形成可以分为以下四个阶段。

变形间歇振荡器,是一般间歇振荡电路的改进电路。其特点在于用一个自耦变压器代替一般的传输变压器产生正反馈而形成振荡。电路原理图如图Z1632所示,

其振荡过程如下:

1.前沿阶段:当接通电源后,发射结正偏产生ib和ie。ie流经L1,在L1两端产生上正下负的感应电势e1,同时在L2两端也产生上正下负的感应电势e2。由于C1两端电压不能突变,因而,e2负端直接加在T管基极,使ib增大,ie 进一步增大,从而再次增大了L2 两端感应电势e2,形成强烈的正反馈,使T管迅速饱和,集电极电流ic,流经Rc,形成脉冲的前沿。

2.平顶阶段:T管饱和后,L2两端电势e2就分别对C1、C2充电,一路是通过Re对C2充电,一路是通过Re和T管发射结电阻rbe对C1充电。在充电过程中,c1两端电压逐渐增大,充电电流减少。当Ib=Ic/Hfe时,T管退出饱和区,进入放大区,平顶阶段结束。平顶阶段的持续时间决定于c1的容量和对C1充电的速度。

3.后沿阶段:当T管退出饱和区进入放大区后ib进一步减小,因而在L2两端的感应电压极性为上负下正,从而使ib进一步减小。这种强烈地正反馈过程使T管迅速截止,Rc两端输出电压为零,这就形成了输出电压的下降沿(后沿)。

4.问歇阶段:T管截止后,电源EC通过L1、L2、Rb 对电容C1反向充电,使基极电位降低。另一方面,L2两端电压(上负下正)对C2反向充电,L2、C2组成振荡回路,C2两端电压按正弦规律变化。当T管基极电压达到起始导通电压时,T管导通,间歇阶段结束。此后又重复上述各过程,产生间歇振荡。

这种电路结构简单,振荡频率稳定,广泛运用于电视机的行振荡电路中。

间歇振荡器

间歇振荡器是利用脉冲变压器和单级放大器组成强正反馈的振荡器。其特点是,输出矩形脉冲宽度窄,占空比大,效率高。间歇振荡器可分为它激式和自激式两种。通常用作脉冲的产生和整形,本节只讨论自激式间歇振荡器。

共射极自激间歇振荡电路如图Z1630所示。Tγ为脉冲变压器,用于传输脉冲信号,其工艺结构比普通变压器要求高。Rb、C为定时元件,决定振荡频率,D为阻尼二极管。输出脉冲的形成可以分为以下四个阶段。

1.前沿阶段

当接通电源后,T管导通,产生ib、ic电流。ic流经L1时,产生上端为正的感应电压,同时,经变压器耦合,在L2产生基极端为正的感应电压,使基极电位生高,ib进一步增大且经T管放大,从而使ic进一步增大,形成强烈正反馈,结果使T管迅速饱和,输出电压Uo=UCES,接近为零,形成输出脉冲

相关文档
最新文档