抚顺县第二中学2018-2019学年上学期高三数学10月月考试题

合集下载

抚松县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

抚松县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

抚松县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)2. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=0 3. 在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .24. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.5. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+1 6.定义行列式运算:.若将函数的图象向左平移m(m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A. B.C.D.7. 定义在(0,+∞)上的单调递减函数f (x ),若f (x)的导函数存在且满足,则下列不等式成立的是( )A .3f (2)<2f (3)B .3f (4)<4f (3)C .2f (3)<3f (4)D .f (2)<2f (1) 8. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A.B.C.D .39. 已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð10.曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A . e 2B .2e 2C .e 2D . e 211.已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-5412.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( )A .B .C .4D .二、填空题13.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.14.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤15.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .16.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .17.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.18.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .三、解答题19.如图,四面体ABCD 中,平面ABC ⊥平面BCD ,AC=AB ,CB=CD ,∠DCB=120°,点E 在BD 上,且CE=DE .(Ⅰ)求证:AB ⊥CE ;(Ⅱ)若AC=CE ,求二面角A ﹣CD ﹣B 的余弦值.20.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为1()16t ay-=(a为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。

抚顺县第二中学校20182019学年上学期高二数学月考试题含解析

抚顺县第二中学校20182019学年上学期高二数学月考试题含解析

精选高中模拟试卷抚顺县第二中学校2021-2021学年上学期高二数学12月月考试题含解析班级__________姓名__________分数__________一、选择题1.“m=1〞是“直线〔m﹣2〕x﹣3my﹣1=0与直线〔m+2〕x+〔m﹣2〕y+3=0相互垂直〞的〔〕A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件2.假设定义在R上的函数f〔x〕满足:对任意12Rf〔x1212x,x∈有+x〕=f〔x〕+f〔x〕+1,那么以下说法一定正确的选项是〔〕A.f〔x〕为奇函数B.f〔x〕为偶函数C.f〔x〕+1为奇函数D.f〔x〕+1为偶函数3.直线的倾斜角是〔〕A.B.C.D.4.执行如图的程序框图,那么输出S的值为〔〕A.2021B.2C.D.﹣15.函数f(x)是定义在R上的奇函数,当x≥0时,.假设,f(x-1)≤f(x),那么实数a的取值范围为A[]B[]C[]第1页,共15页精选高中模拟试卷D[]6.F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,那么椭圆离心率的取值范围是〔〕A.〔0,1〕B.〔0,]C.〔0,〕D.[,1〕.在ABC中,sin 2A sin2Bsin2C sinBsinC,那么A的取值范围是〔〕1111]7A.(0,]B.[,) C.(0,]D.[,) 6633 8.假设复数z满足=i,其中i为虚数单位,那么z=〔〕A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i9.a(2,1),b(k,3),c(1,2)c(k,2),假设(a2b)c,那么|b|〔〕A.35B.32C.25D.10【命题意图】此题考查平面向量的坐标运算、数量积与模等根底知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.10.函数f〔x〕=,那么f〔﹣1〕的值为〔〕A.1B.2C.3D.411.设=〔1,2〕,=〔1,1〕,=+k,假设,那么实数k的值等于〔〕A.﹣B.﹣C.D.12.函数g〔x〕是偶函数,函数f〔x〕=g〔x﹣m〕,假设存在φ∈〔,〕,使f〔sinφ〕=f〔cosφ〕,那么实数m的取值范围是〔〕A.〔〕B.〔,]C.〔〕D.〔]二、填空题13.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍〔纵坐标不变〕,所得函数图象的解析式为.14.假设函数f〔x〕=x2﹣〔2a﹣1〕x+a+1是区间〔1,2〕上的单调函数,那么实数a的取值范围是.15.长方体ABCD ABCD中,对角线AC与棱CB、CD、CC所成角分别为、、,1 1 1 111第2页,共15页精选高中模拟试卷那么sin2sin2sin2.16.=1﹣bi,其中a,b是实数,i是虚数单位,那么|a﹣bi|=.17.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,那么AD的长为.18.直线l过原点且平分平行四边形ABCD的面积,假设平行四边形的两个顶点为B〔1,4〕,D〔5,0〕,那么直线l的方程为.三、解答题19.〔本小题总分值12分〕某媒体对“男女延迟退休〞这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50150200女30170200合计80320400〔Ⅰ〕能否有能否有97.5%的把握认为对这一问题的看法与性别有关?〔Ⅱ〕从赞同“男女延迟退休〞的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.参考公式:K2(an(adbc)2,(nabcd) b)(c d)(ac)(bd)20.求点A〔3,﹣2〕关于直线l:2x﹣y﹣1=0的对称点A′的坐标.第3页,共15页精选高中模拟试卷21.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.〔Ⅰ〕求k的取值范围;〔Ⅱ〕设椭圆与 x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.22.【常熟中学2021届高三10月阶段性抽测〔一〕】函数f x x2ax lnxa R.〔1〕假设函数 f x是单调递减函数,求实数a的取值范围;〔2〕假设函数 f x在区间0,3上既有极大值又有极小值,求实数a的取值范围.23.在数列{a n}中,a1=1,a n+1=1﹣,b n=*,其中n∈N.〔1〕求证:数列{b n}为等差数列;〔2〕设c n=b n+1?〔〕,数列{c n}的前n项和为T n,求T n;〔3〕证明:1++++≤2﹣1〔n∈N*〕第4页,共15页精选高中模拟试卷24.设函数f〔x〕=1+〔1+a〕x﹣x2﹣x3,其中a>0.〔Ⅰ〕讨论f〔x〕在其定义域上的单调性;〔Ⅱ〕当x∈时,求f〔x〕取得最大值和最小值时的x的值.第5页,共15页精选高中模拟试卷抚顺县第二中学校2021-2021学年上学期高二数学12月月考试题含解析〔参考答案〕一、选择题1.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,那么×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1〞是“直线〔m﹣2〕x﹣3my﹣1=0与直线〔m+2〕x+〔m﹣2〕y+3=0相互垂直〞的充分不必要条件.应选:B.【点评】此题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.2.【答案】C【解析】解:∵对任意x1,x2∈R有f〔x1+x2〕=f〔x1〕+f〔x2〕+1,∴令x1=x2=0,得f〔0〕=﹣1∴令x1=x,x2=﹣x,得f〔0〕=f〔x〕+f〔﹣x〕+1,f〔x〕+1=﹣f〔﹣x〕﹣1=﹣[f〔﹣x〕+1],f〔x〕+1为奇函数.应选C【点评】此题考查函数的性质和应用,解题时要认真审题,仔细解答.3.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,0°<α<180°,∴α=30°应选A.【点评】此题考查了直线的倾斜角与斜率之间的关系,属于根底题,应当掌握.第6页,共15页精选高中模拟试卷4.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2021,s=﹣1,k=1满足条件k<2021,s=,k=2满足条件k<2021,s=2.k=3满足条件k<2021,s=﹣1,k=4满足条件k<2021,s=,k=5观察规律可知, s的取值以3为周期,由2021=3*671+2,有满足条件k<2021,s=2,k=2021不满足条件k<2021,退出循环,输出s的值为2.应选:B.【点评】此题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于根本知识的考查.5.【答案】B【解析】当x≥0时,f〔x〕=,由f〔x〕=x﹣3a2,x>2a2,得f〔x〕>﹣a2;当a2<x<2a2时,f〔x〕=﹣a2;由f〔x〕=﹣x,0≤x≤a2,得f〔x〕≥﹣a2。

抚顺县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

抚顺县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

抚顺县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个2. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .53. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .44. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .35. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个6. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)7. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 8. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=9. 若a >b ,则下列不等式正确的是( )A .B .a 3>b 3C .a 2>b 2D .a >|b|10.已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0)11.已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .12.若,则等于( )A .B .C .D .二、填空题13.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=()﹣x是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.14.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则 =+20042003b a .15.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .16.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).17.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).18.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.三、解答题19.如图,椭圆C :+=1(a >b >0)的离心率e=,且椭圆C 的短轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P ,M ,N 椭圆C 上的三个动点.(i )若直线MN 过点D (0,﹣),且P 点是椭圆C 的上顶点,求△PMN 面积的最大值;(ii )试探究:是否存在△PMN 是以O 为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.20.(本小题满分12分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒成立.(1)求cos C的取值范围;(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.21.已知f(x)=|x﹣1|+|x+2|.(1)解不等式f(x)≥5;(2)若关于x的不等式f(x)>a2﹣2a对于任意的x∈R恒成立,求a的取值范围.22.已知椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.(I)求椭圆G的方程;(II)设动点P在椭圆G上(P不是顶点),若直线FP的斜率大于,求直线OP(O是坐标原点)的斜率的取值范围.23.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.24.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.抚顺县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 2. 【答案】B 【解析】考点:三角恒等变换. 3. 【答案】A【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),∴a n =5t 2﹣4t=﹣,∴a n ∈,当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.∴q ﹣p=2﹣1=1, 故选:A . 【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.4. 【答案】D【解析】解:由等差数列的性质可得:S 15==15a 8=45,则a 8=3.故选:D .5. 【答案】 D【解析】解:①∵当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0∴当x 为有理数时,f (f (x ))=f (1)=1; 当x 为无理数时,f (f (x ))=f (0)=1即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故选:D.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.6.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.7.【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).8. 【答案】D【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数; 对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;故选:D .【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 9. 【答案】B【解析】解:∵a >b ,令 a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1, =﹣,显然A 不正确. a 3=﹣1,b 3=﹣6,显然 B 正确. a 2 =1,b 2=4,显然C 不正确. a=﹣1,|b|=2,显然D 不正确.故选 B .【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.10.【答案】A【解析】解:令x ﹣1=0,解得x=1,代入f (x )=4+a x ﹣1得,f (1)=5,则函数f (x )过定点(1,5). 故选A .11.【答案】D【解析】解:双曲线﹣=1(a >0,b >0)的渐近线方程为 y=±x ,即x ±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.12.【答案】B【解析】解:∵,∴,∴(﹣1,2)=m(1,1)+n(1,﹣1)=(m+n,m﹣n)∴m+n=﹣1,m﹣n=2,∴m=,n=﹣,∴故选B.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.二、填空题13.【答案】②④【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.14.【答案】-1 【解析】试题分析:由于{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。

浑南区第二中学2018-2019学年上学期高三数学10月月考试题

浑南区第二中学2018-2019学年上学期高三数学10月月考试题

浑南区第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣82. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 3. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 4. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2 B .12πcm 2 C .16πcm 2 D .20πcm 25. 设曲线y=ax ﹣ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=( )A .0B .1C .2D .36. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 7. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=08. 已知命题p :存在x 0>0,使2<1,则¬p 是( )A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1 D .存在x 0≤0,使2<19. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )A .12B .16C .20D .24 10.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米 11.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x12.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>二、填空题13.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .14.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .15.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .16.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]三、解答题17.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.18.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .19.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.20.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ). (1)当a=12时,求f (x )在区间[1,e]上的最大值和最小值; (2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。

垣曲县第二中学2018-2019学年上学期高三数学10月月考试题

垣曲县第二中学2018-2019学年上学期高三数学10月月考试题

垣曲县第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知函数f(x)=m(x﹣)﹣2lnx(m∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)<g (x0)成立,则实数m的范围是()A.(﹣∞,] B.(﹣∞,)C.(﹣∞,0] D.(﹣∞,0)2.a=﹣1是直线4x﹣(a+1)y+9=0与直线(a2﹣1)x﹣ay+6=0垂直的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.拋物线E:y2=2px(p>0)的焦点与双曲线C:x2-y2=2的焦点重合,C的渐近线与拋物线E交于非原点的P点,则点P到E的准线的距离为()A.4 B.6C.8 D.104.等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.B2=AC B.A+C=2B C.B(B﹣A)=A(C﹣A)D.B(B﹣A)=C(C﹣A)5.集合{}==∈,{}|42,P x x k k ZN x x k k Z==-∈,则M,|2,M x x k k Z|42,==+∈,{}N,P的关系()A.M P N=⊆D.M P N =⊆B.N P M=⊆C.M N P== 6.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.357. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()21xfx f x -<--的解集为( )A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,8. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}9. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1)D .(﹣5,3,4)10.复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i11.已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .2 12.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.二、填空题13.已知函数21()s in c o s s in 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.14.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x fx -<',则使得()0f x >成立的x 的取值范围是__________.15.若的展开式中含有常数项,则n 的最小值等于 .16.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .三、解答题17.设集合{}{}2|8150,|10A x x x B x a x =-+==-=. (1)若15a =,判断集合A 与B 的关系;(2)若A B B =,求实数组成的集合C .18.【南师附中2017届高三模拟二】如下图扇形A O B 是一个观光区的平面示意图,其中A O B ∠为23π,半径O A 为1k m ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧A C 、线段C D 及线段B D 组成.其中D 在线段O B 上,且//CD A O ,设A O C θ∠=.(1)用θ表示C D 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?19.(本小题满分13分) 设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)20.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.21.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA ⋅的最值.垣曲县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】 B【解析】解:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2lnx ,即<在[1,e]上有解,令h (x )=,则h ′(x )=,∵1≤x ≤e ,∴h ′(x )≥0,∴h (x )max =h (e )=,∴<h (e )=,∴m <.∴m 的取值范围是(﹣∞,). 故选:B .【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.2. 【答案】A【解析】解:当a=﹣1时,两条直线分别化为:4x+9=0,y+6=0,此时两条直线相互垂直;当a=0时,两条直线分别化为:4x ﹣y+9=0,﹣x+6=0,此时两条直线不垂直;当a ≠﹣1,0时,两条直线的斜率分别:,,∵两条直线相互垂直,∴=﹣1,解得a=.综上可得:a=﹣1是直线4x ﹣(a+1)y+9=0与直线(a 2﹣1)x ﹣ay+6=0垂直的充分不必要条件.故选:A . 【点评】本题考查了两条直线相互垂直的直线的充要条件,考查了分类讨论方法、推理能力与计算能力,属于中档题.3. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.4. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.5. 【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以MP N =⊆.考点:两个集合相等、子集.1 6. 【答案】C【解析】【知识点】算法和程序框图 【试题解析】否,否,否,是,则输出S=24. 故答案为:C 7. 【答案】B 【解析】 试题分析:由()()()()()212102102xxxfx fx fx fx --<⇒⇒-<--,即整式21x-的值与函数()f x 的值符号相反,当x >时,210x->;当0x<时,210x-<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式.8.【答案】D【解析】解:∵M∪N=M,∴N⊆M,∴集合N不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础.9.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.10.【答案】C【解析】解:∵z==,∴=.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.11.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.12.【答案】A.【解析】||||co s co s||co s||co sαβαβααββ->-⇔->-,设()||c o s∈-,xππ=-,[,]f x x x显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A.二、填空题13.【答案】1 【解析】14.【答案】()(),10,1-∞-⋃【解析】15.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r (x 6)n ﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.16.【答案】 ﹣6 .【解析】解:由约束条件,得可行域如图,使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4), ∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.三、解答题17.【答案】(1)A B ⊆;(2){}5,3,0=C . 【解析】考点:1、集合的表示;2、子集的性质.18.【答案】(1)c o s sin ,0,33C D πθθθ⎛⎫=+∈ ⎪⎝⎭;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.【解析】试题分析:(1)在O C D ∆中,由正弦定理得:s in s in s in C D O D C O C O DD C OC D O==∠∠∠2sin c o s 333C D πθθθ⎛⎫∴=-=+ ⎪⎝⎭,in 3O D θ=s in 1s in 0323O D O B πθθθ<∴<∴<<<c o s sin ,0,33C D πθθθ⎛⎫∴=+∈ ⎪⎝⎭ (2)设观光道路长度为()L θ, 则()L B D C D A C θ=++弧的长= 1s in c o s s in 33θθθθ-+++= c o s in 13θθθ-++,0,3πθ⎛⎫∈ ⎪⎝⎭ ∴()s in o s 13L θθθ=--+'由()0L θ'=得:sin 62πθ⎛⎫+=⎪⎝⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴=∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。

嵩县第二中学2018-2019学年上学期高三数学10月月考试题

嵩县第二中学2018-2019学年上学期高三数学10月月考试题

嵩县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 2. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.3. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2 B.C.D .134. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.5. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞ 6. 方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称7. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( )A .若,m βαβ⊂⊥,则m α⊥B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥8. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .9. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (1 10.已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 11.已知命题1:0,2p x x x∀>+≥,则p ⌝为( ) A .10,2x x x ∀>+< B .10,2x x x ∀≤+< C .10,2x x x ∃≤+< D .10,2x x x∃>+<12.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内二、填空题13.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .14.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k+1)”;其中所有正确结论的序号是 .15.(﹣2)7的展开式中,x 2的系数是 .16.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 17.已知一个算法,其流程图如图,则输出结果是 .三、解答题18.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.19.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.20.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a =4c .(1)当k =54时,求cos B ;(2)若△ABC 面积为3,B =60°,求k 的值.21.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.22.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,(Ⅰ)求数列{a n } 的通项公式和S n ;(Ⅱ)记b n =a n 2n ﹣1,求数列{b n }的前n 项和T n .23.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.嵩县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111] 2. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.3. 【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.4. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 5. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或12111a a ⎧>⎪⎪⎨⎪+<⎪,∴2a <,选A . 6. 【答案】A【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2,圆心为(﹣a ,0),∴方程x 2+2ax+y 2=0(a ≠0)表示的圆关于x 轴对称,故选:A .【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.7. 【答案】C 【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系. 8. 【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形, ∴原四边形为直角梯形, 且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD 的面积为,故选:A.9.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 10.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。

嵩县第二中学2018-2019学年上学期高三数学10月月考试题

嵩县第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 定义在上的偶函数满足,对且,都有R ()f x (3)()f x f x -=-12,[0,3]x x ∀∈12x x ≠,则有( )1212()()0f x f x x x ->-A . B .(49)(64)(81)f f f <<(49)(81)(64)f f f <<C.D .(64)(49)(81)f f f <<(64)(81)(49)f f f <<2. 设公差不为零的等差数列的前项和为,若,则( ){}n a n n S 4232()a a a =+74S a = A .B .C .7D .1474145【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.n 3. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .134. 函数存在与直线平行的切线,则实数的取值范围是( )21()ln 2f x x x ax =++03=-y x a A.B. C. D. ),0(+∞)2,(-∞),2(+∞]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.5. 已知不等式组表示的平面区域为,若内存在一点,使,则的取值⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x D D 00(,)P x y 001ax y +<a 范围为()A .B .C .D .(,2)-∞(,1)-∞(2,)+∞(1,)+∞6. 方程x 2+2ax+y 2=0(a ≠0)表示的圆()A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称7. 若是两条不同的直线,是三个不同的平面,则下列为真命题的是(),m n ,,αβγA .若,则,m βαβ⊂⊥m α⊥B .若,则,//m m n αγ= //αβC .若,则,//m m βα⊥αβ⊥D .若,则,αγαβ⊥⊥βγ⊥8. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .9. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N ||:||MN FNA .B .C .D 2)-21:(110.已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件11.已知命题1:0,2p x x x∀>+≥,则p ⌝为( )A .10,2x x x ∀>+< B .10,2x x x ∀≤+<C .10,2x x x∃≤+<D .10,2x x x∃>+<12.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线()A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内二、填空题13.设满足条件,若有最小值,则的取值范围为.,x y ,1,x y a x y +≥⎧⎨-≤-⎩z ax y =-a 14.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 . 15.(﹣2)7的展开式中,x 2的系数是 .16.函数的定义域是,则函数的定义域是__________.111]()y f x =[]0,2()1y f x =+17.已知一个算法,其流程图如图,则输出结果是 .三、解答题18.已知函数,.3()1xf x x =+[]2,5x ∈(1)判断的单调性并且证明;()f x (2)求在区间上的最大值和最小值.()f x []2,519.(本小题满分10分)选修4­1:几何证明选讲.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .(1)求证:CD =DA ;(2)若CE =1,AB =,求DE 的长.220.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .(1)当k =时,求cos B ;54(2)若△ABC 面积为,B =60°,求k 的值.321.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.22.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,(Ⅰ)求数列{a n } 的通项公式和S n ;(Ⅱ)记b n =a n 2n ﹣1,求数列{b n }的前n 项和T n .23.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x a -=)cos sin ,(cos x x x b +=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆嵩县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A 【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]2. 【答案】C.【解析】根据等差数列的性质,,化简得,∴4231112()32(2)a a a a d a d a d =+⇒+=+++1a d =-,故选C.1741767142732a dS d a a d d⋅+===+3. 【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 4. 【答案】D 【解析】因为,直线的的斜率为,由题意知方程()有解,1()f x x a x '=++03=-y x 313x a x++=0x >因为,所以,故选D .12x x+³1a £5. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域如图所示,先求的最小值,当D z ax y =+12a ≤时,,在点取得最小值;当时,,在点取12a -≥-z ax y =+1,0A ()a 12a >12a -<-z ax y =+11,33B ()得最小值.若内存在一点,使,则有的最小值小于,∴或1133a +D 00(,)P x y 001ax y +<z ax y =+1121a a ⎧≤⎪⎨⎪<⎩,∴,选A .1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩2a <6. 【答案】A【解析】解:方程x 2+2ax+y 2=0(a ≠0)可化为(x+a )2+y 2=a 2,圆心为(﹣a ,0),∴方程x 2+2ax+y 2=0(a ≠0)表示的圆关于x 轴对称,故选:A .【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.7. 【答案】C 【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C .考点:空间直线、平面间的位置关系.8. 【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD 的面积为,故选:A.9.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.M 10.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。

抚松县第二中学2018-2019学年高三上学期11月月考数学试卷含答案

抚松县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有()①三棱锥M ﹣DCC 1的体积为定值②DC 1⊥D 1M③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④2. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为()A .120B .210C .252D .453. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( )A .{0,1,2,4}B .{0,1,3,4}C .{2,4}D .{4}4. 直线的倾斜角是( )A .B .C .D .5. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中()A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点6. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )A .{x|x ≥0}B .{x|x ≤1}C .{﹣1,0,1}D .R7. 已知数列是各项为正数的等比数列,点、都在直线上,则数列{}n a 22(2,log )M a 25(5,log )N a 1y x =-的前项和为(){}n a n A . B . C .D .22n-122n +-21n-121n +-8. 函数f (x )=,则f (﹣1)的值为()A .1B .2C .3D .4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9.某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽8车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘44坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有()种.42A.B.C.D.24184836【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.10.已知f(x)为R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3),x1,x2∈[0,3],x1≠x2时,有成立,下列结论中错误的是()A.f(3)=0B.直线x=﹣6是函数y=f(x)的图象的一条对称轴C.函数y=f(x)在[﹣9,9]上有四个零点D.函数y=f(x)在[﹣9,﹣6]上为增函数11.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)12.已知a=21.2,b=(﹣)﹣0.8,c=2log52,则a,b,c的大小关系为()A.c<b<a B.c<a<b C.b<a<c D.b<c<a二、填空题13.已知f(x)=,则f[f(0)]= .14.若点p(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 15.i是虚数单位,若复数(1﹣2i)(a+i)是纯虚数,则实数a的值为 .16.用“<”或“>”号填空:30.8 30.7.17.已知椭圆中心在原点,一个焦点为F(﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .18.已知椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其左焦点,若AF⊥BF,设∠ABF=θ,且θ∈[,],则该椭圆离心率e的取值范围为 .三、解答题19.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.20.设函数,.()xf x e =()lng x x =(Ⅰ)证明:;()2e g x x≥-(Ⅱ)若对所有的,都有,求实数的取值范围.0x ≥()()f x f x ax --≥a21.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD ,平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.22.已知函数f (x )=alnx ﹣x (a >0).(Ⅰ)求函数f (x )的最大值;(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α23.(本小题满分12分)某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生N 数有21人.(1)求总人数和分数在110-115分的人数;N (2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.y 数学888311792108100112物理949110896104101106已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理y 成绩大约是多少?附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分11(,)u v 22(,)u v (,)n n u v v u αβ=+别为:,.^121()()()niii nii u u v v u u β==--=-∑∑^^a v u β=-24.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD ,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.抚松县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.2.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.3.【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4},∵B={0,1,4},∴(C U A)∪B={0,1,2,4}.故选:A.【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.4.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A.【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.5.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C.【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.6.【答案】A【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.A、{x|x≥0}={x|x≥0}=A,故本选项正确;B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C 、若B={﹣1,0,1},则A ∩B={0,1}≠B ,故本选项错误;D 、给出的集合是R ,不合题意,故本选项错误.故选:A .【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题. 7. 【答案】C【解析】解析:本题考查等比数列的通项公式与前项和公式.,,∴n 22log 1a =25log 4a =,,∴,,数列的前项和为,选C .22a =516a =11a =2q ={}n a n 21n -8. 【答案】A【解析】解:由题意可得f (﹣1)=f (﹣1+3)=f (2)=log 22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题. 9. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有12121223=C C C 种. 共有24种. 选A.12121213=C C C 10.【答案】D【解析】解:对于A :∵y=f (x )为R 上的偶函数,且对任意x ∈R ,均有f (x+6)=f (x )+f (3),∴令x=﹣3得:f (6﹣3)=f (﹣3)+f (3)=2f (3),∴f (3)=0,故A 正确;对于B :∵函数y=f (x )是以6为周期的偶函数,∴f (﹣6+x )=f (x ),f (﹣6﹣x )=f (x ),∴f (﹣6+x )=f (﹣6﹣x ),∴y=f (x )图象关于x=﹣6对称,即B 正确;对于C :∵y=f (x )在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f (3)=f (﹣3)=0,∴方程f (x )=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f (x )是以6为周期的函数,∴方程f (x )=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),∴方程f (x )=0在[﹣9,9]上有4个实根.故C 正确;对于D :∵当x 1,x 2∈[0,3]且x 1≠x 2时,有,∴y=f (x )在区间[0,3]上为增函数,又函数y=f (x )是偶函数,∴y=f (x )在区间[﹣3,0]上为减函数,又函数y=f (x )是以6为周期的函数,∴y=f (x )在区间[﹣9,﹣6]上为减函数,故D 错误.综上所述,命题中正确的有A 、B 、C .故选:D .【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.11.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B12.【答案】A【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a,且b>1,又c=2log52=log54<1,∴c<b<a.故选:A.二、填空题13.【答案】 1 .【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.14.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=015.【答案】 ﹣2 .【解析】解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数,得,解得:a=﹣2.故答案为:﹣2.16.【答案】 > 【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.17.【答案】 .【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.18.【答案】 [,﹣1] .【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);F(﹣c,0);∵AF⊥BF,∴=0,即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,故c2﹣a2cos2α﹣b2sin2α=0,cos2α==2﹣,故cos α=,而|AF|=,|AB|==2c ,而sin θ===,∵θ∈[,],∴sin θ∈[,],∴≤≤,∴≤+≤,∴,即,解得,≤e ≤﹣1;故答案为:[,﹣1].【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用. 三、解答题19.【答案】.[]1,2-【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况p 31x -≤<p 列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a -- 由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦ 综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么p 条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题p p 或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.20.【答案】【解析】(Ⅰ)令,e e ()()2ln 2F x g x x x x =-+=-+221e e ()x F x x x x-'∴=-=由 ∴在递减,在递增,()0e F x x '>⇒>()F x (0,e][e,)+∞∴ ∴ 即成立. …… 5分min e ()(e)ln e 20e F x F ==-+=()0F x ≥e ()2g x x≥-(Ⅱ) 记, ∴ 在恒成立,()()()x x h x f x f x ax e e ax -=---=--()0h x ≥[0,)+∞ , ∵ ,()e x x h x e a -'=+-()()e 00x x h x e x -''=-≥≥Q ∴ 在递增, 又, …… 7分()h x '[0,)+∞(0)2h a '=-∴ ① 当 时,成立, 即在递增,2a ≤()0h x '≥()h x [0,)+∞ 则,即 成立; …… 9分()(0)0h x h ≥=()()f x f x ax --≥ ② 当时,∵在递增,且,2a >()h x '[0,)+∞min ()20h x a '=-< ∴ 必存在使得.则时,,(0,)t ∈+∞()0h t '=(0,)x t ∈()0h t '< 即 时,与在恒成立矛盾,故舍去.(0,)x t ∈()(0)0h t h <=()0h x ≥[0,)+∞2a > 综上,实数的取值范围是. …… 12分a 2a ≤21.【答案】【解析】(本小题满分12分)(Ⅰ)证明:因为AE=AF ,点G 是EF 的中点,所以AG ⊥EF .又因为EF ∥AD ,所以AG ⊥AD .…因为平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD=AD ,AG ⊂平面ADEF ,所以AG ⊥平面ABCD .…(Ⅱ)解:因为AG ⊥平面ABCD ,AB ⊥AD ,所以AG 、AD 、AB 两两垂直.以A 为原点,以AB ,AD ,AG 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系则A (0,0,0),B (4,0,0),C (4,4,0),设AG=t (t >0),则E (0,1,t ),F (0,﹣1,t ),所以=(﹣4,﹣1,t ),=(4,4,0),=(0,1,t ).…设平面ACE 的法向量为=(x ,y ,z ),由=0, =0,得,令z=1,得=(t ,﹣t ,1).因为BF 与平面ACE 所成角的正弦值为,所以|cos <>|==,…即=,解得t 2=1或.所以AG=1或AG=.…【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.22.【答案】【解析】解:(Ⅰ)令,所以x=a .易知,x ∈(0,a )时,f ′(x )>0,x ∈(a ,+∞)时,f ′(x )<0.故函数f (x )在(0,a )上递增,在(a ,+∞)递减.故f (x )max =f (a )=alna ﹣a .(Ⅱ)令g (x )=f (a ﹣x )﹣f (a+x ),即g (x )=aln (a ﹣x )﹣aln (a+x )+2x .所以,当x ∈(0,a )时,g ′(x )<0.所以g (x )<g (0)=0,即f (a+x )>f (a ﹣x ).(Ⅲ)依题意得:a <α<β,从而a ﹣α∈(0,a ).由(Ⅱ)知,f (2a ﹣α)=f[a+(a ﹣α)]>f[a ﹣(a ﹣α)]=f (α)=f (β).又2a ﹣α>a ,β>a .所以2a ﹣α<β,即α+β>2a .【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用. 23.【答案】(1),;(2);(3).60N =6n =815P =115【解析】试题解析:(1)分数在100-110内的学生的频率为,所以该班总人数为,1(0.040.03)50.35P =+⨯=21600.35N ==分数在110-115内的学生的频率为,分数在110-11521(0.010.040.050.040.030.01)50.1P =-+++++⨯=内的人数.600.16n =⨯=(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为,女生为,从61234,,,A A A A 12,B B 名学生中选出3人的基本事件为:,,,,,,,12(,)A A 13(,)A A 14(,)A A 11(,)A B 12(,)A B 23(,)A A 24(,)A A ,,,,,,,共15个.21(,)A B 22(,)A B 34(,)A A 31(,)A B 32(,)A B 41(,)A B 42(,)A B 12(,)B B 其中恰 好含有一名女生的基本事件为,,,,,,11(,)A B 12(,)A B 22(,)A B 21(,)A B 31(,)A B 32(,)A B ,,共8个,所以所求的概率为.41(,)A B 42(,)A B 815P =(3);12171788121001007x --+-++=+=;69844161001007y --+-+++=+=由于与之间具有线性相关关系,根据回归系数公式得到y ,,^4970.5994b ==^1000.510050a =-⨯=∴线性回归方程为,0.550y x =+∴当时,.1130x =115y =考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,一定要将题目中所给数据与公式中的相对应,再进一步求解.在求解过程中,由$,a b $,,a b c 于的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为$,a b $常数项为这与一次函数的习惯表示不同.,b )24.【答案】【解析】解:(I )证明:∵平面PAD ⊥平面ABCD ,AB ⊥AD ,∴AB ⊥平面PAD ,∵E 、F 为PA 、PB 的中点,∴EF ∥AB ,∴EF ⊥平面PAD ;(II)解:过P作AD的垂线,垂足为O,∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.取AO中点M,连OG,EO,EM,∵EF∥AB∥OG,∴OG即为面EFG与面ABCD的交线又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,故OG⊥EO∴∠EOM 即为所求在RT△EOM中,EM=OM=1∴tan∠EOM=,故∠EOM=60°∴平面EFG与平面ABCD所成锐二面角的大小是60°.【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.。

富民县第二中学2018-2019学年上学期高三数学10月月考试题

富民县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24252. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .4843. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 4. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±3 5. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .则几何体的体积为( )34意在考查学生空间想象能力和计算能 )D .45A}中元素的个数是( )A .1B .3C .5D .99.不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]10.已知x ,y ∈R,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( ) A .4﹣B .4﹣C.D.+11.已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .15 12.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.二、填空题13.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .14. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.15.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 16.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .17.若函数63e ()()32ex x b f x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.三、解答题18.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .19.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y ) (1)求f (1)的值,(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.20.(本小题满分12分)如图,四棱柱1111ABCD A B C D -中,侧棱1A A ^底面ABCD ,//AB DC , AB AD ^,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明:11B C ^面1CEC ;(II )设点M 在线段1C E 上,且直线AM 与平面11ADD A,求线段AM 的长.11121.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.22.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=.(1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.23.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)富民县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 2. 【答案】 C【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C .【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.3. 【答案】A 【解析】考点:斜二测画法.4.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.5.【答案】B【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.6.【答案】D【解析】7.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.8.【答案】C【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.9.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.10.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.11.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y 轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定. 12.【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.二、填空题13.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC ,高为AC ,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.14.【答案】①②④ 【解析】15.【答案】【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×92×c =200,∴c =4.答案:4 16.【答案】21≥a 【解析】试题分析:'21()a f x x x =-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221,(0,3]x ∈恒成立,由2111,222x x a -+≤∴≥.1考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.17.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =. 三、解答题18.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB . 【解析】试题解析:(1)由题意,圆C 方程为2)()(22=-+-b y a x ,且0,0><b a , ∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,25|43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(22=-++y x , 化为一般方程为08242222=+-++y x y x , ∴22=D ,24-=E ,8=F .(2)圆心)22,2(-C 到直线022=+-y x 的距离为12|22222|=+--=d ,∴21222||22=-=-=d r AB . 考点:圆的方程;2.直线与圆的位置关系.1 19.【答案】【解析】解:(1)在f ()=f (x )﹣f (y )中, 令x=y=1,则有f (1)=f (1)﹣f (1), ∴f (1)=0;(2)∵f (6)=1,∴2=1+1=f (6)+f (6),∴不等式f (x+3)﹣f ()<2等价为不等式f (x+3)﹣f ()<f (6)+f (6), ∴f (3x+9)﹣f (6)<f (6),即f ()<f (6),∵f (x )是(0,+∞)上的增函数,∴,解得﹣3<x <9,即不等式的解集为(﹣3,9).20.【答案】【解析】【命题意图】本题考查直线和平面垂直的判定和性质、直线和平面所成的角、两点之间的距离等基础知识,意在考查空间想象能力和基本运算能力21.【答案】(1)0.3a =;(2)3.6万;(3)2.9. 【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.22.【答案】(1)1n a n=,(2)详见解析.当8n =时911872222015S =⨯+>>,…………13分∴存在正整数n ,使得2015n S ≥的取值集合为{}*|8,n n n N ≥∈,…………15分23.【答案】【解析】解:(I )a=﹣2时,f (x )=xlnx ﹣2x ,则f ′(x )=lnx ﹣1. 令f ′(x )=0得x=e ,当0<x <e 时,f ′(x )<0,当x >e 时,f ′(x )>0,∴f (x )的单调递减区间是(0,e ),单调递增区间为(e ,+∞). (II )若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,则xlnx+ax >k (x ﹣1)+ax ﹣x 恒成立,即k (x ﹣1)<xlnx+ax ﹣ax+x 恒成立,又x ﹣1>0,则k <对任意x ∈(1,+∞)恒成立,设h (x )=,则h ′(x )=.设m (x )=x ﹣lnx ﹣2,则m ′(x )=1﹣,∵x ∈(1,+∞),∴m ′(x )>0,则m (x )在(1,+∞)上是增函数.∵m (1)=﹣1<0,m (2)=﹣ln2<0,m (3)=1﹣ln3<0,m (4)=2﹣ln4>0, ∴存在x 0∈(3,4),使得m (x 0)=0, 当x ∈(1,x 0)时,m (x )<0,即h ′(x )<0, 当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.。

抚州市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案

抚州市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设函数()log |1|a f x x =-在(,1)-∞上单调递增,则(2)f a +与(3)f 的大小关系是( ) A .(2)(3)f a f +> B .(2)(3)f a f +< C. (2)(3)f a f += D .不能确定2. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .B .3C .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 3. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π4. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++=5. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D .6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④7. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 8. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞, 9. 在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若2cos a b C =,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 10.经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -= 11.“p q ∨为真”是“p ⌝为假”的( )条件3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥A .充分不必要B .必要不充分C .充要D .既不充分也不必要 12.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在△ABC 中,a=1,B=45°,S △ABC =2,则b= . 14.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.15.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.16.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 三、解答题(本大共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数__________
7 25

B.
7 25
C.
7 25
+
24 25
2. 已知正方体 ABCD﹣A1B1C1D1 中,点 E 为上底面 A1C1 的中心,若 为(
,则 x、y 的值分别
A.x=1,y=1 B.x=1,y= C.x= ,y=
| x|
D.x= ,y=1
3. 若当 x R 时,函数 f ( x) a ( a 0 且 a 1 )始终满足 f ( x) 1 ,则函数 y ( )
x 2 cos y sin
( 为参数),过点 P (1,0) 的直线交曲线 C 于 A、B 两点.
(1)将曲线 C 的参数方程化为普通方程; (2)求 | PA | | PB | 的最值.
19.如图,四棱锥 P﹣ABCD 的底面是正方形,PD⊥底面 ABCD,点 E 在棱 PB 上. (1)求证:平面 AEC⊥平面 PDB; (2)当 PD= AB,且 E 为 PB 的中点时,求 AE 与平面 PDB 所成的角的大小.

2
8.5 2 ,所以 cos8.5 0 ,又 sin 3 sin 3 sin1.5 ,∴
cos8.5 sin 3 sin1.5 .
考点:实数的大小比较. 11.【答案】D 【解析】解:不等式组 表示的平面区域如图,
结合图象可知|AM|的最小值为点 A 到直线 2x+y﹣2=0 的距离, 即|AM|min= 故选:D. .
log a | x | 的图象大致是 x3
【命题意图】 本题考查了利用函数的基本性质来判断图象, 对识图能力及逻辑推理能力有较高要求, 难度中等. 4. 等比数列的前 n 项,前 2n 项,前 3n 项的和分别为 A,B,C,则( A. B2=AC B.A+C=2B ) C.B(B﹣A)=A(C﹣A) D.B(B﹣A)=C(C﹣A)
抚顺县第二中学 2018-2019 学年上学期高三数学 10 月月考试题 班级__________ 一、选择题
1. 在 ABC 中,内角 A , B , C 所对的边分别是,,,已知 8b 5c , C 2 B ,则 cos C ( A. ) D.
座号_____
姓名__________
4. 【答案】C
log a | x | 0 ,排除 A ;当 x 时, y 0 ,排除 D ,因此选 C . x3
【解析】解:若公比 q=1,则 B,C 成立; 故排除 A,D;
第 7 页,共 16 页
若公比 q≠1, 则 A=Sn= B(B﹣A)= A(C﹣A)= ,B=S2n= ( ( ﹣ ﹣ ,C=S3n= )= )= , (1﹣qn)(1﹣qn)(1+qn) (1﹣qn)(1﹣qn)(1+qn) ;
极轴)中,点 的极坐标为(4, ),判断点 与直线 的位置关系; (2)设点 是曲线 上的一个动点,求它到直线 的距离的最小值。
22.【徐州市 2018 届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池 形附属设施 矩形的一边
及其矩
,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为 ,半径为 , 在直径上,点 、 、 、 在圆周上, 、 在边 上,且 ,设 .

第 2 页,共 16 页
C A B
x
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 14.【泰州中学 2018 届高三 10 月月考】设函数 f x e
2 x 1 ax a ,其中 a 1 ,若存在唯一的整数
试题分析: 数列 an 8 考点:数列的函数特性. 6. 【答案】A. 【解析】 f (3 x) f (3 x) f ( x) f (6 x) ,∴ f ( x) 的图象关于直线 x 3 对称, ∴ 6 个实根的和为 3 6 18 ,故选 A. 7. 【答案】 【解析】选 C.由题意得 log2(a+6)+2log26=9. 即 log2(a+6)=3, ∴a+6=23=8,∴a=2,故选 C. 8. 【答案】A. 【解析】 | | | | cos cos | | cos | | cos ,设 f ( x) | x | cos x , x [ , ] , 显然 f ( x) 是偶函数,且在 [0, ] 上单调递增,故 f ( x) 在 [ , 0] 上单调递减,∴ f ( ) f ( ) | || | , 故是充分必要条件,故选 A. 9. 【答案】B
11.已知点 A(﹣2,0),点 M(x,y)为平面区域 ) A.5 B.3 C.2 D.
12.四棱锥 P﹣ABCD 的底面是一个正方形,PA⊥平面 ABCD,PA=AB=2,E 是棱 PA 的中点,则异面直线 BE 与 AC 所成角的余弦值是( )
A.
ห้องสมุดไป่ตู้
B.
C.
D.
二、填空题
13.如图所示,圆 C 中,弦 AB 的长度为 4 ,则 AB ×AC 的值为_______.
2
cos 2 1, cos 2 cos 2 sin 2 ,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定
a b c 2 R ,余弦定理 a 2 b 2 c 2 2bc cos A , 实现边与角的互相转化. sin A sin B sin C
3
.
【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度 中等. 16.给出下列命题: ①存在实数 α,使 ②函数 ③ 是函数 是偶函数 的一条对称轴方程
④若 α、β 是第一象限的角,且 α<β,则 sinα<sinβ 其中正确命题的序号是 .
三、解答题
17.证明:f(x)是周期为 4 的周期函数; (2)若 f(x)= (0<x≤1),求 x∈[﹣5,﹣4]时,函数 f(x)的解析式. 是奇函数.
18.已知函数 f(x)=
第 3 页,共 16 页
18.(本小题满分 10 分)选修 4-4:坐标系与参数方程 已知曲线 C 的参数方程为
2. 【答案】C 【解析】解:如图, + 故选 C. + ( ).
3. 【答案】 C 【解析】由 f ( x) a 始终满足 f ( x) 1 可知 a 1 .由函数 y
| x|
log a | x | 是奇函数,排除 B ; 当 x (0,1) 时, x3
log a | x | 0 ,此时 y
【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义. 12.【答案】B
第 9 页,共 16 页
【解析】解:以 A 为原点,AB 为 x 轴,AD 为 y 轴,AP 为 z 轴,建立空间直角坐标系, 则 B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0), =(﹣2,0,1), =(2,2,0), 设异面直线 BE 与 AC 所成角为 θ, 则 cosθ= 故选:B. = = .
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 9. 在二项式(x3﹣ )n(n∈N*)的展开式中,常数项为 28,则 n 的值为( A.12 B.8 C.6 D.4 ) B. cos8.5 sin 3 sin1.5 D. cos8.5 sin1.5 sin 3 上的一个动点,则|AM|的最小值是( 10. sin 3 ,sin1.5 ,cos8.5 的大小关系为( A. sin1.5 sin 3 cos8.5 C. sin1.5 cos8.5 sin 3
二、填空题
13.【答案】 8
第 10 页,共 16 页
14.【答案】 【解析】试题分 析 : 设 的下方 . 因为 当 时, ,函数 ,故当 , 故当 , 由题设可知存在唯一的整数 x0 ,使得 时, , 函数 在直线 单调递减 ; ,而当 ,解之得 时,
{
)
A.4
B.3
第 1 页,共 16 页
C.2 A. 充分必要条件 C. 必要不充分条件
D.1 ) B. 充分不必要条件 D. 既不充分也不必要条件 )
8. 已知 , [ , ] ,则“ | || | ”是“ | | | | cos cos ”的(
5. 已知数列{ a n }满足 a n 8 和 m ,则 M m ( A. )
2n 7 ( n N ).若数列{ a n }的最大项和最小项分别为 M 2n 27 2
C.
259 435 D. 32 32 6. 设函数 y f ( x) 对一切实数 x 都满足 f (3 x) f (3 x) ,且方程 f ( x) 0 恰有 6 个不同的实根,则这
第 5 页,共 16 页
(1)记游泳池及其附属设施的占地面积为 (2)怎样设计才能符合园林局的要求?
,求
的表达式;
第 6 页,共 16 页
抚顺县第二中学 2018-2019 学年上学期高三数学 10 月月考试题(参考答案) 一、选择题
1. 【答案】A 【解析】
考 点:正弦定理及二倍角公式. 【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式, 如 sin 理
故 B(B﹣A)=A(C﹣A); 故选:C. 【点评】 本题考查了等比数列的性质的判断与应用, 同时考查了分类讨论及学生的化简运算能力. 5. 【答案】D 【解析】
2n 7 2n 5 2n 5 2n 7 , an 1 8 n 1 , an 1 an n 1 n 2 2 2 2n 2n 5 2 2n 7 2n 9 ,当 1 n 4 时, an 1 an ,即 a5 a4 a3 a2 a1 ;当 n 5 时, an 1 an , 2n 1 2n 1 259 11 即 a5 a6 a7 ... .因此数列 an 先增后减, n 5, a5 为最大项, n , an 8 , a1 , 最 32 2 11 11 259 435 小项为 , m M 的值为 .故选 D. 2 2 32 32
相关文档
最新文档