第一学期期中考试七年级数学(新人教版)[上学期] 新人教版

合集下载

七年级第一学期期中考试数学试卷-带答案

七年级第一学期期中考试数学试卷-带答案

七年级第一学期期中考试数学试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题4分,满分40分) 1.在-12与311,-π,-4中,属于负整数的是( )A .-12 B.311 C .-π D .-42.国产C919,全称COMAC C919,是我国按照国际民航规章自行研制,具有自主知识产权的大型喷气式民用飞机,最大航程达5 555 000 m .数据5 555 000用科学记数法表示为( ) A .0.5555×107 B .5.555×106 C .55.55×105 D .5555×1033.单项式-x a +1y 3与12y b x 2是同类项,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =3C .a =2,b =2D .a =2,b =3 4.根据等式的性质,下列变形正确的是( )A .若a c =b c ,则a =bB .若x 4+x3=1,则3x +4x =1 C .若ab =bc ,则a =c D .若4x =a ,则x =4a 5.下列各式中,运算正确的是( )A .5x 3+6x 3=11x 6B .-8x -8x =0C .5x -3x =2D .2xy -2yx =06.【2024·六安金安区校级月考】已知(m +2)2+|n -2|=0,则-m n 的值是( )A .4B .-2C .2D .-47.一种商品,先提价20%,再降价10%,这时的价格是2 160元.则该商品原来的价格是( )A .2 400元B .2 200元C .2 000元D .1 800元8.《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这道题目的意思是:甲、乙两人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们的羊数就一样多.”设甲有x 只羊,乙有y 只羊,根据题意列出二元一次方程组为( )A.⎩⎨⎧x -9=2(y +9)y +9=x -9B.⎩⎨⎧x +9=2(y -9)y +9=x -9C.⎩⎨⎧x +9=2y y +9=xD.⎩⎨⎧x -9=2y y +9=x -99.【2024·宿州桥区校级期中】图①是我国古代传说中的洛书,图②是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数之和都相等.图③是一个不完整的幻方,根据幻方的规则,由已知数求出x -y 的值应为( )A .-3B .3C .-2D .210.求1+2+22+23+…+22 024的值,可令S =1+2+22+23+…+22 024,则2S =2+22+23+24+…+22 025,因此2S -S =22 025-1.仿照以上方法,计算出1+5+52+53+…+52 024的值为( )A .52 024-1B .52 025-1 C.52 025-14 D.52 024-14二、填空题(本大题共4小题,每小题5分,满分20分) 11.把5.187 245按四舍五入的方法精确到千分位为________. 12.已知3a -2b =-4,则整式4b -6a +3=________.13.一组“数值转换机”按如图所示的程序计算,如果输入的数是30,则输出结果为56,要使输出结果为60,则输入的正整数是 ________.14.表示有理数m 与n 的点在数轴上的位置如图,有理数m 对应的点为M ,有理数n 对应的点为N ,且m =-4,n 比m 大24. (1)点M 与点N 之间的距离为________;(2)若点P 和点Q 分别从点M 和点N 同时出发,相向运动,点P 运动的速度为4个单位长度/s ,点Q 运动的速度为2个单位长度/s ,相遇前当点P 与点Q 之间的距离为18时,两点运动停止,则运动时间为________.三、(本大题共2小题,每小题8分,满分16分) 15.【2024·黄山期中】计算: (1)5.5-(-6.5)+(-7);(2)-12-(1-0.5)÷32×[4-(-2)3].16.(1)解方程:1-2x +16=2x -13;(2)解方程组:⎩⎨⎧8x =2-5y ,10-3y =4x .四、(本大题共2小题,每小题8分,满分16分) 17.【2024·蚌埠蚌山区期中】先化简,再求值:x 2y -2⎝ ⎛⎭⎪⎫14xy 2-3x 2y +⎝ ⎛⎭⎪⎫-12xy 2-x 2y ,其中⎪⎪⎪⎪⎪⎪x -32+(y +2)2=0.18.【2024·芜湖期末】已知关于x ,y 的方程组⎩⎨⎧2x +y =-2,ax +by =-4和方程组⎩⎨⎧3x -y =12,bx +ay =-8的解相同,求(5a +b )2的值.五、(本大题共2小题,每小题10分,满分20分)19.【2024·淮南期中】小蕊暑假在父母开设的小食堂帮忙,她把相同规格的碟子洗干净后整齐地摆放在桌子上,发现碟子的个数与碟子的高度的关系如下表:碟子的个数 1 2 3 4 … 碟子的高度(单位:cm)23.556.5…(1) 当桌子上放有x 个碟子时,请写出此时碟子的高度(用含x 的式子表示);(2)如图所示,某天小蕊把洗好的上述规格的碟子摆放成三摞,小蕊妈妈想把它们整齐地叠成一摞,求叠成一摞后的高度.20.【2024·蚌埠蚌山区月考】有20箱石榴,以每箱25 kg为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg)-3-2-1.501 2.5箱数142328(1)20箱石榴中,最重的一箱比最轻的一箱多多少千克?(2)与标准质量比较,20箱石榴总计超过或不足多少千克?(3)若石榴每千克售价8元,购进这批石榴一共花了3 000元,则售出这20箱石榴可赚多少元?六、(本题满分12分)21.在学习完“有理数”后,小奇对有理数运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“”,规则如下:a b =ab +2a (a ,b 不相等).(1)3(-2)=________;(2)求-5⎝⎛⎭⎪⎫-412的值; (3)试以(-4) 3和3(-4)说明,新定义的运算“”满足交换律吗?七、(本题满分12分)22.【2024·合肥瑶海区期中】为鼓励人们节约用水,合肥市居民使用自来水实行阶梯式计量水价,按如下标准缴费(水费按月缴纳):用户月用水量 单价 不超过12 m 3的部分 a 元/m 3 超过12 m3但不超过20 m 3的部分1.5a 元/m 3 超过20 m 3的部分2a 元/m 3(1)当a =2时,芳芳家5月份用水量为14 m 3,则该月需交水费________元;6月份芳芳家交了水费36元,则6月份用水量为________m 3(直接写出答案);(2)当a =2时,亮亮家一个月用了28 m 3的水,求亮亮家这个月应缴纳的水费;(3)设某用户月用水量为n m 3(n >20),该用户这个月应缴纳水费多少元?(用含a ,n 的式子表示)八、(本题满分14分)23.【2024·芜湖师大附中月考】古人曰:“读万卷书,行万里路”,经历是最好的学习,研学是最美的相遇.伴着三月的春风,哼着欢快的曲调,方树泉中学七年级同学开启了期盼已久的研学活动,师生一起去参观博物馆.下面是王老师和小真、小萱同学有关租车问题的对话.王老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小真:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到该博物馆参观,一天的租金共计5 100元.”小萱:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满”.根据以上对话,解答下列问题:(1)参加此次研学活动的七年级师生共有________人;(2)该客运公司60座和45座的客车每辆每天的租金分别是多少元?(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车方案最省钱?参考答案一、1.D2.B3.B4.A5.D6.D7.C8.B9.A10.C 【点拨】设S=1+5+52+53+…+52 024,则5S=5+52+53+…+52 025所以5S-S=52 025-1,所以S=52 025-14.二、11.5.18712.1113.32,18或11 14.(1)24【点拨】根据题意知n-m=24.即MN=24.(2)1 【点拨】设运动时间为t s.当相遇前点P 与点Q 之间的距离为18时,4t +2t +18=24,解得t =1. 即当运动时间为1 s 时点P 和点Q 之间的距离为18. 三、15.【解】(1)原式=5.5+6.5-7=5.(2)原式=-1-12×23×[4-(-8)] =-1-12×23×12=-1-4=-5.16.【解】(1)去分母,得6-(2x +1)=2(2x -1) 去括号,得6-2x -1=4x -2 移项,得-4x -2x =-2+1-6 合并同类项,得-6x =-7 系数化为1,得x =76. (2)⎩⎨⎧8x =2-5y ,①10-3y =4x .②①+②×2得8x +20-6y =2-5y +8x ,解得y =18 把y =18代入①,解得x =-11 所以方程组的解为⎩⎨⎧x =-11,y =18.四、17.【解】x 2y -2⎝ ⎛⎭⎪⎫14xy 2-3x 2y +⎝ ⎛⎭⎪⎫-12xy 2-x 2y =x 2y -12xy 2+6x 2y -12xy 2-x 2y =6x 2y -xy 2因为|x -32|+(y +2)2=0,所以x =32,y =-2 所以原式=6×⎝ ⎛⎭⎪⎫322×(-2)-32×(-2)2=-27-6=-33.18.【解】解方程组⎩⎨⎧2x +y =-2,3x -y =12,得⎩⎨⎧x =2,y =-6.把⎩⎨⎧x =2,y =-6代入方程组⎩⎨⎧ax +by =-4,bx +ay =-8.得⎩⎨⎧2a -6b =-4,2b -6a =-8,解得⎩⎪⎨⎪⎧a =74,b =54,所以5a +b =5×74+54=10 所以(5a +b )2=102=100.五、19.【解】(1)依题意,得碟子个数为1时,碟子高度为2+1.5×(1-1)=2(cm); 碟子个数为2时,碟子高度为2+1.5×(2-1)=3.5(cm); 碟子个数为3时,碟子高度为2+1.5×(3-1)=5(cm); ……故碟子个数为x 时,碟子高度为2+1.5(x -1)=1.5x +0.5(cm); (2)由题图可知共有12个碟子 即x =12,将x =12代入1.5x +0.5 得1.5×12+0.5=18+0.5=18.5 故叠成一摞的高度为18.5 cm.20.【解】(1)最重的一箱比最轻的一箱多2.5-(-3)=5.5(kg) 答:20箱石榴中,最重的一箱比最轻的一箱多5.5 kg. (2)-3×1+(-2)×4+(-1.5)×2+0×3+1×2+2.5×8=8(kg) 答:20箱石榴总计超过8 kg. (3)25×20+8)×8-3 000=508×8-3 000 =1 064(元)答:售出这20箱石榴可赚1 064元. 六、21.【解】(1)0【点拨】3 (-2)=3×(-2)+2×3=-6+6=0.(2)-5⎝⎛⎭⎪⎫-412=-5⎣⎢⎡⎦⎥⎤(-4)×12+2×(-4) =-5 (-2-8) =-5(-10)=(-5)×(-10)+2×(-5)=50+(-10)=40.(3)(-4)3=-4×3+2×(-4)=-12+(-8)=-203(-4)=3×(-4)+2×3=-12+6=-6因为-20≠-6,所以(-4)3≠3(-4)所以新定义的运算“”不满足交换律.七、22.【解】(1)30;16【点拨】当a=2,芳芳家5月份用水量为14 m3时,该月需交水费为12×2+(14-12)×1.5×2=24+6=30(元);设芳芳家6月份用水量为x m3,易得12<x<20则由题意,得12×2+(x-12)×1.5×2=36解得x=16,所以芳芳家6月份用水量为16 m3.(2)12×2+(20-12)×1.5×2+(28-20)×2×2=24+24+32=80(元)答:亮亮家这个月应缴纳的水费为80元.(3)当n>20时该用户应缴纳的水费为12a+(20-12)×1.5a+(n-20)×2a=2an-16a(元)答:该用户这个月应缴纳水费(2an-16a)元.八、23.【解】(1)420【点拨】根据题意,得45a+15=60(a-2),解得a=9所以45a+15=45×9+15=420所以参加此次研学活动的七年级师生共有420人.(2)设该客运公司60座客车每辆每天的租金是x元,45座客车每辆每天的租金是y元第 11 页 共 11 页 根据题意,得⎩⎨⎧x -y =150,4x +2y =5 100,解得⎩⎨⎧x =900,y =750.答:该客运公司60座客车每辆每天的租金是900元,45座客车每辆每天的租金是750元.(3)设租用60座客车m 辆,45座客车n 辆根据题意,得60m +45n =420,所以m =7-34n .又因为m ,n 均为自然数所以⎩⎨⎧m =7,n =0或⎩⎨⎧m =4,n =4或⎩⎨⎧m =1,n =8,所以共有3种租车方案第1种:租用60座客车7辆,所需租车费用为900×7=6 300(元);第2种:租用60座客车4辆,45座客车4辆,所需租车费用为900×4+750×4=6 600(元); 第3种:租用60座客车1辆,45座客车8辆,所需租车费用为900×1+750×8=6 900(元). 因为6 300<6 600<6 900所以第1种租车方案最省钱.。

四川省巴中市恩阳区七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

四川省巴中市恩阳区七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市恩阳区2015-2016学年七年级数学上学期期中试题一、选择题1.如果向东走2km,记作+2km,那么﹣3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km2.最小的正有理数( )A.是0 B.是1 C.是0.00001 D.不存在3.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A.b>c>0>a B.a>0>c>b C.b>a>c>0 D.c<0<a<b4.下列各组中互为相反数的是( )A.﹣2与B.|﹣2|和2 C.﹣2.5与|﹣2| D.与5.若a+b<0,ab<0,则下列说法正确的是( )A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能6.用四舍五入法,把数4.803保留三个有效数字,得到的近似数是( )7.“a,b两数的平方和”用代数式表示为( )A.a2+b2 B.(a+b)2C.a+b2D.a2+b8.下列各组数中,不相等的一组是( )A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.(﹣2)和﹣2 D.|﹣2|3和|2|39.在多项式2x2﹣xy3+18中,次数最高的项是( )A.2 B.18 C.2x2D.﹣xy310.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚二、填空题__________,相反数是__________,倒数是__________.[来源:Zxxk.]13.单项式﹣a2b3c的系数是__________,次数是__________次.14.地球离太阳约有150000000万千米,用科学记数法表示为__________万千米.15.在数轴上,与表示﹣3的点的距离是4数为__________.16.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了__________元.17.规定a﹡b=﹣a+2b,则(﹣2)﹡3的值为__________.18.若(x﹣2)2+|y+3|=0,则y x=__________.19.多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是__________.20.一列数据:2,4,6,8,…;按此排列,那么,第7个数据是__________,第n个数据是__________.三、解答题:11.﹣1﹣(﹣3)=__________.21.(25分)计算.(1)(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)(2)﹣99×9(3)(﹣1)10×2+(﹣2)3÷4(4)(﹣1)3﹣〔2﹣(﹣3)2〕÷(﹣)(5)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].22.将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.23.(14分)已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.24.已知﹣2x m y n+1的次数为10,求2m+2n﹣1的值.25.出租车司机李师傅一天下午的营运全是在东西走向的路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:[来源:Zxxk.]+8,﹣6,﹣5,+10,﹣5,+3,﹣2,+6,+2,﹣5(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点什么方向?距离出发点多少米?(2)如果汽车耗油量为0.2升/千米,那么这天下午汽车共耗油多少升?26.X叔叔在南涧“龙凤丽都”房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题:(1)用式子表示这所住宅的总面积.(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?27.(16分)某餐厅中1X餐桌可坐6人,有以下两种摆放方式:(1)对于方式一,4X桌子拼在一起可坐多少人?nX桌子呢?对于方式二呢?(2)该餐厅有40X这样的长方形桌子,按方式一每5X拼成一X大桌子,则40X桌子可拼成8X大桌子,共可坐多少人?按方式二呢?(3)在(2)中,若改成每8X拼成一X大桌子,则两种方式分别可坐多少人?2015-2016学年某某省某某市恩阳区七年级(上)期中数学试卷一、选择题1.如果向东走2km,记作+2km,那么﹣3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.【解答】解:如果向东走2km表示+2km,那么﹣3km表示向西走3km.故选C.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.最小的正有理数( )A.是0 B.是1 C.是0.00001 D.不存在【考点】有理数.【分析】根据大于零的有理数是正有理数,可得答案.【解答】解:没有最小的正有理数,故D正确.故选:D.【点评】本题考查了有理数,没有最小的正有理数,也没有最大的有理数.3.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A.b>c>0>a B.a>0>c>b C.b>a>c>0 D.c<0<a<b【考点】有理数大小比较.【分析】数轴上的数,右边的数总比左边的数大,利用这个特点可比较四个数的大小.【解答】解:∵数轴上的数,右边的数总比左边的数大,∴b>c>0>a.故选A.【点评】本题考查了利用数轴比较有理数的大小,也就是把“数”和“形”结合起来,注意数轴上的数右边的数总比左边的数大.4.下列各组中互为相反数的是( )A.﹣2与B.|﹣2|和2 C.﹣2.5与|﹣2| D.与【考点】相反数.【分析】两数互为相反数,它们的和为0.本题可对四个选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.【解答】解:A、﹣2+(﹣)≠0,故﹣2与﹣一定不互为相反数,故选项错误;B、|﹣2|=2,2和2不是互为相反数,故选项错误;C、|﹣2|=2,与﹣2.5不是互为相反数,故选项错误;D、|﹣|=,+(﹣)=0,它们是互为相反数,故选项正确.故选:D.【点评】本题考查的是相反数的概念,两数互为相反数,它们的和为0.5.若a+b<0,ab<0,则下列说法正确的是( )A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.【点评】本题考查了有理数的乘法,有理数的加法运算,熟记运算法则是解题的关键.6.用四舍五入法,把数4.803保留三个有效数字,得到的近似数是( )【考点】近似数和有效数字.【分析】根据有效数字的定义,把千分位上的数字3进行四舍五入即可.【解答】解:4.803≈4.80(保留三个有效数字).故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.7.“a,b两数的平方和”用代数式表示为( )A.a2+b2 B.(a+b)2C.a+b2D.a2+b【考点】列代数式.【分析】“a,b两数的平方和”是先平方再相加.【解答】解:“a,b两数的平方和”代数式表示为用a2+b2.故选A.【点评】注意掌握代数式的意义.8.下列各组数中,不相等的一组是( )A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.(﹣2)和﹣2 D.|﹣2|3和|2|3【考点】有理数的乘方.【分析】根据乘方的运算法则算出各自结果,然后进行比较得出答案.【解答】解:A中都是﹣8,B中一个是4一个是﹣4,C,D也都相等.故选B.【点评】解决此类题目的关键是熟记有理数的乘方运算法则和绝对值的定义.负数的奇数次幂是负数,负数的偶数次幂是正数.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.9.在多项式2x2﹣xy3+18中,次数最高的项是( )A.2 B.18 C.2x2D.﹣xy3【考点】多项式.【分析】此多项式共五项:2x2、﹣xy3、18.最高次项为﹣xy3;【解答】解:由上面分析得多项式2x2﹣xy3+18中最高次数项是多项式﹣xy3;故选:D.【点评】本题考查了对多项式的项的系数和次数定义的掌握情况,熟练掌握单项式次数是解题关键.10.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚【考点】规律型:图形的变化类.【分析】每增加一个数就增加四个棋子.【解答】解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选A.【点评】主要培养学生的观察能力和空间想象能力.二、填空题,相反数是,倒数是﹣2.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】求一个数的相反数时在这个数的前面加上负号即可;求一个数的倒数只需将其分子分母交换位置.【解答】解:|﹣0.5|=﹣(﹣0.5)=0.5,∴﹣0.5的绝对值是0.5,相反数为:0.5;﹣0.5的倒数为:=﹣2,故答案为:0.5;0.5;﹣2.【点评】本题考查了求一个数的相反数、绝对值及倒数,属于较简单的题目,但考查的频率较高.13.单项式﹣a2b3c的系数是﹣,次数是六次.【考点】多项式.【分析】根据单项式的系数与次数的定义求解.【解答】解:单项式﹣a2b3c的系数是﹣,次数是六次.故答案为﹣,六.【点评】本题考查了单项式:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.地球离太阳约有150000000万千米,用科学记数法表示为1.5×108万千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150000000用科学记数法表示为:1.5×108.故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.在数轴上,与表示﹣3的点的距离是4数为1或﹣7.【考点】数轴.【专题】常规题型.【分析】此题注意考虑两种情况:该点在﹣3的左侧,该点在﹣3的右侧.【解答】解:根据数轴的意义可知,在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故答案为:1或﹣7.【点评】本题主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.16.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了0.8m+2n元.【考点】列代数式.【分析】根据总花费=买铅笔用的钱+买练习本用的钱,列代数式.【解答】解:总花费=0.8m+2n.故答案为:0.8m+2n.【点评】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.17.规定a﹡b=﹣a+2b,则(﹣2)﹡3的值为8.【考点】有理数的混合运算.【专题】新定义.【分析】利用已知a﹡b=﹣a+2b得出(﹣2)﹡3=﹣(﹣2)+2×3进而求出即可.【解答】解:∵a﹡b=﹣a+2b,∴(﹣2)﹡3=﹣(﹣2)+2×3=8.故答案为:8.【点评】此题主要考查了新运算以及有理数的混合运算,根据已知得出(﹣2)﹡3变形后等式是解题关键.18.若(x﹣2)2+|y+3|=0,则y x=9.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵(x﹣2)2+|y+3|=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴y x=(﹣3)2=9.故答案为9.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是﹣1﹣ab2+3a2b﹣a3.【考点】多项式.【分析】先分清多项式的各项,然后按多项式降升幂排列的定义排列.【解答】解:多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是:﹣1﹣ab2+3a2b﹣a3.故答案是::﹣1﹣ab2+3a2b﹣a3.【点评】我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.20.一列数据:2,4,6,8,…;按此排列,那么,第7个数据是14,第n个数据是2n.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,这是一列从2开始的偶数列,然后解答即可.【解答】解:∵2,4,6,8,…,∴按此排列,第7个数据是14;第n个数据是2n.故答案为:14;2n.【点评】本题是对数字变化规律的考查,观察出是偶数列是解题的关键.三、解答题:11.﹣1﹣(﹣3)=2.【考点】有理数的减法.【专题】计算题.【分析】根据有理数减法法则:减去一个数,等于加上这个数的相反数计算.【解答】解:﹣1﹣(﹣3)=﹣1+3=2.故答案为2.【点评】本题考查了有理数的减法.注意:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).21.(25分)计算.(1)(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)(2)﹣99×9(3)(﹣1)10×2+(﹣2)3÷4(4)(﹣1)3﹣〔2﹣(﹣3)2〕÷(﹣)(5)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)利用加法交换律与结合律简算;(2)利用乘法分配律简算即可;(3)先算乘法,再算乘除,最后算加法;(4)先算乘方,再算除法,最后算减法;(5)先算乘方和括号里面的减法,再算乘法,最后算减法.【解答】解:((1)原式=(﹣3.14)+(+2.14)+(﹣7.96)+(+4.96)=﹣1﹣3=﹣4;(2)原式=﹣100×9+×9=﹣900+=﹣899;(3)原式=1×2+(﹣8)÷4=2﹣2=0;(4)原式=﹣1﹣〔2﹣9〕÷(﹣)=﹣1+7×(﹣2)=﹣1﹣14=﹣15;(5)原式=﹣1﹣××[2﹣9]=﹣1+=.【点评】此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.22.将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.【考点】有理数大小比较;数轴.【专题】数形结合.【分析】先画出数轴并表示出各数,根据数轴的特点用“<”把各数连接起来.【解答】解:画出数轴并表示出各数如图:从左到右用“<”把各数连接起来为:﹣22<﹣2.5<0<﹣(﹣1)<|﹣3|.【点评】本题考查的是有理数的大小比较,引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(14分)已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.【考点】代数式求值;数轴;相反数;倒数.【专题】计算题.【分析】(1)根据m所表示的点到点3距离4个单位,确定出m即可;(2)利用相反数,倒数的定义求出a+b,,cd的值,代入原式计算即可得到结果.【解答】解:(1)根据题意得:m=﹣1或7,a+b=0,=﹣1,cd=1;(2)当m=﹣1时,原式=2(a+b)+﹣3cd﹣m=﹣1﹣3+1=﹣3;当m=7时,原式=﹣1﹣3﹣7=﹣11.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.24.已知﹣2x m y n+1的次数为10,求2m+2n﹣1的值.【考点】代数式求值;单项式.【分析】由﹣2x m y n+1的次数为10,可求得m+n=9,继而可求得2m+2n﹣1的值.【解答】解:∵﹣2x m y n+1的次数为10,∴m+n+1=10,∴m+n=9,∴2m+2n﹣1=2(m+n)﹣1=2×9﹣1=17.【点评】此题考查了代数式的求值,此题难度不大,注意掌握整体思想的应用.25.出租车司机李师傅一天下午的营运全是在东西走向的路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:+8,﹣6,﹣5,+10,﹣5,+3,﹣2,+6,+2,﹣5(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点什么方向?距离出发点多少米?(2)如果汽车耗油量为0.2升/千米,那么这天下午汽车共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得李师傅距下午出发地有多远;(2)根据行车路程×0.2,可得耗油量.【解答】解:(1)8+(﹣6)+(﹣5)+10+(﹣5)+3+(﹣2)+6+2+(﹣5)=6(米).答:若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点东方,距下午出发地有6米远;(2)|8|+|﹣6|+|﹣5|+|+10|+|﹣5|+|+3|+|﹣2|+|+6|+|+2|+|﹣5|=10.4(升).答:这天下午汽车共耗油10.4升.【点评】本题考查了正数和负数,有理数的加法是解题关键,注意不论向哪行驶都耗油.26.X叔叔在南涧“龙凤丽都”房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题:(1)用式子表示这所住宅的总面积.(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?【考点】列代数式;代数式求值.【分析】(1)根据总面积等于四部分的面积之和列式整理即可得解;(2)把x=6代入代数式求出总面积,再乘以120计算即可得解.【解答】解:(1)总面积=2x+x2+4×3+2×3=x2+2x+18;(2)x=6时,总面积=62+2×6+18=36+12+18=66m2,所以,这套住宅铺地砖总费用为:66×120=7920元.【点评】本题考查了列代数式和代数式求值,比较简单,主要利用了长方形的面积和正方形的面积公式,准确识图是解题的关键.27.(16分)某餐厅中1X餐桌可坐6人,有以下两种摆放方式:(1)对于方式一,4X桌子拼在一起可坐多少人?nX桌子呢?对于方式二呢?(2)该餐厅有40X这样的长方形桌子,按方式一每5X拼成一X大桌子,则40X桌子可拼成8X大桌子,共可坐多少人?按方式二呢?(3)在(2)中,若改成每8X拼成一X大桌子,则两种方式分别可坐多少人?【考点】规律型:图形的变化类.【分析】(1)仔细观察图形并找到规律求解即可.(2)分别代入4n+2时和2n+4时两种情况求得数值即可;(3)解法同第(2)题;【解答】解:(1)第一种中,只有一X桌子是6人,后边多一X桌子多4人.4X桌子可以坐18人,有nX桌子时是6+4(n﹣1)=4n+2.第二种中,有一X桌子是6人,后边多一X桌子多2人,四桌子可以坐12人,nX桌子可以坐6+2(n﹣1)=2n+4.(2)方式一:40X桌子拼成8X大桌子可以坐8×[6+16]=176人,方式二:40X桌子拼成8X大桌子可以坐8×[6+8]=112人;(3)方式一:40X桌子拼成8X大桌子可以坐5×[4×8+2]=170人;方式二:40X桌子拼成5X大桌子可以坐5×[6+14]=100人.【点评】本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律,难度不大.。

人教版数学七年级上册《期中考试试卷》及答案

人教版数学七年级上册《期中考试试卷》及答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各数中,其相反数等于本身的是( )A. B. 0 C. 1 D.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A 56℃ B. ﹣56℃ C. 310℃ D. ﹣310℃ 3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元 4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或57.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 9.若关于x ,y 多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 010. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ ……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102二、填空题11.比较大小:23- ____45- (填“>、< 或 =”). 12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.14.若24m n +=,则代数式642m n --的值为_______.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-= ⎪⎝⎭______ 三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 18.数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}20.某工厂第一车间有人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km ):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费元,超过3km 的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含 m,n 的代数式表示地面的总面积;(2)已知 n 1.5=,且客厅面积是卫生间面积的 倍,如果铺 平方米地砖的平均费用为 100 元,那么小王铺地砖的总费用为多少元?23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x ﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|值.(2)若|x ﹣2|=5,求x 的值是多少?(3)同理|x ﹣4|+|x+2|=6表示数轴上有理数x 所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|x ﹣4|+|x+2|=6,写出求解的过程.答案与解析一、选择题1.下列各数中,其相反数等于本身的是()A. B. 0 C. 1 D.【答案】B【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】A.的相反数是1,故不符合题意;B.0的相反数是0,故符合题意;C.1的相反数是-1,故不符合题意;D.的相反数是-a,当a=0时,符合题意;当a≠0时,不符合题意;故选B.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A. 56℃B. ﹣56℃C. 310℃D. ﹣310℃【答案】C【解析】试题解析:127-(-183)=127+183=310℃,故选C.3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元【答案】D【解析】80000000000000元=8×1013元,故选D .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 【答案】A【解析】分析】根据单项式、多项式、乘方的定义及有理数的大小比较方法逐项分析即可.【详解】A . 315x -不是单项式,正确; B . 没有最大的负有理数,故不正确;C . 432x x +是四次二项式,故不正确;D . 2(4)-中4-是底数,2是指数,故不正确;故选A .【点睛】本题考查了单项式、多项式、乘方的定义及有理数的大小比较方法,熟练掌握各知识点是解答本题的关键.5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 【答案】D【解析】【分析】根据同类项及合并同类项的方法逐项分析即可.【详解】A . 496x x x x -+=,故不正确;B . 2xy xy xy -=-,故不正确;C .x 3与x 2不是同类项,不能合并,故不正确;D . 1122a a a --=-,正确; 故选D .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或5【答案】C【解析】正数的绝对值有两个,且互为相反数,所以|±5|=5. 故选C.7.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 【答案】B【解析】【分析】化简后,根据相反数的定义【详解】A . ∵|3|--=-3,∴3-与|3|--相等,故不符合题意;B . ∵(25)--=25,25-=-25,∴(25)--与25-是互为相反数,故符合题意;C . ∵2(3)-=9,23=9,∴2(3)-与23相等,故不符合题意;D . ∵31-=-1,3(1)-=-1,∴31-或3(1)-相等,故不符合题意;故选B .【点睛】本题考查了相反数、绝对值、乘方的意义,熟练掌握各知识点是解答本题的关键.8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 【答案】C【解析】【分析】由数轴上点的位置,判断出a-b 和b 的正负,利用绝对值的代数意义化简即可得到结果.【详解】解:由数轴上点的位置得:a-b 大于0,b 小于0,∴|a-b|+2|b|-a=a-b-2b-a=-3b ,故选C.【点睛】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 0【答案】B【解析】【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.10. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102【答案】C【解析】试题分析:先根据题中所给的规律,把式子中的1×2,2×3,…,99×100,分别展开,整理后即可求解.解:根据题意可知,3×(1×2+2×3+3×4+…+99×100)=3×[13(1×2×3−0×1×2)+13(2×3×4−1×2×3)+13(3×4×5−2×3×4)+…+13(99×100×101−98×99×100)]=1×2×3−0×1×2+2×3×4−1×2×3+3×4×5−2×3×4+…+99×100×101−98×99×100=99×100×101.故选C.点睛:本题是一道找规律题.解题的关键要找出所给式子的规律,并应用于后面求解的式子中.二、填空题11.比较大小:23-____45-(填“>、< 或=”).【答案】>【解析】【分析】比较两个负数的大小关系,可以比较这两个负数的绝对值,绝对值大的反而小.【详解】解:∵210412, 315515 ==∴24 35 <∴24 35 ->-【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.【答案】千万位【解析】【分析】根据精确度的定义解答即可,近似数的最后一个数字实际在什么位上,即精确到了什么位.【详解】∵16.9亿中的9在千万位上,∴似数16.9亿精确到千万位.故答案为:千万位.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.【答案】或12-【解析】【分析】由||a b a b +=+,可知a 与b 是平行向量,根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分两种情况计算可求得答案.【详解】∵||a b a b +=+,∴a 与b 是平行向量,∴a =5,b =7或a =-5,b =7,∴a b -=5-7=-2或a b -=-5-7=-12.故答案为:或12-.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键. 14.若24m n +=,则代数式642m n --的值为_______.【答案】【解析】【分析】把642m n --变形为()622m n -+,将24m n +=代入计算即可.【详解】∵24m n +=,∴642m n --=()622m n -+=6-8=-2.故答案为:-2.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.如果给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.【答案】(0.3b-0.2a)【解析】【分析】首先表示出成本价是0.4a 元,再表示出买了b 份报纸的钱数,和退回的钱数,用卖的钱数+退回的钱数-成本可得赚的钱数.【详解】∵每份0.4元的价格购进了a 份报纸,∴这些报纸的成本是0.4a 元,∵每份0.5元的价格出售,一天共售b 份报纸,∴共卖了0.5b 元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a-b )元,他一天工赚到的钱数为:0.5b+0.2(a-b )-0.4a=0.3b-0.2a (元),故答案为(0.3b-0.2a ).【点睛】此题主要考查了列代数式,关键是正确理解题意,准确表示出各项的钱数.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-=⎪⎝⎭______ 【答案】1;【解析】【分析】根据所给新定义运算的例子求出12019g ⎛⎫ ⎪⎝⎭与(2019)f 的值,代入1(2019)2019g f ⎛⎫-= ⎪⎝⎭计算即可. 详解】∵(1)0f =,(2)1f =,(3)2f =,(4)3f =,…,∴(2019)f =2018. ∵122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,…, ∴12019g ⎛⎫ ⎪⎝⎭=2019, ∴1(2019)2019g f ⎛⎫-= ⎪⎝⎭2019-2018=1. 故答案为:1.【点睛】本题考查了新定义运算,以及有理数的减法,明确新定义的运算方法是解答本题的关键.三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 【答案】(1)-19;(2)113-;(3)24a a - 【解析】【分析】 (1)根据新定义的运算法则计算即可;(2)根据乘方法则计算第一项,根据绝对值计算第二项,根据乘除混合运算法则计算第三项,然后计算加减即可;(3)去括号合并同类项即可.【详解】(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭182021=-+-=19-; (2)原式8114333=-+-=-; (3)原式=()222255226a a a a a a -+--+=222255226a a a a a a --++-24a a =-.【点睛】本题考查了有理数的混合运算、以及整式的加减运算,熟练掌握运算法则是解答本题的关键. 18.在数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.【答案】−1.5<+(−1)<0<2<|−3|.【解析】分析:在数轴上表示出各数,再从左到右用“<”连接起来即可.本题解析:如图所示, ,故−1.5<+(−1)<0<2<|−3|.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}【答案】见解析.【解析】【分析】根据有理数的分类方法解答即可.【详解】(1)正整数:{32,… }(2)整数:{4-,0,32 ,... }(3)负分数:{ 3.14-,35,… } (4)有理数:{0.618, 3.14-,4-,35,13-,6%,0,32,…} 【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.20.某工厂第一车间有人,第二车间比第一车间人数45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?【答案】(1)9305x-;(2)10x+,4405x-;(3)1505x+【解析】【分析】(1)先表示出调动前第二车间人数,再相加可得;(2)把第一车间的人数加10,第二车间的人数减10即可;(3)将调动后第一车间人数减去第二车间人数可得.【详解】解:(1)调动前第二车间有(45x-30)人,∴两个车间共有x+(45x-30)= (9305x-)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(45x-30-10)=(4405x-)人;(2)根据题意得:(x+10)-(4405x-)= (1505x+)人,则调动后,第一车间的人数比第二车间的人数多(1505x+)人.【点睛】此题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系进行解题.21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费元,超过3km的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?【答案】(1)在公司的东边10千米处;(2)共耗油4.8升;(3)共收到车费68元.【解析】【分析】(1)由题意把接送批客人的行驶路程相加,并进行计算即可;(2)根据题意先计算出总行驶路程,再乘以出租车每千米耗油0.2升即可求出在这过程中共耗油多少升;(3)根据题意分别计算出各个批次所收到的车费,再进行相加即可.【详解】解:(1)5+2+(-4)+(-3)+10=10(km).由题意可知规定向东为正,向西为负,答:接送完第5批客人后,该驾驶员在公司的东边10千米处.(2)由题意出租车每千米耗油0.2升可得:(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升).答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元).答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是理解题意并熟练运用正负数的意义进行分析求解.22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积;,且客厅面积是卫生间面积的倍,如果铺平方米地砖的平均费用为100元,那么小王(2)已知n 1.5铺地砖的总费用为多少元?【答案】(1)S=6m+2n+18;(2) 铺地砖的总费用4500元【解析】【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m,n 的值代入计算即可.【详解】(1)S=2n+6m+3×4+2×3=6m+2n+18. (2)n=1.5时2n=3根据题意,得6m=8×3=24, ∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】此题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?【答案】(1)510;(2)0.9x ;0.830x +;(3)0.1 686a +【解析】【分析】(1)让300元部分按9折付款,剩下的300按8折付款即可;(2)等量关系为:购物款×9折;300×9折+超过300的购物款×8折; (3)两次购物王老师实际付款=第一次购物款×9折+300×9折+(总购物款-第一次购物款-第二次购物款300)×8折,把相关数值代入即可求解.【详解】解:(1)3000.9(600300)0.8510⨯+-⨯=(元).(2)当低于300元但大于100元时,他实际付款:0.9x 元;当大于300元时,他实际付款:300×0.9+(x-300)×0.8=(0.8x+30)元; (3)因为100300a <,所以第一次实际付款为0.9a 元,第二次付款超过300元,超过300元部分为(820300)a --元,所以两次购物王老师实际付款为()0.93000.90.8(820--300)0.1686a a a +⨯+=+元.【点睛】本题考查了列代数式,解决本题的关键是得到不同购物款所得的实际付款的等量关系,难点是求第二问的第二次购物款应分9折和8折两部分分别计算实际付款.24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)6;(2) x=﹣3或7 ;(3)整数是﹣2、﹣1、0、1、2、3、4【解析】分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.【详解】(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【点睛】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x-a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.。

北京市第二中学2022-2023学年七年级上学期数学期中考试试卷

北京市第二中学2022-2023学年七年级上学期数学期中考试试卷

北京二中教育集团2022-2023学年度第一学期初一数学期中考试试卷考查目标:1.知识:人教版七年级上册《有理数》、《整式的加减》全部内容,《一元一次方程》部分内容。

2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力。

考生须知:1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共12页;其中第I 卷2页,第Ⅱ卷4页,答题卡6页。

全卷共三大题,28道小题。

2.本试卷满分100分,考试时间100分钟。

3.在第I 卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。

4.考试结束,将答题卡交回。

第I 卷(选择题共16分)一、选择题(以下每题只有一个....正确的选项,每小题2分,共16分) 1.5的相反数为( )A .5-B .15C .15- D .5 2.2022年4月28日,京杭大运河实现全线通水,京杭大运河是中国古代捞动人民创造的一项伟大工程,它南起余杭(今杭州),北到涿郡(今北京),全长约1800000m .将1800000用科学记数法表示应为( )A .70.1810⨯B .61.810⨯C .51810⨯D .71.810⨯3.若1x =是关于x 的方程25x a +=的解,则a 的值为( )A .7B .3C .3-D .7-4.如果a b =,那么下列等式一定成立的是( ) A .1122a b +=- B .a b =- C .55a b = D .1ab = 5.头实数a ,b ,c 在数轴上对应点的位置如图所示,若||||a c =,则下列结论中正确的是( )A .0a c +>B .0a b ->C .0ab >D .||a b >6.如图①,从一个边长为a 的正方形纸片中剪去两个小长方形,得到一个“S ”形图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为( )A .410a b -B .23a b -C .24a b -D .48a b -7.某月的月历表如图所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )A .24B .42C .50D .698.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:15;丁:8;戊:17,则甲同学手里拿的卡片的数字是( )A .2和9B .3和8C .4和7D .5和6第Ⅱ卷(非选择题共84分)二、填空题(共16分,每小题2分)9.请写出一个比5-大的负有理数:___________.(写出一个即可)10.月球表面的白天平均温度为零上126℃,夜间平均温度为零下150℃.如果零上126℃记作126+℃,那么零下150℃应该记作___________℃.11.已知237a b -=,则246a b +-=___________.12.如果数轴上的点A 对应的数为1-,那么数轴上与A 点相距3个单位长度的点所对应的有理数为___________.13.如果21313m x y -与557n x y -是同类项,那么3m n -的值是___________. 14.下列各数:15⎛⎫-- ⎪⎝⎭,0,23-,|2|--,π,2022(1)-,其中正整数有___________个. 15.若|2|b +与2(3)a -互为相反数,则ab 的值为___________.16.对于两个不相等的有理数a ,b ,我们规定符号max{,}a b 表示a ,b 两数中较大的数,例如max{2,4}2-=.按照这个规定,方程max{,}21x x x -=+的解为___________. 三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17.计算:5(6)(9)-+---.18.计算:851389⎛⎫⎛⎫-⨯-÷⎪ ⎪⎝⎭⎝⎭. 19.计算:12524236⎛⎫-⨯+-⎪⎝⎭. 20.计算:3413(2)(4)3⎛⎫-⨯+-÷- ⎪⎝⎭. 21.先化简,再求值:()2222322mn m n mn m n +--,其中1,2m n ==-.22.解方程:321x x -=+.23.解方程:5(1)333x x -+=-.24.关于x 的一元一次方程3152x m -+=,其中m 是正整数.... (1)当3m =时,求方程的解;(2)若方程有正整数解....,求m 的值. 25.某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在44⨯的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i 行,第j 列表示的数字记为ij a (其中,1,2,3,4i j =),如图1中第2行第1列的数字210a =;对第i 行使用公式1234842i i i i i A a a a a =+++进行计算,所得结果1A 表示所在年级,2A 表示所在班级,3A 表示学号的十位数字,4A 表示学号的个位数字.如图1中,第二行280412015A =⨯+⨯+⨯+=,说明这个学生在5班.(1)图1代表的学生所在年级是___________年级,他的学号是___________;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.26.为响应国家节能减排政策,某班开展了节电竞赛活动.通过随手关灯、提高夏季空调温度、及时关闭电源等行为,小明和小玲两位同学半年共节电55度.据统计,节约1度电相当于节约0.4千克“标准煤”,在节电55度产生的节煤量中,小明“节煤量”的2倍比小玲多8千克.设小明半年节电x 度.请回答下面的问题:(1)用含x 的代数式表示小玲半年节电量为___________度,用含x 的代数式表示这半年小明节电产生的“节煤量”为___________千克,用含x 的代数式表示这半年小玲节电产生的“节煤量”为___________千克;(不需要化简)(2)请列方程求出小明半年节电的度数.27.己知a ,b 在数轴上的位置如图所示:(1)用“>”、“<”或“=”填空:____0a ,____0a b +,____0b a -;(2)化简:||||2||a b a a b +--+;(3)若21a b =-=,,x 为数轴上任意一点所对应的数,则代数式||||x a x b -+-的最小值是___________;此时x 的取值范围是___________.28.我们规定:对于数轴上不同的三个点M ,N ,P ,当点M 在点N 左侧时,若点P 到点M 的距离恰好为点P 到点N 的距离的k 倍,且k 为正整数,(即PM kPN =),则称点P 是“[]M N ,整k 关联点”如图,已知在数轴上,原点为O ,点A ,点B 表示的数分别为24A B x x =-=,.(1)原点O ___________(填“是”或“不是”)“[]A B ,整k 关联点”;(2)若点C 是“[]A B ,整2关联点”,则点C 所表示的数C x =___________;(3)若点A 沿数轴向左运动,每秒运动2个单位长度,点B 沿数轴向右运动,每秒运动1个单位长度,则运动时间为___________秒时,原点O 恰好是“[]A B ,整k 关联点”,此时k 的值为___________.(4)点Q 在A ,B 之间运动,且不与A ,B 两点重合,作“[]A Q ,整2关联点”,记为A ',作“[]Q B ,整3关联点”,记为B ',且满足A ',B '分别在线段AQ 和BQ 上.当点Q 运动时,若存在整数m ,n ,使得式子mOA nQB ''+为定值,求出m ,n 满足的数量关系.。

24-25七年级数学期中模拟卷【人教版2024七年级上册第一章至第四章】(内蒙古呼和浩特专用)考试版

24-25七年级数学期中模拟卷【人教版2024七年级上册第一章至第四章】(内蒙古呼和浩特专用)考试版

2024-2025学年七年级数学上学期期中模拟卷(内蒙古呼和浩特专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章至第四章。

5.难度系数:0.82。

一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题自的答案标号涂黑.1.小戴同学的微信钱包账单如图所示, 5.20+表示收入5.20元,下列说法正确的是( )A . 1.00-表示收入1.00元B . 1.00-表示支出1.00元C . 1.00-表示支出 1.00-元D .收支总和为6.20元2.亚洲、欧洲、非洲和南美洲的最低海拔如下表所示表,其中最低海拔最小的大洲是( )大洲亚洲欧洲非洲南美洲最低海拔/m415-28-156-40-A .亚洲B .欧洲C .非洲D .南美洲3.已知a ,b 两个数在数轴上对应的点如图所示,则下列结论正确的是( )A .0a b +>B .a b ->-C .0a b +=D .a b-<-4.下列各数:45-,1,8.6,7-,0,56, 243-,101+,0.05-,9-中,( )A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有45-,243-,0.05-是负分数5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( )A .717.510´B .81.7510´C .91.7510´D .90.17510´6.下列各数中,互为相反数的是( )A .()3--和3-B .2-和()2--C .12--和12æö-+ç÷èøD .0.6和()0.6---7.下列计算正确的是( )A .523xy xy -=B .2235x x x +=C .422422a a a -=D .352a a a-=-8.若623a x y -与13b x y +-的和为单项式,则a b 、的值分别为( )A .5a =,5b =B .3a =,5b =C .5a =,3b =D .3a =,3b =9.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .1410.一组按照规律排列的式子如下:2m 、25m -、310m 、417m -、526m 、……,请根据规律写出第21个式子为( )A .21401mB .21401m -C .21442m D .21442m -第II 卷(非选择题)二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.单项式5ab -的系数是__________,次数是__________.12.多项式2234x x --是由__________项组成的,它们分别是__________.13.已知120a b ++-=,则a b +=__________.14.对于有理数a b 、,若规定a b a ab *=-,则(2)5-*的值为__________.15.如图,化简b a b -+=__________.16.有下列说法:①若|a |=|b |,则a =b ;②两个数相加,若和为负数,则这两个数必定都是负数;③如果a +b <0,ab <0,那么这两个数一定一正一负,且负数的绝对值大;④正数的倒数大于它本身.则其中正确的序号有__________.三、解答题:本大题共有8小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(本小题满分10分)计算或化简:(1)()32024116231-+¸-´--;(2)()()224243x x x x +--+.18.(本小题满分7分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,()1--, 1.5-,0,2--,132-;______.19.(本小题满分10分)阅读下面的解题过程:计算:11(15)632æö-¸-´ç÷èø.解:原式1(15)66æö=-¸-´ç÷èø (第一步)(15)(1)=-¸- (第二步)15=- (第三步)回答:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是______,第二处是第三步,错误的原因是______.(2)把正确的解题过程写出来.20.(本小题满分7分)先化简,再求值:222243(25)(65)x y xy y x -++-,已知13x =,15y =.21.(本小题满分7分)张叔叔到某大厦办事,若乘电梯向上一层记作1+层,向下一层记作1-层.张叔叔从1楼出发,电梯上下楼层依次记录如下(单位:层)6+,3-,10+,8-,12+,7-,10-.(1)请你通过计算说明张叔叔最后是否回到出发层1楼;(2)该中心大楼每层高3米,电梯每向上或向下1米需要耗电0.2度,根据张叔叔上下楼的记录计算,他办事时电梯耗电多少度?22.(本小题满分9分)我们知道,分类讨论思想在数学中是非常重要的数学思想.请同学们阅读下面试题并把解题过程补充完整:已知若|x |=2,|y |=5,且x <0,求x +y 的值.解:因为|x |=2,|y |=5.所以x =±2,y =±5.因为x <0,所以x =__________.所以当x =__________,y =__________,x +y =__________;当x =__________,y =__________,x +y =__________.23.(本小题满分10分)【实践与应用】学校举办诗歌颂祖国活动,需要定制一批奖品颁发给表现突出的同学,每份奖品包含纪念徽章与纪念品各一个,现有两家供应商可以提供纪念徽章设计、制作和纪念品制作业务,报价如下:纪念徽章设计费纪念徽章制作费纪念品费用甲供应商300元3元/个18元/个乙供应商免设计费6元/个不超过100个时,20元/个;超过100个时,其中100个单价仍是20元/个,超出部分打九折(1)若学校需要定制20份奖品,则选甲供应商需要支付____________元,选乙供应商需要支付____________元;(2)现学校需要定制()100x x >份奖品.若选择甲供应商,需要支付的费用为____________元;(用含x 的代数式表示,结果需化简)若选择乙供应商,需要支付的费用为____________元;(用含x 的代数式表示,结果需化简)(3)如果学校需要定制150份奖品,请你通过计算说明选择哪家供应商比较省钱.24.(本小题满分12分)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是_____;表示―2和1两点之间的距离是_____;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ―n |.(2)如果|x+1|=2,那么x=______;(3)若|a―3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_____.(4)若数轴上表示数a的点位于―3与5之间,则|a+3|+|a―5|=_____.(5)当a=_____时,|a―1|+|a+5|+|a―4|的值最小,最小值是_____.。

安徽省马鞍山市和县七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

安徽省马鞍山市和县七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省马某某市和县2015-2016学年七年级数学上学期期中试题一、选择题(共10小题,每小题4分,满分40分)1.的相反数是( )A.B. C.D.2.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或﹣6 B.6 C.﹣6 D.3或﹣33.关于多项式3x2+x﹣2,下列说法错误的是( )A.这是一个二次三项式B.二次项系数是3C.一次项系数是1 D.常数项是24.工作人员检验4个零件的长度,超过标准长度的记作正数,不足标准长度的记作负数(单位:mm),从长度的角度看,下列记录的数据中最接近标准长度的是( )A.﹣3 B.﹣1 C.2 D.55.已知一个单项式的系数是2,次数是3,则这个单项式的可以是( )A.2ab3B.3ab2C.2ab2D.3ab6.已知单项式2x a y2与﹣3xy b是同类项,则(a﹣b)3=( )A.﹣8 B.8 C.﹣1 D.17.下列运算正确的是( )A.﹣2﹣=﹣2 B.﹣3+2=﹣5 C.﹣22÷4=1D.=﹣18.两个非零有理数的和为零,则它们的商是( )A.﹣1 B.0 C.1 D.﹣1或19.已知(8a﹣7b)﹣(4a+□)=4a﹣2b+3ab,则方框内的式子为( )A.5b+3ab B.﹣5b+3ab C.5b﹣3ab D.﹣5b﹣3ab10.在数1,2,3,4,…,405前分别加“+”或“﹣”,使所得数字之和为非负数,则所得非负数最小为( )A.0 B.1 C.2 D.3二、填空题(共4小题,每小题5分,满分20分)11.﹣2的倒数是__________.__________.13.定义一种新运算:a⊗b=a3﹣ab,如:1⊗2=13﹣1×2=﹣1,则﹣2⊗3=__________.14.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有__________(将所有正确结论的序号填写在横线上).三、解答题(共9小题,满分90分)15.计算:﹣1.16.把下列各数填在相应的括号里.2.5,2,﹣1,(﹣2)2,0,﹣(﹣3),﹣15%,﹣,|﹣8|,﹣,﹣2.3.正整数集合(…)负整数集合(…)正分数集合(…)负分数集合(…)17.在数轴上表示下列各数,并用“>”把它们连接起来.(﹣1)3,﹣|﹣4|,+(+1),0,(﹣2)2.18.观察下列算式:①(1+)(1﹣)=;②(1+)(1﹣)==1;③(1+)(1﹣)==1;…根据以上算式的规律,解决下列问题:(1)第⑩个等式为:__________;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).19.先化简,再求值:﹣x2+(2x2+5)﹣3(x2+2),其中x=﹣.20.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.21.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周某某瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):星期一二三四五六每公斤销+0.4 ﹣0.6 +0.1售价涨跌(与前一天比较)(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?22.某城市居民用水实行阶梯收费,每户每月用水量不超过20t时,按每吨2.5元收费.如果超过20t,超过的部分按每吨2.9元收费.(1)如果甲户某月用水量为15t,则甲应缴的水费为__________元;(2)如果乙户某月应缴水费45元,乙户该月的用水量是多少吨?(3)如果丙户某月的用水量为at,则丙户该月应缴水费多少元?(用含a的式子表示,并化简)23.(14分)阅读材料:我们知道,4x+2x﹣x=(4+2﹣1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)﹣(a+b)﹣(4+2﹣1)(a+b)=5(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是__________.A.﹣6(a﹣b)2 B.6(a﹣b)2 C.﹣2(a﹣b)2 D.2(a﹣b)2(2)已知x2+2y=5,求3x2+6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.2015-2016学年某某省马某某市和县七年级(上)期中数学试卷一、选择题(共10小题,每小题4分,满分40分)1.的相反数是( )A.B. C.D.【考点】相反数.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:根据相反数的定义,得的相反数是﹣.故选D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【专题】计算题.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.【点评】主要考查了数的绝对值的几何意义.注意:与一个点的距离为a的数有2个,在该点的左边和右边各一个.3.关于多项式3x2+x﹣2,下列说法错误的是( )A.这是一个二次三项式B.二次项系数是3C.一次项系数是1 D.常数项是2【考点】多项式.【分析】直接利用多项式的定义以及其各项次数与次数的确定方法分别判断得出答案.【解答】解:A、多项式3x2+x﹣2是一个二次三项式,正确,不合题意;B、多项式3x2+x﹣2,二次项系数是3,正确,不合题意;C、多项式3x2+x﹣2一次项系数是1,正确,不合题意;D、常数项是﹣2,故此选项错误,符合题意.故选;D.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.4.工作人员检验4个零件的长度,超过标准长度的记作正数,不足标准长度的记作负数(单位:mm),从长度的角度看,下列记录的数据中最接近标准长度的是( )A.﹣3 B.﹣1 C.2 D.5【考点】正数和负数.【分析】根据绝对值的意义,可得答案.【解答】解:|5|>|﹣3|>|2|>|﹣1|,绝对值越小越接近标准,故选:B.【点评】本题考查了正数和负数,绝对值越小越接近标准,误差越小.5.已知一个单项式的系数是2,次数是3,则这个单项式的可以是( )A.2ab3B.3ab2C.2ab2D.3ab【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、2ab2系数是2,次数是4,错误;B、3ab2系数是3,错误;C、2ab2系数是2,次数是3,正确;D、3ab系数是3,次数是2,错误;故选C.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.6.已知单项式2x a y2与﹣3xy b是同类项,则(a﹣b)3=( )A.﹣8 B.8 C.﹣1 D.1【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得a和b的值,从而代入(a﹣b)3求值.【解答】解:∵单项式2x a y2与﹣3xy b是同类项,∴a=1,b=2,∴(a﹣b)3=(1﹣2)3=﹣1,故选C.【点评】本题考查了同类项的知识,掌握同类项中的两个相同是关键,①所含字母相同,②相同字母的指数相同.7.下列运算正确的是( )A.﹣2﹣=﹣2 B.﹣3+2=﹣5 C.﹣22÷4=1D.=﹣1【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣3,错误;B、原式=﹣1,错误;C、原式=﹣4÷4=﹣1,错误;D、原式=﹣1,正确,故选D【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.两个非零有理数的和为零,则它们的商是( )A.﹣1 B.0 C.1 D.﹣1或1【考点】相反数.【分析】利用两个非零有理数的和为零,得出这两个数是相反数,进而得出答案.【解答】解:∵两个非零有理数的和为零,∴这两个数是互为相反数,∴它们的商是:﹣1.故选:A.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.9.已知(8a﹣7b)﹣(4a+□)=4a﹣2b+3ab,则方框内的式子为( )A.5b+3ab B.﹣5b+3ab C.5b﹣3ab D.﹣5b﹣3ab【考点】整式的加减.【分析】根据题意列出整式相加减的式子,再先去括号,再合并同类项即可.【解答】解:∵(8a﹣7b)﹣(4a+□)=4a﹣2b+3ab,∴4a+□=(8a﹣7b)﹣(4a﹣2b+3ab),∴□=(8a﹣7b)﹣(4a﹣2b+3ab)﹣4a=8a﹣7b﹣4a+2b﹣3ab﹣4a=﹣5b﹣3ab.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.在数1,2,3,4,…,405前分别加“+”或“﹣”,使所得数字之和为非负数,则所得非负数最小为( )A.0 B.1 C.2 D.3【考点】有理数的加减混合运算.【分析】根据有理数的加减法,可得答案.【解答】解:1+(2﹣3﹣4+5)+(8﹣7﹣8+9)+…(402﹣403﹣404+405)=1,故选:B.【点评】本题考查了有理数的加减混合运算,利用结合律是解题关键.二、填空题(共4小题,每小题5分,满分20分)11.﹣2的倒数是.【考点】倒数.【分析】根据倒数定义可知,﹣2的倒数是﹣.【解答】解:﹣2的倒数是﹣.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.6.8×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6.8亿=680000000=6.8×108.故答案为:6.8×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.定义一种新运算:a⊗b=a3﹣ab,如:1⊗2=13﹣1×2=﹣1,则﹣2⊗3=﹣2.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:﹣2⊗3=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2.故答案为:﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有①③④(将所有正确结论的序号填写在横线上).【考点】有理数的混合运算.【分析】根据绝对值的性质对各小题进行逐一分析即可.【解答】解:①∵x﹣y=0,∴x与y相等或互为相反数,∴a=b,∴a﹣b=0,故本小题正确;②∵a﹣b=0,∴x与y相等或互为相反数,当x、y互为相反数时x﹣y≠0,故本小题错误;③∵a+b=0,∴x=y=0,∴x+y=0,故本小题正确;④∵x2﹣y2=0,∴x2=y2,∴a=b,∴a﹣b=0,故本小题正确.故答案为:①③④.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.三、解答题(共9小题,满分90分)15.计算:﹣1.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=2﹣18﹣5=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.把下列各数填在相应的括号里.2.5,2,﹣1,(﹣2)2,0,﹣(﹣3),﹣15%,﹣,|﹣8|,﹣,﹣2.3.正整数集合(…)负整数集合(…)正分数集合(…)负分数集合(…)【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:正整数集合{(﹣2)2,﹣(﹣3),|﹣8|};负整数集合{﹣1,﹣};正分数集合{ 2.5,2};负分数集合{﹣15%,﹣,﹣2.3};故答案为:(﹣2)2,﹣(﹣3),|﹣8|;﹣1,﹣;2.5,2;﹣15%,﹣,﹣2.3.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.17.在数轴上表示下列各数,并用“>”把它们连接起来.(﹣1)3,﹣|﹣4|,+(+1),0,(﹣2)2.【考点】有理数大小比较;数轴.【分析】首先在数轴上表示出各数,再根据在数轴上右边的点表示的数大于左边的点表示的数利用“>”把它们连接起来即可.【解答】解:如图所示:,(﹣2)2>+(+1)>0>(﹣1)3>﹣|﹣4|.【点评】此题主要考查了有理数的比较大小,以及数轴,关键是掌握在数轴上右边的点表示的数大于左边的点表示的数.18.观察下列算式:①(1+)(1﹣)=;②(1+)(1﹣)==1;③(1+)(1﹣)==1;…根据以上算式的规律,解决下列问题:(1)第⑩个等式为:(1+)×(1﹣)=×=1;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).【考点】有理数的混合运算.【专题】计算题;规律型.【分析】(1)归纳总结得到一般性规律,写出第10个等式即可;(2)原式结合后,利用得出的规律变形,计算即可得到结果.【解答】解:(1)根据题意得:第⑩个等式为(1+)×(1﹣)=×=1;故答案为:(1+)×(1﹣)=×=1;(2)原式=[(1+)×(1﹣)]×[(1+)×(1﹣)]×…×[(1+)×(1﹣)]=1×…×1×1=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.先化简,再求值:﹣x2+(2x2+5)﹣3(x2+2),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣x2+2x2+5﹣3x2﹣6=﹣2x2﹣1,当x=﹣时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.【考点】整式的加减;绝对值;非负数的性质:偶次方;代数式求值.【分析】(1)先用a,b表示出三角形其余两边的长,再求出其周长即可;(2)根据非负数的性质求出ab的值,代入(1)中三角形的周长式子即可.【解答】解:(1)∵三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a,∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;(2)∵a,b满足|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,∴a=5,b=3,∴这个三角形的周长=9×5+11×3=45+33=78.答:这个三角形的周长是78.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.21.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周某某瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):星期一二三四五六每公斤销+0.4 ﹣0.6 +0.1售价涨跌(与前一天比较)(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量量,可得销售额,根据销售额减去成本,可得答案.【解答】解:(1)1.5+0.3+0.4=2.2元,到星期二时,每公斤的黄瓜售价是2.2元;(2)1.5+0.3+0.4﹣0.5﹣0.6﹣0.7=0.4元,本周最低售价是每公斤0.5元;(3)周六的价格是0.4+0.1=0.5元,300×0.5+935﹣1000×1.5=﹣415元.故该超市本周销售黄瓜亏了415元.【点评】本题考查了正数和负数,利用有理数的加法是解题关键,销售额减去成本等于盈利.22.某城市居民用水实行阶梯收费,每户每月用水量不超过20t时,按每吨2.5元收费.如果超过20t,超过的部分按每吨2.9元收费.(1)如果甲户某月用水量为15t,则甲应缴的水费为元;(2)如果乙户某月应缴水费45元,乙户该月的用水量是多少吨?(3)如果丙户某月的用水量为at,则丙户该月应缴水费多少元?(用含a的式子表示,并化简)【考点】列代数式;代数式求值.【专题】应用题.【分析】(1)甲户某月用水量为15t,按每吨2.5元收费,所以用水量乘以单价即得到甲应缴的水费;(2)先判断乙户该月的用水量没有超过20t,则按每吨2.5元收费,然后用水费除以单价即可得到乙户该月的用水量;(3)分类讨论:当a≤20时,水费为2.5a元;当a>20时,丙户该月应缴水费分两部分:20吨按每吨2.5元收费,(a﹣20)吨按每吨2.9元收费.【解答】解:(1)甲户某月用水量为15t,则甲应缴的水费为2.5×15=37.5(元);故答案为37.5;(2)因为45<20×2.5,所以乙户该月的用水量没有超过20t,所以乙户该月的用水量==18(吨);(3)当a≤20时,丙户该月应缴水费为2.5a元;当a>20时,丙户该月应缴水费为2.5×20+2.9(a﹣20)=(2.9a﹣8)元.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是各用水量的单价.23.(14分)阅读材料:我们知道,4x+2x﹣x=(4+2﹣1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)﹣(a+b)﹣(4+2﹣1)(a+b)=5(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是C.A.﹣6(a﹣b)2 B.6(a﹣b)2 C.﹣2(a﹣b)2 D.2(a﹣b)2(2)已知x2+2y=5,求3x2+6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【考点】代数式求值.【专题】计算题;整体思想.【分析】(1)把(a﹣b)看做一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是﹣2(a﹣b)2,故选:C;(2)∵x2+2y=5,∴原式=3(x2+2y)﹣21=15﹣21=﹣6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴原式=a﹣c+2b﹣d﹣2b+c=a﹣d=a﹣2b+2b﹣c+c﹣d=(a﹣2b)+(2b﹣c)+(c﹣d)=3﹣5+10=8.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.。

人教版七年级上册数学《期中考试试卷》附答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|45-|的相反数是 ( ) A. 45- B. 45 C. 54-D. 54 2. 在数-3,-2,0,3中,大小在-1和2之间的数是( )A. -3B. -2C. 0D. 3 3.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是( )A. 2.946亿元B. 22.94610⨯亿元C. 32.94610⨯亿元D. 30.294610⨯亿元4.下列各式不是同类项是( )A. 24x y 与22xy -B.与C. 12xy -与yx - D. 25m n 与23nm -5.如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是( ).A. 0B. 1C. 2D. 36.将6(3)(5)(2)-+--+-改写成省略括号的和的形式( )A. 6352--+-B. 6352---C. 6352-+-D. 6352+--7.|a |+|b |=|a +b |,则a ,b 关系是( )A. a ,b 的绝对值相等B. a ,b 异号C. a +b 的和是非负数D. a 、b 同号或a 、b 其中一个为08.如果a 为最大的负整数,b 为绝对值最小的数,c 为最小的正整数,则a ﹣b+c 的值是( )A. ﹣1B. 0C. 1D. 无法确定9.下列去括号正确的是( )A. ﹣3(b ﹣1)=﹣3b ﹣3B. 2(2﹣a )=4﹣aC. ﹣3(b ﹣1)=﹣3b +3D. 2(2﹣a )=2a ﹣4 10.下列说法正确的是( )A. 单项式a 的系数是0B. 单项式﹣35xy 的系数和次数分别是﹣3和2C. x 2﹣2x +25是五次三项式D. 单项式﹣3πxy 2z 3的系数和次数分别是﹣3π和6 11.马虎同学做了以下4道计算题:①0-(-1)=1; ②11122⎛⎫÷-=- ⎪⎝⎭;③111236-+=-; ④()201812018-=.请你帮他检查一下,他一共做对了( ).A. 1题B. 2题C. 3题D. 4题 12.由于受79H N 禽流感的影响,我市某城区今年月份鸡的价格比月份下降%a ,月份比月份下降%b ,已知月份鸡的价格为24元/千克,设月份鸡的价格为元/千克,则( )A. 24(1%%)m a b =--B. 24(1%)%m a b =-C. 24%%m a b =--D. 24(1%)(1%)m a b =--13.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( ) A. 赚钱B. 赔钱C. 不嫌不赔D. 无法确定赚与赔14.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020二、填空题(每题3分,满分15分,将答案填在答题纸上)15.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记做+0.23米,那么小东跳出了3.75米,记作______.16.计算:()3222---=________. 17.多项式3x 2y ﹣3xy 2的次数为_____.18.若单项式12m a b -与22n a b 的和仍是单项式,则n 的值是____.19.用形状和大小相同的按如图所示的方式排列,按照这样的规律,第个图形有______个.三、解答题:共63分.解答应写出文字说明、证明过程或演算步骤.20.把下列各数填在相应大括号里:﹣15,+6,﹣2,﹣0.9,1,35,0,314,0.63,﹣4.95 正整数集合:( )整数集合:( )负整数集合:( )正分数集合:( )21.计算: (1)24332(3)()(1)511511--++---; (2)32201820.25(2)[4()1](1)3⨯--÷-++-. 22.化简:(1)2272241x x x x ---+-;(2)222217(64)(3)2a a ab b ab a -+--+-. 23.先化简,再求值:(1)22(37)(427)a ab a ab -+--++,其中1,2a b =-=;(2)224[63(42)1]x y xy xy x y -----,其中12,2x y ==-. 24.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A 、B 、C 表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车耗油量.25.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班现需球拍5副,乒乓球若干盒(不小于5盒).问:(1)若购买的乒乓球为盒,请分别用代数式表示在两家店购买这些乒乓球和乒乓球拍时应该支付的费用;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买,什么?26.阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a +b )+(a +b )=(4﹣2+1)(a +b )=3(a +b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a ﹣b )2看成一个整体,合并3(a ﹣b )2﹣6(a ﹣b )2+2(a ﹣b )2的结果是 .(2)已知x 2﹣2y =4,求3x 2﹣6y ﹣21的值;拓广探索:(3)已知a ﹣2b =3,2b ﹣c =﹣5,c ﹣d =10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.答案与解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|45-|的相反数是 ( ) A. 45- B. 45 C. 54- D. 54 【答案】A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】∵|45-|=45, ∴|45-|的相反数是45-. 故选A.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 在数-3,-2,0,3中,大小在-1和2之间的数是( )A. -3B. -2C. 0D. 3【答案】C【解析】根据0大于负数,小于正数,可得0在﹣1和2之间,故选C .3.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是( )A. 2.946亿元B. 22.94610⨯亿元C. 32.94610⨯亿元D. 30.294610⨯亿元 【答案】B【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,要看把原数变成a 时,小数点移动的位数.【详解】易知 2.946a =,把原数变成2.946时,小数点移动了2位,所以2n = ,∴294.6亿元=22.94610⨯亿元.故选:B .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键,注意本题中的单位.4.下列各式不是同类项的是( )A. 24x y 与22xy -B.与C. 12xy -与yx -D. 25m n 与23nm - 【答案】A【解析】【分析】根据同类项的概念:所含字母相同,相同字母的指数也相同,逐一进行判断即可.【详解】A. 24x y 与22xy -,相同字母的指数不同,不是同类项,故符合题意;B.与,都是常数,是同类项,故不符合题意;C. 12xy -与yx -,所含字母相同,相同字母的指数也相同 ,是同类项,故不符合题意; D. 25m n 与23nm -,所含字母相同,相同字母的指数也相同,是同类项,故不符合题意;故选:A .【点睛】本题主要考查同类项,掌握同类项的概念是解题的关键.5.如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是( ).A 0B. 1C. 2D. 3【答案】D【解析】【分析】直接利用数轴结合,A B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点表示的数是-1,∴点表示的数是:2故选D .【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.6.将6(3)(5)(2)-+--+-改写成省略括号的和的形式( )A. 6352--+-B. 6352---C. 6352-+-D. 6352+--【答案】C【解析】【分析】将各个加数的括号及其前面的加号省略即可写成省略加号的和的形式.【详解】6(3)(5)(2)6352-+--+-=-+-故选:C .【点睛】本题主要考查有理数加减法统一成加法,掌握将有理数加减法统一成加法的方法是解题的关键. 7.|a |+|b |=|a +b |,则a ,b 关系是( )A. a ,b 的绝对值相等B a ,b 异号C. a +b 的和是非负数D. a 、b 同号或a 、b 其中一个为0【答案】D【解析】【分析】每一种情况都举出例子,再判断即可.【详解】解:A 、当a 、b 的绝对值相等时,如11a b ==-,,|a |+|b |=2,|a +b |=0,即|a |+|b |≠|a +b |,故本选项不符合题意;B 、当a 、b 异号时,如a =1,b =-3,|a |+|b |=4,|a +b |=2,即|a |+|b |≠|a +b |,故本选项不符合题意;C 、当a +b 的和是非负数时,如:a =﹣1,b =3,|a |+|b |=4,|a +b |=2,即即|a |+|b |≠|a +b |,故本选项不符合题意;D 、当a 、b 同号或a 、b 其中一个为0时,|a |+|b |=|a +b |,故本选项符合题意;故选D .【点睛】本题考查了绝对值、有理数的加法等知识点,能根据选项举出反例是解此题的关键8.如果a 为最大的负整数,b 为绝对值最小的数,c 为最小的正整数,则a ﹣b+c 的值是( )A. ﹣1B. 0C. 1D. 无法确定【答案】B【解析】【分析】根据题意确定出a,b,c的值,代入原式计算即可得到结果.【详解】由题意知:a=﹣1,b=0,c=1,则a﹣b+c=﹣1﹣0+1=0.故选B.【点睛】本题考查了有理数的相关知识.最大的负整数是﹣1,绝对值最小的有理数是0,最小的正整数是1.9.下列去括号正确的是( )A. ﹣3(b﹣1)=﹣3b﹣3B. 2(2﹣a)=4﹣aC. ﹣3(b﹣1)=﹣3b+3D. 2(2﹣a)=2a﹣4【答案】C【解析】【分析】根据去括号法则进行解答即可得到正确选项.【详解】A、原式=﹣3b+3,故本选项错误.B、原式=4﹣2a,故本选项错误.C、原式=﹣3b+3,故本选项正确.D、原式=4﹣2a,故本选项错误.故选C.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.10.下列说法正确的是( )A. 单项式a的系数是0B. 单项式﹣35xy的系数和次数分别是﹣3和2C. x2﹣2x+25是五次三项式D. 单项式﹣3πxy2z3的系数和次数分别是﹣3π和6 【答案】D【解析】【分析】单项式的系数是数字因数,次数是所有字母次数之和,多项式中有包含几个单项式,就称这个多项式是几项式,多项式的次数是由次数最高的单项式决定,根据概念逐项判断.【详解】A .a 的系数是1,故A 错误;B .单项式﹣35xy 的系数和次数分别是35和2,故B 错误; C .x 2﹣2x +25是二次三项式,故C 错误;D .正确;故选D.【点睛】本题考查单项式和多项式的概念,注意区别单项式的次数和多项式的次数,熟记概念是解题的关键. 11.马虎同学做了以下4道计算题:①0-(-1)=1; ②11122⎛⎫÷-=- ⎪⎝⎭;③111236-+=-; ④()201812018-=.请你帮他检查一下,他一共做对了( ).A. 1题B. 2题C. 3题D. 4题 【答案】C【解析】【分析】原式各项计算得到结果,即可作出判断.【详解】①0-(-1)=1;故正确; ②11122⎛⎫÷-=- ⎪⎝⎭,故正确; ③111236-+=-,故正确; ④()201811-=,故错误;所以一共做对了3题.故选C.【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.由于受79H N 禽流感的影响,我市某城区今年月份鸡的价格比月份下降%a ,月份比月份下降%b ,已知月份鸡的价格为24元/千克,设月份鸡的价格为元/千克,则( )A. 24(1%%)m a b =--B. 24(1%)%m a b =-C. 24%%m a b =--D. 24(1%)(1%)m a b =--【答案】D【解析】【详解】解:根据题意可知:2月份的价格为24(1-a%),则3月份的价格为24(1-a%)(1-b%),故选D .13.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( ) A. 赚钱B. 赔钱C. 不嫌不赔D. 无法确定赚与赔【答案】D【解析】【分析】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可判断出该商店是否盈利.【详解】由题意得,商品的总进价为3050a b +, 商品卖出后的销售额为(3550)2a b +⨯+, 则15(3550)(3550)()22a b a b a b +⨯+-+=-, 因此,当a b >时,该商店赚钱:当a b <时,该商店赔钱;当a b =时,该商店不赔不赚.故答案为D.【点睛】本题主要考查列代数式及整数的加减,分类讨论的思想是解题的关键.14.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020 【答案】B【解析】【分析】根据条件求出前几个数的值,得出n 是奇数时,结果等于-12n +,n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解.【详解】a 0=0,a 1=﹣|a 0+1|=﹣|0+1|=﹣1,a 2=﹣|a 1+2|=﹣|﹣1+2|=﹣1,a 3=﹣|a 2+3|═﹣|﹣1+3|=﹣2,a 4=﹣|a 3+4|═﹣|﹣2+4|=﹣2,a 5=﹣|a 4+4|=﹣|﹣2+5|=﹣3,a 6=﹣|a 5+4|=﹣|﹣3+6|=﹣3,a 7=﹣|a 6+7|=﹣|﹣3+7|=﹣4,……,∴当n 为奇数时,a n =-12n +,当n 为偶数时,a n =-2n , ∴a 2019=-201912+=-1010. 故选B .【点睛】此题主要考查了数字类变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.二、填空题(每题3分,满分15分,将答案填在答题纸上)15.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记做+0.23米,那么小东跳出了3.75米,记作______.【答案】-0.25米【解析】试题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.以4.00米为标准,小东跳出了4.23米,可记做+0.23米,所以超过这个标准记为正数,3.75米,不足这个标准记为负数,又4.00-3.75=0.25,故记作-0.25米.故答案为-0.25米.16.计算:()3222---=________. 【答案】4【解析】【分析】根据有理数的乘方运算法则进行计算即可得解.【详解】()32224(8)484---=---=-+=,故答案为:4.【点睛】本题主要考查了有理数的乘方计算,熟练掌握乘方的运算法则是解决本题的关键.17.多项式3x 2y ﹣3xy 2的次数为_____.【答案】3【解析】【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得答案.【详解】解:多项式223x y 3xy -的次数是3,故答案为3.【点睛】本题考查了多项式,利用了多项式次数的定义.18.若单项式12m a b -与22n a b 的和仍是单项式,则n 的值是____.【答案】8.【解析】【分析】首先可判断单项式12m a b -与22n a b 是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.【详解】∵单项式12m a b -与22n a b 的和仍是单项式,∴单项式12m a b -与22n a b 是同类项,∴m−1=2,n=2,∴m=3,n=2,∴n =8.故答案为8【点睛】此题考查单项式,同类项,解题关键于掌握其定义.19.用形状和大小相同的按如图所示的方式排列,按照这样的规律,第个图形有______个.【答案】31n+【解析】【分析】通过分析前3个图形,找到规律,利用规律即可得出答案.【详解】通过观察可知,第一个图形中有4个,4311=⨯+;第二个图形中有7个,7321=⨯+;第三个图形中有10个,10331=⨯+;……则第n个图形中有31n+个;故答案为:31n+.【点睛】本题主要考查图形的规律,找到规律是解题的关键.三、解答题:共63分.解答应写出文字说明、证明过程或演算步骤.20.把下列各数填在相应的大括号里:﹣15,+6,﹣2,﹣0.9,1,35,0,314,0.63,﹣4.95正整数集合:( ) 整数集合:( ) 负整数集合:( ) 正分数集合:( )【答案】(1). +6,1;(2). ﹣15,+6,﹣2,1,0;(3). ﹣15,﹣2;(4). 35,314,0.63.【解析】【分析】根据负分数,整数以及有理数概念分别填空即可. 【详解】正整数集合:(+6,1…),整数集合:(﹣15,+6,﹣2,1,0,…),负整数集合:(﹣15,﹣2,…),正分数集合:(35,314,0.63…),【点睛】本题考查了有理数,熟记相关概念是解题的关键.21.计算: (1)24332(3)()(1)511511--++---; (2)32201820.25(2)[4()1](1)3⨯--÷-++-. 【答案】(1)1511-;(2)11- 【解析】【分析】(1)利用同分母结合法,将同分母的分数结合可简便运算;(2)按照有理数混合运算的顺序和法则进行计算即可,先算乘方运算,然后再算乘除,最后算加减.【详解】(1)24332(3)()(1)511511--++--- =2433231511511---+ =2343(2)(31)551111--+-+ =13(2)11-+- =1511- (2)32201820.25(2)[4()1](1)3⨯--÷-++- 40.25(8)(41)19=⨯--÷++ =201890.258(41)4(1)⨯--++-⨯() =2(91)1--++=11-【点睛】本题主要考查有理数的混合运算,掌握有理数混合运算的顺序和法则以及加法运算律是解题的关键.22.化简:(1)2272241x x x x ---+-; (2)222217(64)(3)2a a ab b ab a -+--+-. 【答案】(1)233x x ---;(2)22333a ab b ---【解析】【分析】(1)直接合并同类项即可;(2)去括号,合并同类项即可.【详解】解:(1)2272241x x x x ---+-=233x x ---(2)222217(64)(3)2a a ab b ab a -+--+- =22227323a a ab b ab a -+---+=22333a ab b ---.【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.23.先化简,再求值:(1)22(37)(427)a ab a ab -+--++,其中1,2a b =-=;(2)224[63(42)1]x y xy xy x y -----,其中12,2x y ==-. 【答案】(1)273a ab -,13;(2)2565+-x y xy ,21-【解析】【分析】(1)先利用去括号,合并同类项进行化简,然后将a,b 的值代入化简后的式子中即可求解;(2)先利用去括号,合并同类项对括号内进行化简,然后再对括号外进行化简,最后将x,y 的值代入化简后的式子中即可求解.【详解】解:(1)22(37)(427)a ab a ab -+--++=2237427a ab a ab -++--=273a ab -当1,2a b =-=时,原式=27(1)3(1)27613⨯--⨯-⨯=+=(2)224[63(42)1]x y xy xy x y -----=22461261x y xy xy x y --+--()=22465x y xy x y ---+()=22465x y xy x y ++-=2565+-x y xy 当12,2x y ==-时, 原式=5212()2⨯⨯-+6×2×(12-) =1065---=21-【点睛】本题主要考查整式的化简求值,掌握去括号,合并同类项的法则是解题的关键.24.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A 、B 、C 表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.【答案】(1)答案见解析;(2)7.5千米;(3)1.6升【解析】【分析】(1)由已知得:从家向东走了5千米到超市,则超市A 表示5,又向东走了2.5,则爷爷家B 表示的数为7.5,从爷爷家出发向西走了10千米到姥爷家,所以姥爷家C 表示的数为7.5﹣10=﹣2.5,画数轴如图;(2)右边的数减去左边的数即可;(3)计算总路程,再根据耗油量=总路程×0.08即可求解.【详解】(1)点A ,B ,C 即为如图所示;(2)5﹣(﹣2.5)=7.5(千米),故超市和姥爷家相距7.5千米;(3)(5+2.5+10+2.5)×0.08=1.6(升),故小轿车的耗油量是1.6升..【点睛】本题考查了数轴,此类题的解题思路为:利用数形结合的思想,先根据条件找到超市、爷爷家和外公家的位置,再依次解决问题.25.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班现需球拍5副,乒乓球若干盒(不小于5盒).问:(1)若购买的乒乓球为盒,请分别用代数式表示在两家店购买这些乒乓球和乒乓球拍时应该支付的费用;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买,为什么?【答案】(1)甲店:5125x +(元);乙店: 4.5135x +(元);(2)当购买15盒乒乓球时,应该在甲店购买;当购买30盒乒乓球时,应该在乙店购买.理由见解析【解析】【分析】(1)分别利用两家店的优惠政策,用乒乓球拍的钱数加上乒乓球的钱数即可得出总钱数;(2)分别计算出购买15盒和30盒乒乓球时在甲、乙两个店所支付的费用,进行比较即可得出答案.【详解】解:(1)根据题意得:甲店: 3055(5)x ⨯+-=5125x +(元);乙店:(3055)90% 4.5135x x ⨯+⨯=+(元);(2)当购买15盒乒乓球时,若在甲店购买,则费用是:5×15+125=200(元), 若在乙店购买,则费用是:4.5×15+135=202.5(元). 200202.5<∴应该在甲店购买;当购买30盒乒乓球时,若在甲店购买,则费用是:30×5+125=275(元), 若在乙店购买,则费用是:30×4.5+135=270(元),270275∴应该在乙店购买.【点睛】本题主要考查代数式的应用,读懂题意是解题的关键.26.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2;(2)-9;(3)8.【解析】【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.【详解】(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点睛】本题考查整式的加减,解决问题的关键是读懂题意,运用整体思想解题.。

人教版七年级上册数学《期中考试卷》(带答案)

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含三套题)

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:150分 时间: 120分钟)一、选择题(本大题共12小题,每小题4分,共48分) 1.(4分)某种速冻水饺的储藏温度是﹣18±2°C,四个冷藏室的温度如下:A 冷藏室,﹣17°C;B 冷藏室,﹣22°C;C 冷藏室,﹣18°C;D 冷藏室,﹣19°C.则不适合储藏此种水饺的是( )A .A 冷藏室B .B 冷藏室C .C 冷藏室D .D 冷藏室 2.(4分)下列各式结果是负数的是( ) A .﹣|﹣3| B .()2 C .﹣(﹣3) D .(﹣3)2 3.(4分)如果m 是一个有理数,那么﹣m 是( ) A .正数 B . 0C .负数D .以上三者情况都有可能4.(4分)下列方程中,是一元一次方程的是( ) A .3x ﹣1= B .x 2﹣4x=3 C .x+2y=1 D .xy ﹣3=55.(4分)大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( ) A .1.6×105 B .1.6×106 C .1.6×107 D .1.6×108 6.(4分)如图,数轴上的A ,B ,C 三点所表示的数是分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间(靠近点C )或点C 的右边 7.(4分)下列式子:x 2+1, +4,,,﹣5x ,0中,整式的个数是( ) A .6 B .5 C .4 D .38.(4分)关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+19.(4分)如图是某年3月份的日历表,任意圈出一竖列上相题号一 二 三 四 五 总分 得分封线内邻的三个数,运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.40 D.2710.(4分)多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数 B.偶数 C.2与7的倍数D.以上都不对11.(4分)观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律,得出的第10个单项式是()A.﹣29x10 B.29x10 C.﹣29x9 D.29x912.(4分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题(本大题共6小题,每小题413.(4分)某天的气温从﹣3℃上升14.(4分)﹣17的相反数是.15.(4分)若a,b互为倒数,则a2b﹣(a﹣16.(4分)若x的2倍与3的和是﹣15,17.(4分)如图,边长为(m+3为m隙),若拼成的矩形一边长为318.(4分)有依次排列的3个数:3,9,8个数,都用右边的数减去左边的数,可产生一个新数串:3,6,9,﹣1,89,﹣10,﹣1,9,8三、解答题(本大题共2小题,每小题719.(7分)计算:()2﹣|﹣1÷0.2|+(﹣5)3×(﹣)20.(7分)(1)合并同类项:3a2﹣2a+4a2﹣7a.(2)解方程:﹣2x﹣=x+.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(1)解方程:﹣=1﹣; (2)先化简,再求值:2x 2﹣[3(﹣x 2+xy )﹣2y 2]﹣2(x 2﹣xy+2y 2),其中x=,y=﹣1.22.(10分)已知A=2x 2+3xy ﹣2x ﹣1,B=﹣x 2+xy ﹣1; (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.23.(10分)一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >9且x <26,单位:km )第一次 第二次第三次 第四次 xx ﹣52(9﹣x )(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置. (3)这辆出租车一共行驶了多少路程?24.(10分)李师傅下岗后,做起来小生意,第一次进货,他以每件a 元的价格购进了30件甲种小商品,以每件b 元的价格购进了40件乙种小商品,且a <b .(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a ,b 的式子表示结果)(2)若李师傅将两种商品都以元的价格全部出售,他这次买卖是赚钱还是亏本,请说明理由?五、解答题(本大题共2小题,每小题12分,共24分) 25.(12分)探索规律:观察下面由※组成的图案和算式,并解答问题. 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52(1)试猜想1+3+5+7+9+…+19= ;(2)试猜想1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3)= ; (3)请用上述规律计算:1001+1003+1005+…+2015+2017(请算出最后数值哦!)26.(12分)家乐福超市开展元旦促销活动出售A 、B 两种商品,活动方案有如下两种: 方案一A B 标价(单位:元)90100答 题每件商品返利 按标价的30% 按标价的15%例:买一件A 商品,只需付款90(1﹣30%)元方案二 若所购商品达到或超过100件(不同商品可累计),则按标价的20%返利.(同一种商品不可同时参与两种活动)(1)某单位购买A 商品30件,B 商品90件,选用何种活动划算?能便宜多少钱?(2)若某单位购买A 商品x 件(x 为正整数),购买B 商品的件数比A 商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分) 1.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃, 温度范围:﹣20℃至﹣16℃,A 、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B 、﹣22℃<﹣20℃,故B 符合题意;C 、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D 、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B . 2.【解答】解:A 、﹣|﹣3|=﹣3,故选项正确; B 、()2=,故选项错误;C 、﹣(﹣3)=3,故选项错误;D 、(﹣3)2=9,故选项错误.故选:A .3.【解答】解:如果m 是一个有理数,那么﹣m 负数,故选:D .4.最高次数为1且两边都为整式的等式.故选:A .5.解:将160万用科学记数法表示为1.6×106.故选:B 6.【解答】解:∵|a|>|b|>|c|,∴点A 到原点的距离最大,点B 其次,点C 最小, 又∵AB=BC ,∴在点B 与点C 之间,且靠近点C 的地方或点C 的右边,D .7.解:整式有x 2+1,,﹣5x ,0,共4个,故选:C .8.解:该多项式四次项是﹣7xy 3,其系数为﹣7,故选:B 9.【解答】解:设中间的数是x ,则上面的数是x ﹣7数是x+7.则这三个数的和是(x ﹣7)+x+(x+7)=3x , 因而这三个数的和一定是3的倍数. 则,这三个数的和不可能是40.故选:C .10.【解答】解:(x 3﹣2x 2+5x+3)+(2x 2﹣x 3+4+9x )=14x+7密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题果是个多项式;又14x+7=7(2x+1),此处x 为任意有理数,而并非只取正整数, ∴结果不确定.故选:D .11.【解答】解:依题意得:(1)n 为奇数,单项式为:﹣2(n﹣1)x n;(2)n 为偶数时,单项式为:2(n ﹣1)x n .综合(1)、(2),本数列的通式为:2n ﹣1•(﹣x )n ,∴第10个单项式为:29x 10.故选:B .12.【解答】解:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C . 二、填空题(本大题共6小题,每小题4分,共24分) 13.【解答】解:由题意,的﹣3℃+2℃ =﹣1℃故答案为:﹣114.【解答】解:﹣17的相反数是17, 故答案为:17.15.【解答】解:∵a ,b 互为倒数, ∴ab=1,∴a 2b ﹣(a ﹣2017) =ab •a ﹣(a ﹣2017) =a ﹣a+2017 =2017.故答案为:2017.16.【解答】解:由题意:2x+3=﹣15, ∴x=﹣9, ∴x 2﹣1=80, 故答案为80.17.【解答】解:依题意得剩余部分为 (m+3)2﹣m 2=m 2+6m+9﹣m 2=6m+9, 而拼成的矩形一边长为3, ∴另一边长是(6m+9)÷3=2m+3. 故答案为:2m+3.18.【解答】解:一个依次排列的n 个数组成一个数串:a 1,a 2,a 3,…,a n ,依题设操作方法可得新增的数为:a 2﹣a 1,a 3﹣a 2,a 4﹣a 3,a n ﹣a n ﹣1,所以,新增数之和为:(a 2﹣a 1)+(a 3﹣a 2)+(a 4﹣a 3)+…+(a n ﹣a n ﹣1)=a n ﹣a 1,原数串为3个数:3,9,8,第1次操作后所得数串为:3,6,9,﹣1,8,根据(*)可知,新增2项之和为:6+(﹣1)=5=8﹣3, 第2次操作后所得数串为:3,3,6,3,9,﹣10,﹣1,9,8,内 答 根据(*)可知,新增2项之和为:3+3+(﹣10)+9=5=8﹣3, 按这个规律下去,第100次操作后所得新数串所有数的和为: (3+9+8)+100×(8﹣3)=520, 故答案为:520.三、解答题(本大题共2小题,每小题7分,共14分) 19.【解答】解:原式=﹣5+75=72. 20.【解答】解:(1)3a 2﹣2a+4a 2﹣7a =3a 2+4a 2﹣7a ﹣2a =7a 2﹣9a .(2)﹣2x ﹣=x+, ﹣12x ﹣9=6x+2, ﹣12x ﹣6x=2+9, ﹣18x=11, x=﹣.四、解答题(本大题共4小题,每小题10分,共40分) 21.【解答】解:(1)去分母,得2(x+2)﹣5(x ﹣1)=10﹣2x ,去括号,得2x+4﹣5x+5=10﹣2x , 移项,合并得﹣x=1, 系数化为1,得x=﹣1;(2)原式=2x 2+x 2﹣2xy+2y 2﹣2x 2+2xy ﹣42y 2, =x 2﹣40y 2,当x=,y=﹣1,原式=﹣40=﹣39.22.【解答】解:(1)原式=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2﹣1)=6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy ﹣6 =15xy ﹣6x ﹣9(2)原式=(15y ﹣6)x ﹣9 由题意可知:15y ﹣6=0 y=23.【解答】(1是向东,第四次是向西.(2)解:x+(﹣x )+(x ﹣5)+2(9﹣x )=13﹣x , ∵x >9且x <26, ∴13﹣x >0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(13﹣x )km .(3)解:|x|+|﹣x|+|x ﹣5|+|2(9﹣x )|=x ﹣23, 答:这辆出租车一共行驶了(x ﹣23)km 的路程.24.【解答】解:(1)由题意可得:30×40%a+40×30%b=(密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题元;(2)他这次买卖亏本; 理由:70×﹣(30a+40b )=5(a ﹣b )∵a <b ,∴5(a ﹣b )<0, ∴他这次买卖是亏本.五、解答题(本大题共2小题,每小题12分,共24分) 25.【解答】解:(1)1+3+5+7+9+…+19=()2=100;(2)1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3) =()2=(n+2)2.故答案为:100;(n+2)2;(3)1001+1003+1005+…+2009+2017 =()2﹣()2=10092﹣5002 =1018081﹣250000 =768081.26.【解答】解:(1)选择方案一所需费用为:30×90×(1﹣30%)+90×100×(1﹣15%)=9540(元),选择方案二所需费用为:(30×90+90×100)×(1﹣20%)=9360(元),∵9540>9360,9540﹣9360=180(元), ∴选择方案二划算,答:选用方案二划算,能便宜180元钱;(2)当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二,理由:由题意可得,选择方案一所需费用为:90×(1﹣30%)x+100×(1﹣15%)×(2x+1)=233x+85,选择方案二所需费用为:当0≤x ≤99时,90x+100(2x+1)=290x+100,当x ≥100时,[90x+100(2x+1)]×(1﹣20%)=232x+80, 由题意可得,当0≤x ≤99时,选择方案一, 当x ≥100时,233x+85<232x+80,得x <﹣5, 233x+85=232x+80,得x=﹣5, 233x+85>232x+80,得x >﹣5, 则当x ≥100选择方案二,由上可得,当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二.人教版2020—2021学年度上学期七年级密封线内得答题数学(上)期中测试卷及答案(满分:100分时间:100分钟)一、精心选择,相信自己判断力!(共10小题,每小题2分,满分20分)1.(2分)计算:﹣2+5的结果是()A.﹣7B.﹣3C.3D.72.(2分)有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A.a<b B.a>b C.a=b D.无法确定3.(2分)在﹣(﹣3)、﹣|﹣3|、(﹣3)2、(﹣3)3四个数中,负数有()个.A.1B.2 C.3D.74.(2分)下列对整式说法不正确的是()A.单项式﹣5xy的系数为﹣5B.单项式﹣5xy的次数为2C.多项式x2﹣x﹣1的次数为3D.多项式x2﹣x﹣1的常数项为﹣15.(2分)下列说法正确的是()A.0的倒数是0B.若a为有理数,则a2>0C.有理数可分为整数,0,分数D.当a≤0时,则|a|=6.(2分)下列计算正确的是()A.2a+3b=5ab B.﹣2(a﹣b)=﹣2a+bC.﹣3a+2a=﹣a D.a3﹣a2=a7.(2分)x与y差的平方,正确列式是()A.x﹣y2B.(x﹣y)2C.x2﹣y D.x2﹣y28.(2分)计算=()A.B.C.D.9.(2分)如图所示:两个圆的面积分别为19、11部分的面积分别为a、b(a>b),则a﹣b的值为()A.5B.6C.7D.810.(2表示1的点与表示﹣3的点重合,若数轴上A、B距离为2017(A在B的左侧),且A、B合,则A点表示的数为()A.﹣1007.5B.﹣1008.5C.﹣1009.5D.﹣2010.5密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、耐心填空,试试自己的身手!(共6小题,每小题3分,满分18分)11.(3分)我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么﹣1场表示: .12.(3分)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为55 000 000千米,这个数据用科学记数法可表示为 .13.(3分)计算:3÷(﹣)×(﹣2)= . 14.(3分)观察下面的一列单项式:2x 2,﹣4x 3,8x 4,﹣16x 5,…根据其中的规律,得出第5个单项式是: .15.(3分)已知四部互不相等的整数,a 、b 、c 、d ,且满足abcd=4.则a +b +c +d= .16.(3分)若a <b ,ab <0:则﹣a +b= (用含|a |和|b |的式子表示)三、用心解答,相信自己能行!(本大题共9题,满分62分) 17.(12分)计算:(1)﹣4+13﹣(﹣6)﹣(﹣7) (2)16÷(﹣8)﹣(﹣)×(﹣4) (3)﹣14﹣(﹣4)2﹣|3﹣7|÷(﹣) 18.(8分)计算: (1)3a ﹣2+(4a ﹣5)(2)x 2﹣2(x 2﹣y )﹣(x 2﹣y ) 19.(5分)阅读下面的解题过程并回答问题 计算:8a 2﹣[3a +2(a ﹣4a )2]解:原式=8a 2﹣3a ﹣2a ﹣8a 2=(8﹣8)a 2+(﹣2﹣3)a=﹣5a① ② ③回答问题:(1)上面解题过程中错误的步骤是: (填上面序号)(2)上面由第①步到第②步的计算过程中,所用到的运算律是(3)请给出正确的计算过程.20.(5分)先化简,再求值:﹣4y +6x 2+3(y ﹣x 2),其中x=,y=﹣1.21.(5分)若a 、b 互为相反数,c 、d 互为倒数,|x |=3,求式子: 3a +b ﹣(x ﹣b )﹣(cd )2017的值.22.(6分)出租车司机小刘某天下午的营运全是在东西走向的大道上.如果规定向东为正,向西为负.他这天下行车情况如下(单位:千米)+5,﹣3,﹣8,﹣6,+10,﹣6,+11,﹣9(1)将最后一名乘客送到目的地时,小刘在下午出车地点A 的东面还是西面?离点A 的距离是多少千米?(2)在下午营运开始前出租车油箱内有(58a ﹣a 2﹣1)升汽油,汽车耗油量a升/千米,问:小刘这个下午从营运开始到送完最后一位乘客,途中是否需要加油?23.(7分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减运算与整式的加、减运算类似.复数的乘方意义与有理数的乘方的意义类似,例如:(1)i3=i•i•i=i2•i=﹣i(2)(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i根据以上信息,完成下列问题:(1)填空:(﹣1+i)(1﹣i)=;i﹣4=.(2)化简:i+i2+i3+i4+ (i2017)24.(6分)如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①;方法②.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:.(4)若a+b=6,ab=5,则求a﹣b的值.25.(8分)在一条不完整的数轴上从左到右有点A,B,其中点A到点B的距离为3,点C到点B的距离为7,示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为求m的值.(3)动点P从A点出发,以每秒2C移动,动点Q同时从B点出发,以每秒1点C移动,当几秒后,P、Q两点间的距离为2答案.参考答案一、选择题1.C.2.B.3.B.4.C.5.D.6.C.7.B.8.B.9.D.10.C二、填空题密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11.中国队输1场.12.5.5×107. 13.12. 14.32x 615.0 16.|a |+|b |.三、解答题17.解:(1)原式=﹣4+13+6+7 =﹣4+26 =22;(2)原式=﹣2﹣ =﹣2;(3)原式=﹣1﹣16﹣4÷(﹣) =﹣17+6 =﹣11.18.(1)解:原式=(3a +4a )+(﹣2﹣5) =7a ﹣7;(2)原式=x 2﹣2x 2+y ﹣x 2+y =(x 2﹣2x 2﹣x 2)+(y +y ) =﹣2x 2+y .19.解:(1)①.(2)加法交换律、加法结合律、乘法分配律; (3)原式=8a 2﹣[3a +2(﹣3a )2] =8a 2﹣3a ﹣2(9a 2) =8a 2﹣3a ﹣18a 2 =(8﹣18)a 2﹣3a =﹣15a 2﹣3a .20.解:﹣4y +6x 2+3(y ﹣x 2) =﹣4y +6x 2+3y ﹣2x 2 =4x 2﹣y ,当x=,y=﹣1时,原式=4×()2﹣(﹣1)=2.21.解:由题意得:a +b=0,cd=1,x=±3;当x=3时,原式=3×0﹣3﹣(﹣1)2017=0﹣3+1=﹣2; 当x=﹣3时,原式=3×0+3﹣(﹣1)2017=0+3+1=4.22.解:(1)5﹣3﹣8﹣6+10﹣6+11﹣9=﹣6(千米) 所以小刘在出发点的A 西面,离A 的距离是6 千米. (2)|5|+|﹣3|+|﹣8|+|﹣6|+|+10|+|﹣6|+|+11|+|﹣9|=58(千米)(58a﹣a2﹣1)﹣58a=﹣a2﹣1<0,所以需要加油.23.解:(1)原式=﹣(1﹣i)2=﹣1+2i+1=2i;原式==1;故答案为:2i;1;(2)原式=(i﹣1﹣i+1)×504+i=i.24.解:(1)图②中的阴影部分的小正方形的边长=m﹣n;(2)方法①(m+n)2﹣4mn;方法②(m﹣n)2;(3)这三个代数式之间的等量关系是:(m﹣n)2=(m+n)2﹣4mn;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=5,∴(a﹣b)2=36﹣20=16,∴a﹣b=±4.故答案为m﹣n;(m+n)2﹣4mn (m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.25.解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C分别为﹣6、﹣3、4,则m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,Q对应的数是﹣(7﹣t),P对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分时间:100分钟)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( )A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.题号一 二 三 四 五 六 总分 得分不12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1)③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数;C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;B 、2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2d ,故本选项不符合题意;C 、3x 2﹣3(x+6)=3x 2﹣3x ﹣18,故本选项符合题意;封线内不得答D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46. 故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.23.【解答】解:∵由图可知,a <﹣1<0<b <1,∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b密 封 =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0,∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。

福建省福州市长乐市七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市长乐市2015-2016学年七年级数学上学期期中试题一、选择题(每题2分,共20分)1.的倒数是( )A.﹣2015 B.2015 C.﹣D.2.下列计算正确的是( )A.2+a=2a B.2a﹣3a=1 C.3a+2b=5ab D.5ab﹣ab=4ab3.单项式的系数和次数分别是( )A.,4 B.,2 C.,3 D.,24.若﹣3x m y2n与2xy6是同类项,则m﹣n的值为( )A.﹣2 B.2 C.﹣4 D.45.下列各式中,去括号正确的是( )A.﹣(2x+y)=﹣2x+y B.2(x﹣y)=2x﹣yC.3x﹣(2y+z)=3x﹣2y﹣z D.x﹣(﹣y+z)=x﹣y﹣z6.若有理数a、b在数轴上对应点的位置如图所示,则ab2的值( )A.大于1 B.等于1 C.大于0 D.小于07.下列各组数中,结果相等的为( )A.﹣32与(﹣3)2B.32与﹣(﹣3)2C.﹣33与(﹣3)3D.(﹣3)3与﹣(﹣3)38.计算2.7×108﹣2.6×108,结果用科学记数法表示为( )A.0.1×108B.0.1×107C.1×108D.1×1079.二月份的月历中,竖着取连续的三个数字,则它们的和可能是( )A.72 B.35 C.33 D.1810.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S2),则S1﹣S2的值为( )A.5 B.4 C.3 D.2二、填空题(每题3分,共18分)11.列式表示:a的2倍与1的和为__________.12.某天的气温是﹣3℃~3℃,则这天的温差是__________℃.13.用四舍五入法得到的近似数6.6×103,精确到__________位.14.在﹣1,2,﹣3,0,5这五个数中,任取两个相除,其中商最小的是__________.15.若a2+2ab=﹣5,b2+2ab=12,则a2+4ab+b2=__________.16.已知x与y互为相反数,m与n互为倒数,且|a|=2,则(x+y)3﹣的值为__________.三、解答题(62分)17.把下列各数填入相应的集合中:﹣80,0.1,﹣整数集合:{__________…}正数集合:{__________…}负分数集合:{__________…}有理数集合:{__________…}.18.计算:(1)﹣18+(﹣10)﹣(﹣18)+11(2)3×(﹣2)+(﹣14)÷7(3)﹣22+3×(﹣1)2﹣(﹣1)3.19.化简:8x+3y+2(x﹣2y)20.先化简,再求值:3(4a2b﹣ab2)﹣(a2b﹣3ab2),其中a=﹣,b=4.21.某学校七年级有七(1)﹣七(6)共六个班,现以50人为标准,超过50人记作“+”,不足50人记作“﹣”,如:某班有51人记作+1,采用这种表示法后,七(1)﹣七(6)各班的人数分别表示为:﹣2,0,﹣1,+4,+2,﹣1.(1)求七(1)﹣七(6)各班的人数;(2)人数最多的班比人数最少的班多几人?(3)求该校七年级学生的总人数.22.如图,长方形的长是a,宽是b,以b为半径作2个四分之一的圆.(1)用式子表示阴影部分的面积S.(2)当a=12cm,b=4cm时,求S(π取3.14)23.观察下列式子:23=3+533=7+9+1143=13+15+17+1953=21+23+25+27+29…一个大于1的自然数n的立方可以分成n个连续奇数的和,即n3=x1+x2+x3+…+x n.(1)当n=6时,x6=__________;(2)当n3=x1+x2+x3+…+x n时,①第1个数可以写成x1=n2﹣n+__________;②求第n个数x n.24.同学们,我们在《有理数》中学过:数轴上表示数a的点与原点的距离记作|a|.一般地,|a﹣b|表示数轴上数a的点与数b的点的距离.(1)|x﹣1|表示__________;(2)数轴上是否存在数x,使|x﹣1|+2|x﹣2|+|x﹣4|的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由;(3)若|x﹣1|+2|x﹣2|的值为8,求x的值.2015-2016学年某某省某某市长乐市七年级(上)期中数学试卷一、选择题(每题2分,共20分)1.的倒数是( )A.﹣2015 B.2015 C.﹣D.【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:的倒数是2015.故选:B.【点评】本题考查了倒数的定义,解决本题的关键是熟记倒数的定义.2.下列计算正确的是( )A.2+a=2a B.2a﹣3a=1 C.3a+2b=5ab D.5ab﹣ab=4ab【考点】合并同类项.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,据此即可判断.【解答】解:A、不是同类项,不能合并,选项错误;B、2a﹣3a=﹣a,选项错误;C、不是同类项,不能合并,选项错误;D、5ab﹣ab=4ab,选项正确.故选D.【点评】本题考查了合并同类项,系数相加作为系数,字母和字母的指数不变,理解法则是关键.3.单项式的系数和次数分别是( )A.,4 B.,2 C.,3 D.,2【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是;次数是3.故选C.【点评】解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.若﹣3x m y2n与2xy6是同类项,则m﹣n的值为( )A.﹣2 B.2 C.﹣4 D.4【考点】同类项.【分析】根据同类项的概念求解.【解答】解:∵﹣3x m y2n与2xy6是同类项,∴m=1,2n=6,∴m=1,n=3,则m﹣n=1﹣3=﹣2.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.5.下列各式中,去括号正确的是( )A.﹣(2x+y)=﹣2x+y B.2(x﹣y)=2x﹣yC.3x﹣(2y+z)=3x﹣2y﹣z D.x﹣(﹣y+z)=x﹣y﹣z【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、原式=﹣2x﹣y,故本选项错误;B、原式=2x﹣2y,故本选项错误;C、原式=3x﹣2y﹣z,故本选项正确;D、原式=x+y﹣z,故本选项错误;故选:C.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.6.若有理数a、b在数轴上对应点的位置如图所示,则ab2的值( )A.大于1 B.等于1 C.大于0 D.小于0【考点】数轴.【分析】根据数轴上点的位置得到a小于0,b大于0,即可作出判断.【解答】解:由数轴可得:a<0,b>0,则ab2<0,故选:D.【点评】本题考查了数轴,解决本题的关键是根据数轴确定a,b的取值X围.7.下列各组数中,结果相等的为( )A.﹣32与(﹣3)2B.32与﹣(﹣3)2C.﹣33与(﹣3)3D.(﹣3)3与﹣(﹣3)3【考点】有理数的乘方.【分析】根据有理数的乘方,逐一进行计算进行判断.【解答】解:A、﹣32=﹣9,(﹣3)2=9,不相等,故错误;B、32=9,﹣(﹣3)2=﹣9,不相等,故错误;C、﹣33=﹣27,(﹣3)3=﹣27,相等,正确;D、(﹣3)3=﹣27,﹣(﹣3)3=27,不相等,故错误;故选:C.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.8.计算2.7×108﹣2.6×108,结果用科学记数法表示为( )A.0.1×108B.0.1×107C.1×108D.1×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2.7×108﹣2.6×108,=0.1×108=1×107.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.二月份的月历中,竖着取连续的三个数字,则它们的和可能是( )A.72 B.35 C.33 D.18【考点】列代数式.【分析】首先设出中间一个数为x,则它上面的数是x﹣7,下面的数是x+7,三个数的和为3的倍数,再根据每个月的日期X围求出3x的X围,即可判断选择项.【解答】解:设中间一个数为:x,则它上面的数是x﹣7,下面的数是x+7,由题意得,x+x﹣7+x+7=3x,故一定是3的倍数,又∵,∴8≤x≤22,∴24≤3x≤66,且一定是3的倍数.则满足条件的只有33.故选C.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S2),则S1﹣S2的值为( )A.5 B.4 C.3 D.2【考点】整式的加减.【分析】设空白部分的面积是S,则S1=9﹣S,S2=4﹣S,再求出S1﹣S2的值即可.【解答】解:设空白部分的面积是S,∵两个正方形的面积分别为9,4,∴S1=9﹣S,S2=4﹣S,∴S1﹣S2=(9﹣S)﹣(4﹣S)=9﹣S﹣4+S=5.故选A.【点评】本题考查的是整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.二、填空题(每题3分,共18分)11.列式表示:a的2倍与1的和为2a+1.【考点】列代数式.【分析】先表示出a的2倍为2a,然后表示2a与1的和即可.【解答】解:a的2倍与1的和表示为2a+1.故答案为2a+1.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.12.某天的气温是﹣3℃~3℃,则这天的温差是6℃.【考点】有理数的减法.【专题】应用题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3﹣(﹣3)=3+3=6,故答案为:6【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.13.用四舍五入法得到的近似数6.6×103,精确到百位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:用四舍五入法得到的近似数6.6×103,精确到百位.故答案为:百.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.14.在﹣1,2,﹣3,0,5这五个数中,任取两个相除,其中商最小的是﹣5.【考点】有理数的除法;有理数大小比较.【分析】首先根据有理数大小比较的方法,把所给的五个数从小到大排列;然后根据有理数除法的运算方法,要使任取两个相除,所得的商最小,用最大的数除以绝对值最小的负数即可.【解答】解:∵﹣3<﹣1<0<2<5,∴所给的五个数中,最大的数是5,绝对值最小的负数是﹣1,∴任取两个相除,其中商最小的是:5÷(﹣1)=﹣5.故答案为:﹣5.【点评】(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此类问题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.15.若a2+2ab=﹣5,b2+2ab=12,则a2+4ab+b2=7.【考点】整式的加减.【专题】计算题.【分析】已知两式相加即可确定出原式的值.【解答】解:∵a2+2ab=﹣5,b2+2ab=12,∴a2+4ab+b2=(a2+2ab)+(b2+2ab)=﹣5+12=7,故答案为:7【点评】此题考查了整式的加减,熟练掌握去括号及合并同类项法则是解本题的关键.16.已知x与y互为相反数,m与n互为倒数,且|a|=2,则(x+y)3﹣的值为﹣4.【考点】代数式求值;相反数;绝对值;倒数.【分析】根据互为相反数的和为0,互为倒数的积为1,即可解答.【解答】解:∵x与y互为相反数,m与n互为倒数,且|a|=2,∴x+y=0,mn=1,a2=4,(x+y)3﹣=03﹣=﹣4,故答案为:﹣4.【点评】本题考查了相反数、倒数,解决本题的关键是熟记互为相反数的和为0,互为倒数的积为1.三、解答题(62分)17.把下列各数填入相应的集合中:﹣80,0.1,﹣整数集合:{﹣80,15,0…}正数集合:{0.1,15…}负分数集合:{﹣…}有理数集合:{﹣80,0.1,﹣…}.【考点】有理数.【分析】根据整数,正数,有理数,负分数的定义可得出答案.【解答】解:整数集合:{﹣80,15,0…}正数集合:{0.1,15…}负分数集合:{﹣,﹣5.32…}有理数集合:{﹣80,0.1,﹣,15,0,﹣5.32…}.故答案为:﹣80,15,0;0.1,15;﹣,﹣5.32;﹣80,0.1,﹣,15,0,﹣5.32.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.18.计算:(1)﹣18+(﹣10)﹣(﹣18)+11(2)3×(﹣2)+(﹣14)÷7(3)﹣22+3×(﹣1)2﹣(﹣1)3.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣18﹣10+18+11=1;(2)原式=﹣6﹣2=﹣8;(3)原式=﹣4+3+1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.化简:8x+3y+2(x﹣2y)【考点】整式的加减.【分析】先去括号,再合并同类项即可.【解答】解:原式=8x+3y+2x﹣4y=10x﹣y.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:3(4a2b﹣ab2)﹣(a2b﹣3ab2),其中a=﹣,b=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=12a2b﹣3ab2﹣a2b+3ab2=11a2b,当a=﹣,b=4时,原式=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某学校七年级有七(1)﹣七(6)共六个班,现以50人为标准,超过50人记作“+”,不足50人记作“﹣”,如:某班有51人记作+1,采用这种表示法后,七(1)﹣七(6)各班的人数分别表示为:﹣2,0,﹣1,+4,+2,﹣1.(1)求七(1)﹣七(6)各班的人数;(2)人数最多的班比人数最少的班多几人?(3)求该校七年级学生的总人数.【考点】正数和负数.【分析】(1)根据正负数的意义分别求解即可;(2)由(1)求出人数最多的班额,人数最少的班额,然后相减即可;(3)用标准人数加上记录的各班人数的和,计算即可得解.【解答】解:(1)一班:50﹣2=48(人),二班:50+0=50(人),三班:50﹣1=49(人),四班:50+4=54(人),五班:50+2=52(人),六班:50﹣1=49(人),所以,六个班人数依次是48,50,49,54,52,49;(2)4﹣(﹣2)=6(人),所以,人数最多的班比人数最少的班多6人;(3)50×6+(﹣2+0﹣1+4﹣2﹣1)=302(人).所以,七年级的总人数为302人.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.22.如图,长方形的长是a,宽是b,以b为半径作2个四分之一的圆.(1)用式子表示阴影部分的面积S.(2)当a=12cm,b=4cm时,求S(π取3.14)【考点】列代数式;代数式求值.【分析】(1)利用长方形面积减去四分之一圆的面积和半圆的面积即可求解;(2)把a和b的值代入(1)所得的式子即可求解.【解答】解:(1)S=ab﹣πb2;(2)a=12cm,b=4cm时,S=12×4﹣π×42≈22.88(cm2).【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.23.观察下列式子:23=3+533=7+9+1143=13+15+17+1953=21+23+25+27+29…一个大于1的自然数n的立方可以分成n个连续奇数的和,即n3=x1+x2+x3+…+x n.(1)当n=6时,x6=41;(2)当n3=x1+x2+x3+…+x n时,①第1个数可以写成x1=n2﹣n+1;②求第n个数x n.【考点】规律型:数字的变化类.【分析】由题意可知:n3分裂后得到的第一个数是x1=n(n﹣1)+1=n2﹣n+1,最后一个数字是x n=n(n﹣1)+1+2(n﹣1)=n2+n﹣1由此规律计算得出答案即可.【解答】解:(1)当n=6时,x6=36+6﹣1=41;(2)当n3=x1+x2+x3+…+x n时,①第1个数可以写成x1=n2﹣n+1;②第n个数x n=n2+n﹣1.【点评】此题主要考查了数字变化规律,解决此类问题要发现数字与数之间存在的关系,再用类比的方法可以得出答案.24.同学们,我们在《有理数》中学过:数轴上表示数a的点与原点的距离记作|a|.一般地,|a﹣b|表示数轴上数a的点与数b的点的距离.(1)|x﹣1|表示数轴表示数x的点与表示数1的点的距离;(2)数轴上是否存在数x,使|x﹣1|+2|x﹣2|+|x﹣4|的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由;(3)若|x﹣1|+2|x﹣2|的值为8,求x的值.【考点】绝对值;数轴.【分析】(1)由|a﹣b|表示数轴上数a的点与数b的点的距离可知|x﹣1|表示数轴上表示x 的点与数1的点的距离;(2)当x=2时,|x﹣1|+2|x﹣2|+|x﹣4|可转化为数轴上表示2的点到1和4的距离之和;(3)可分为x≤1,1<x≤2,x>2三种情况进行化简计算.【解答】解:(1)|x﹣1|表示数轴表示数x的点与表示数1的点的距离;故答案为:数轴表示数x的点与表示数1的点的距离.(2)当x=2时,|x﹣1|+2|x﹣2|+|x﹣4|可转化为数轴上表示2的点到1和4的距离之和,∴当x=2时,|x﹣1|+2|x﹣2|+|x﹣4|的最小值为3;(3)当x≤1时,1﹣x+2(2﹣x)=8.解得:x=﹣1.当1<x≤2时,x﹣1+2(2﹣x)=8,解得:x=﹣5(不合题意).当x>2时,x﹣1+2(x﹣2)=8,解得:x=.综上所述,x的值为﹣1或【点评】本题主要考查的是绝对值、数轴、解含绝对值的方程,分类讨论是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第一学期七年级数学期中考试 (时间100分钟 满分100) 题 号 一 二 三 四 五 总 分 合分人 核分人 得 分

一、填空题(每空1分,共20分) 1、直接写出计算结果 4-5= , (-5)+2 = , (-2)×(-3)= ,

(-32)÷4= ,3)2(= ____ _。 2、平方为81的有理数是__________,倒数等于本身的数是_____________。 3、、在我校第8届校运会的跳远比赛中,以4.00米为标准,若小明跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作 。

4.在,)3(,)3(,4,)4(2223中,负数是 ; 互为相反数是 。 5. 设某数为x,它的4倍是它的3倍与7的差,则列出的方程为 . 6、一个数在数轴上表示的点距原点2个单位长度,,且在原点的左边,则这个数的相反数是______。 7.观察下面的一列数,按某种规律在横线上填上适当的数:

,201,121,61,2

1______…,第100个数是_________,这100个数的和为________。

8.一个正常人的平均心跳速率约为每分钟70次,一个月大约跳 次(用科学计数法表示,一个月以30天计算)

9.化简:234xx ;

10.若x,y互为相反数,a、b互为倒数,则代数式322xyab的值为 。 11.如图,圈中有6个数按一定的规律填入,后因不慎, 一滴墨水涂掉了一个数,你认为这个数是 , 理由是 。

二、选择题(每小题2分,共18分) 12.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( ) A. 在家 B. 在学校 C. 在书店 D. 不在上述地方 13.下列交换加数的位置的变形中,正确的是( )

A、14541445 B、1311131134644436

C . 12342143 D、4.51.72.51.84.52.51.81.7

6 8

11 15 20 2

14、下列变形是根据等式的性质的是 ( ) A.由2x﹣1=3得2x=4 B.由x2=x得 x=1 C.由x2=9得 x=3 D.由2x﹣1=3x 得5x=﹣1 15、已知方程 ① 3 x - 1 = 2 x + 1 ② xx123 ③ xxx)31(3231

④413743127xx中,解为 x = 2 的是方程 ( ) A.①、②和③ B.①、③和④ C.②、③和④ D.①、②和④ 16、由四舍五入法得到宁溪镇人口为6.8万,则宁溪镇实际人口数x的范围( ) A 6.75x<6.85 B 6.75x<6.85 C 6.75x<6.84 D 6.75x6.85

17、如果2210ab,则2004ab的值是 ( ) A、2004 B、2004 C、1 D、1 18.某天上午6:00柳江河水位为80.4米,到上午11:30分水位上涨了5.3米,到下午6:00水位下跌了0.9米。到下午6:00水位为( )米。 (A)76 (B)84.8 (C)85.8 (D)86.6 19、上海市99年人口出生率为5℅0,死亡率为7.3%0,那么99年上海市人口增长率为( ) A.-2.3℅0 B. 2.3℅0 C. 12.3℅0 D. -12.3℅0 20、已知如图:数轴上A、B、C、D四点对应的有理数分别是整数a、b、c、d,且有c-2a=7,则原点应是( )

A B C D A. A点 B. B点 C. C点 D. D点

三. 计算题。21.要求写出计算步骤(每题5分,共20分) 1. 12-(-18 )+(-7 )-15 2. (-1)10×2+(-2)3÷4+(-22)

3.(-61+43-121)×(-48) 4. 1÷(-5)×(-51)

四.解方程: 22(每题5分,共20分) 1. x+3 = 5 2 . 5y+3=18 3

3. - 3X - 5 = 4 4. 213xx=4 五.解答题(本题22分) 23.填表、(5分)

(1)观察上表,你有何发现,将你的发现写在下面。 (1分) (2)利用你发现的结果计算:532-2×53×23+232 (2分)

24、(本题4分)小张去商店买练习本,回来后问同学们:“店主告诉我,如果多买一些就给我八折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格多少元?”这里如果设每本价格x元,则列方程得什么?你能写出所列方程的解吗?

25、(本题4分)流花河上周末的水位为73.1米,下表时本周内水位的变化情况:(“+”表示水位比前一天上升,“-”号表示水位比前一天下降) 星期 一 二 三 四 五 六 日 水位变化/米 +0.30 +0.25 -055 +0.40 +0.20 -0.55 +0.05 试一试,根据上表,请你提出两个问题,并解决这些问题; (1) (2)

x 2 3 3 1 y 1 1 0 2 (x-y)2 X2-2xy+y2 4

26、(本题2分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1小于2的有理数。

-1 0 1 2 请你在数轴上表示出一范围,使得这个范围同时满足以下三个条件: (1) 至少有100对互为相反数和200对互为倒数; (2) 有最大的负整数; (3) 这个范围内最大的数与最小的数表示的点距离大于4但小于5。

┻ ┻ ┻ ┻ ┻ ┻ ┻ O 27、(本题4分)将连续的奇数1,3,5,,7,9……排成如下的数表:

1 11 21 31 3 5 15 25 7 9 19 29 13 17

23 33 27 35 37 39 (1)十字框中的五个数的平均数与15有什么关系?

(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由。

28. (本题4分)如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去; (1)填表: 剪的次数 1 2 3 4 5 正方形个数 (2)如果剪了100次,共剪出多少个小正方形?

(3)如果剪n次,共剪出多少个小正方形? (4)观察图形,你还能得出什么规律? 5

2005-2006学年度第一学期七年级数学期中考试答案 一、填空题(每空1分,共20分) 1、_ -1 -3 6 __-8____-8____。2、_9, -9__ __1, -1_ __3、、-0.05米 4. _(-4)3_,-42_,_-(-3)2_; _(-3)2_和_-(-3)2__5. __4x=3x-7____6、__2____7. 1/30__1/10100__, _100/101__。8. _1.512×106___9.3x-10 10. -3 11. 5或 26 ,依次相差1,2,3,4,5, 或2,3,4,5,6. 。 二、选择题(每小题2分,共18分) 12. B 13. D 14 A 15、 D 16、B 17、D 18. B 19、A 20、 B 三. 计算题。21.要求写出计算步骤(每题5分,共20分) 解:原式=12+18-7-15 解:原式=1×2+(-8) ÷4-4 =30-22 =2-2-4 =8 =-4

解:原式= -61×(-48)+43×(-48)-121×(-48) 解:原式=1×(-51)×(-51) =8-36+4 =1/25 =-24 四.解方程: 22(每题5分,共20分) 1. x=2 2. y=2 3. X= -3 4. x=1 五.解答题 23. (1) (x-y)2 = X2-2xy+y2(1分) (2)解:原式=(53-23)2 =202 =400(2分)

24、解: (1-80%)×20x=1.6 x=0.4 25、 (1) 星期日的水位是多少米? (2) 哪一天的水位最高? 解: (1)73.1+0.30+0.25-0.55+0.40+0.20-0.55+0.05=73.2米 (2)星期一:73.1+0.30=73.4;: 星期二: 73.4+0.25=73.65星期三: 73.65-0.55=73.10 星期四: 73.10+0.40=73.50, 星期五: 73.50+0.20=73.70, 星期六: 73.70-0.55=73.15 星期日: 73.15+0.05=73.2米 星期五的水位最高.(可能有其他的提法,答案不唯一) 26、 数轴略, 范围是(-2.5 2.5)的开区间. 答案不唯一 27、解: (1)十字框中的五个数的平均数与15相等. (2)答: 这五个数的和能等于315 设中间一个为X,则上面的一个为X-10,下面的一个为X+10,左边的一个为X-2,右边的一个为X+2 X+ X-10 +X+10+ X-2+ X+2=315 53 x=63 这5个数是 61 63 65 73 28. 解:(2)如果剪了100次,共剪出1+100×3=301个小正方形 (3)如果剪n次,共剪出1+3n个小正方形 (4)观察图形,你还能得出的规律是: 剪n次, 正方形的边长为原来的1/2n

剪的次数 1 2 3 4 5 正方形个数 4 7 10 13 16

相关文档
最新文档