小学奥数教程:周期问题_全国通用(含答案)

合集下载

奥数周期问题

奥数周期问题
31+28+31+30+31+30 =181 31+28+31+30+31+30 +1=182
182÷7=26 因为上个星期四到下个星期 三为一个周期,所以七月一日是 星期三。
假设所有自然数排列起来,如图所 示,27应该排在哪个字母下面?76又 应该排在哪个字母下面呢?
ABCD 1 234 5678 9 10 11 12 13 14 15 ``` ``` ```
143 ÷4 =35(组) …… 3(个) △:35× 2+1 = 71(个) 答:其中一共有_7_1_个△。
……
12个图形里有几个白色圆片?
12÷6=2 2×3=6
……
100个图形里有几个白色圆片? 有几个三角形?有几个红色圆 片?
100÷6=16……4
……
100个图形里有几个白色圆片? 有几个三角形?有几个红色圆 片?
亲爱的宝贝:
欢迎你的到来!
成功从这里起航!
我们的目标——
家长积极配合, 老师倾心教育, 孩子努力进步!
成为一名优秀学生很简单
心理上: 坚持不懈、积极向上 行动上: 按时上课,认真完成作业
如何学好奥数呢?
??善有难于度观的数察学
什么是奥数?
? 有好方法解决的数学
?善于分析 ? 用来选拔人才的数学
⑸今年教师节(2011/9/10 )是星期六,在 没有日历的情况下,利用今天学习的知识算一 算今年的最后一天(2011/12/31 )是星期几? *从今天到年底还有多少个休息日?
从9月11日算起 星期日 一二三四五六 日一二三四五六 ……
30-10+31+30+31= 112(天)

小学奥数周期问题

小学奥数周期问题

周期问题典型例解[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?●●○●●○●●○…【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。

再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。

解答 90÷3=30,正好有30个周期。

101÷3=33……2,有33个周期还多2个。

所以,第90颗棋是白棋,第101颗棋是黑棋。

答:第90颗是白棋,第101颗是黑棋[举一反三1]①有一列数:5、6、2、4、5、6、2、4…第129个数是多少?②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠?③△△○△△○△△○…其中第99个是什么图形?[例2]720277777⨯⨯⨯⨯⨯⨯积的个位数字是几?相乘为1个周期。

202个7相乘中含有多少个这样的周期?余数是几?如果余数是1,那么积的个位数字是7;如果余数是2,那么积的个位数字是9;如果余数是3,那么积的个位数字是3;如果没有余数,那么积的个位数字是1。

[解答]202÷4=50(周)……2(个)答:202个7连乘,积的个位数字是9。

[举一反三2]①2100122222个⨯⨯⨯⨯的积的个位数字是几?②42003444个⨯⨯⨯积的个位数字是几?③9201199999个⨯⨯⨯⨯⨯的积的个位数字是几?[例3]25÷74的商的小数点后面第80位是几?小数点后面前80个数字之和是多少?[分析]先找出25÷74的商,25÷74=0.3378378378…,从小数点后第二个数字开始,3,7,8这三个数字依次重复不断地出现,即循环节有三个数字组成:3,7,8,即25÷74=0.3378,显然这道题的周期是3(3,7,8)。

【全国通用】小学四年级奥数经典培训讲义——周期问题(一)

【全国通用】小学四年级奥数经典培训讲义——周期问题(一)

周期问题(一)姓名1. 元旦这天,某超市把四种颜色的灯笼,按红、黄、蓝绿的顺序挂起来,第55个灯笼是什么颜色?2. 有一排珠子按以下顺序不断依次排列,那么第103个珠子是什么颜色?……3. 按下列图形的排列规律,第2007个图形是什么图形?……4. “我爱数学我爱数学……”依次排列,第2013个汉字是什么?5. 一串珠子,按照3颗黑珠、2颗白珠、3颗黑珠、2颗白珠……的顺序排列。

问:第14棵珠子是什么颜色?第1998颗珠子是什么颜色?6. 有同样大小的红、白、黑珠共90颗,按先3颗红的,后2颗白的,再1颗黑的顺序排列。

第68颗珠子是什么颜色?这其中白珠共有多少颗?7. 英文A 、B 、C 三种字母共有134个,按A 、B 、A 、A 、B 、B 、C 、A 、B 、A 、A 、B 、B 、C 、……的规律排列。

则最后一个字母是什么?其中字母A 有多少个?8. 庆元旦布置会场,按红、橙、黄、绿、青、蓝、紫各一个的次序一共挂了97个气球,那么黄气球和紫气球各挂了几个?9. 有一列数:2、1、3、5、2、1、3、5、2、1、3、5……,第203个数是多少?这203个数相加的和是多少?10. 有一列数:5、6、2、4、7、5、6、2、4、7、5、6、2、4、7、……问:第129个数是多少?这129个数相加的是多少?11. 桌上摆了很多硬币,按一个1角,两个5角,三个1元的次序排列,一共20枚硬币。

问最后一个是多少钱?这20枚硬币的总值是多少?12. 有一列数:1、4、5、7、8、4、9、6、7、8、4、9、6、7、8、4、9、6、……问:第301个数是多少?前100个数相加的和是多少? 13. 有一列数:2245173617361736……求:第136个数是多少?前88个数相加的和是多少?14. 10个2连乘的积的个位数是几?15. 89个3连乘的积的个位数是几?16. 如图所示,每列上、下一个字和一个字母组成一组,例如第一组是(我,A),第二组是17. 如下表所示那样,每列上、下两个汉字组成一组,如第一组是(请,小),第二组是(你,学),第三组是(们,生)……请问第1989组18. 在下表中,每列上、中、下三个字或字母组成一组,例如第一组是(x,从,A),第二19. 我国农历用鼠、牛、虎、兔、龙、蛇、马羊、猴、鸡、狗、猪12种动物按顺序轮流代表各年的年号,如果公元1年是鸡年,那么公园2000年属什么年?割圆术数学意义:“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。

小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案

思文教育小学五年级奥数
第二课时:周期问题
例一、有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色?这249朵花中,红花、黄花、绿花各有多少朵?
1=0.142857142857、、、、、、小数点后面第100个数字是多少?1、
7
2、有47盏彩灯,按2盏红灯,4盏蓝灯,3盏黄灯的顺序排列着。

最后一盏灯是什么颜色?三种颜色的灯各占总数的几分之几?
3、在100米的跑道两侧每隔2米站立着一个同学。

这些同学从一端开始,按先两个女生,再一个男生的规律站立着。

问这些学生中共有多少个女生?
例二:2012年6月1日是星期五,问9月1日是星期几?
1、2013年1月1日是星期二,2013年6月1日是星期几?
2、如果今天是星期五,再过80天是星期几?87
例三:8888、、、88(100个8)÷7,余数是几?
1、4444、、、44(100个4)÷3,当商是整数时,余数是几?
2、4444、、、44(100个4)÷6,当商是整数时,余数是几?
3、1111、、、11(100个4)÷7,当商是整数时,余数是几?
答案:例一:最后是黄花,红花50朵,黄花82朵,绿花117.
1、16、、、、4 第一百个是8
2、5组、、、2盏,最后一盏是红色
3、51个,女生68个
例二;星期六
1、星期六
2、星期一
例三,余数为4
1、1
2、4
3、5。

五年级奥数专题:周期性问题(含答案)

五年级奥数专题:周期性问题(含答案)

周期性问题在日常生活中,有一些现象按照一定的规律不断重复出现。

如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。

像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。

这类问题一般要利用余数的知识来解决。

在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。

一、例题与方法指导例1. 某年的二月份有五个星期日,这年六月一日是星期_____.思路导航:因为7⨯4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为93÷7=13…2,所以这年6月1日是星期二.例2. 1989年12月5日是星期二,那么再过十年的12月5日是星期_____.思路导航:依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有365⨯10+2=3652(天)因为(3652+1)÷7=521…6,所以再过十年的12月5日是星期日.[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.例3. 按下面摆法摆80个三角形,有_____个白色的.……思路导航:从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.因为80÷6=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13⨯3=39(个).例4. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.思路导航:依题意知,电灯的安装排列如下:白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.由73÷4=18…1,可知第73盏灯是白灯.例5. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.思路导航:分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991÷24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.二、巩固训练列,那么数“1992”在_____列. 2. 把分数7化成小数后,小数点第110位上的数字是_____. 3. 循环小数7992511.0 与74563.0 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.4. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,……共有1991个数.(1)其中共有_____个1,_____个9_____个4;(2)这些数字的总和是_____.10. 7⨯7⨯7⨯……⨯7所得积末位数是_____.50个答案:6. 3仔细观察题中数表.1 2 3 4 5 (奇数排)第一组 9 8 7 6 (偶数排)10 11 12 13 14 (奇数排)第二组 18 17 16 15 (偶数排)19 20 21 22 23 (奇数排)第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)10÷9=1…1,10在1+1组,第1列19÷9=2…1,19在2+1组,第1列因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上. 7. 774=0.57142857…… 它的循环周期是6,具体地六个数依次是5,7,1,4,2,8110÷6=18 (2)因为余2,第110个数字是上面列出的六个数中的第2个,就是7.8. 35 因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.9. 853,570,568,8255.不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为1991÷7=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3⨯284+1=853(个),9的个数是2⨯284+2=570(个),4的个数是2⨯284=568(个).这些数字的总和为1⨯853+9⨯570+4⨯568=8255.三、拓展提升1. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 92 8 6……这串数字从1开始往右数,第1989个数字是什么?2. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?3. 设n =2⨯2⨯2⨯……⨯2,那么n 的末两位数字是多少?1991个4.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?答案:11. 依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.12. 1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两. . . .位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为1990÷10=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.13. n 是1991个2的连乘积,可记为n =21991,首先从2的较低次幂入手寻找规律,列表如下: n n 的十位数字 n 的个位数字 n n 的十位数字 n 的个位数字21 0 2 212 9 622 0 4 213 9 223 0 8 214 8 424 1 6 215 6 825 3 2 216 3 626 6 4 217 7 227 2 8 218 4 428 5 6 219 8 829 1 2 220 7 6210 2 4 221 5 2211 4 8 222 0 4观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为1990÷20=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n 的末两位数字是48.14. 因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5⨯5-6⨯4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2⨯[(100-10)÷30]+1=2⨯3+1=7(段)[注]解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.. . . . . . 6 12 18 24 30 5 10 15 20 25 95 96 100 . 90。

三年级奥数-周期问题(二)

三年级奥数-周期问题(二)
【例3】(★★★) 有同样大小的红、白、黑珠共80个,按先3个红的、 2个白的、l个黑的排列着?
【例4】(★★★) 今天开森林运动会,有小兔、小鼠、小狗共100个, 按4个小兔、3个小鼠、2个小狗排列,如图: …… 问:小兔比小狗多几个?
【例5】(★★★★) 一只蜗牛从深20米的井底向上爬。第一天向上爬 了6米;第二天休息,于是向下滑了4米;第三天 再向上爬6米;第四天又向下滑4米……按这样的 规律进行下去,蜗牛第几天可以爬出这个井呢?
【例6】(★★★★) 500名士兵排成一列横队,第一次从左到右1至5 循环报数,第二次反过来从右到左1至6循环报数。 那么,既报1又报6的士兵有多少名?
1
例1答案:上向下是帅哥 例2答案:3 例3答案:红色 例4答案: 23个 例5答案: 15天 例6答案: 16名
2
周期问题(二)
【例1】(★★★) 如图所示,表格中每行的文字都是循环出现的: 第一行是“非常的帅”4个汉字不断重复,第二行 是“精灵王子哥哥”6个汉字不断重复,第120列从 上向下依次是哪2个汉字?
非常的帅非常的帅非… 精灵王子哥哥精灵王…
【例2】(★★★) 100只小老鼠从左到右排成一行,然后按如下规律从 左向右报数:先让第一只老鼠报1,然后从第二只老 鼠开始,每只老鼠都把前一只老鼠所报的数乘以7, 再报出乘积的个位数。请问:第100只老鼠报的是几?

(完整版)小学五年级奥数周期问题

第三讲 周期问题知识要点:周期问题是指事物在运动变化的发展过程中,某些特征循环往复地出现,其连续两次出现所经过的时间叫做周期。

例1、有249朵花,按5朵红花,9朵黄花,13朵绿化的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?分析:这些花按5红、9黄、13绿的顺序轮流排列,即5+9+13=27(朵)花为一周期,不断循环。

练习、71=0.142857142857…小数点后面第100个数字是多少?例2、下面是一个11位数,每3个相邻数字之和都是17,你知道“?”表示的数字是几吗?分析:因为每相邻的3个数字之和为17,从左数起第一位数字与第二、三位数字之和为17,第二、三位数字与第四位数字之和也是17,所以第四位数字是8。

这样,就找到一条规律:从左向右每3位一循环,每隔两位必出现一个相同的数字。

练习、下面是一个8位数,每3个相邻数字之和都是14,你知道问号表示的数例3、2012年6月1日是星期五,问9月1日是星期几?分析:一个星期有7天,因此7天为一个周期。

2013年1月1日是星期二,2013年的6月1日是星期几?例4、将奇数如下图所示排列,各列分别用A、B、C、D、E作为代表,问2001所在的列以哪个字母作为代表?A B C D E1 3 5 715 13 11 917 19 21 2331 29 27 25……………………分析:这些数按每8个数一组有规律地排列着(两行一组)。

2001是这些数中的第1001个数。

练习、将偶数2,4,6,8,…按下图依次排列,2014出现在哪一列?A B C D E8 6 4 210 12 14 1624 22 20 1826 28 30 32……………………例5、888…8÷7,当商是整数时,余数是几?100个8练习、444…4÷3,当商是整数时,余数是几?100个41、有47盏彩灯,按2盏红灯、4盏蓝灯、3盏黄灯的顺序排列着。

二年级奥数(周期问题)题及答案-美化城市

二年级奥数(周期问题)题及答案-美化城市
导语:养成良好的数学思维需要经常做题来强化,同学们今天小编为同学们带来的是一道周期问题的奥数题,要仔细认真的做哦!
政府为美化城市要在人行路上铺彩色地砖,按"红、黄、绿、白"的规律排列起来,请你算一算:第13 块路砖和第24 块路砖分别是什么颜色?
答案与解析:红色、白色
这些路砖按"红、黄、绿、白"四种颜色为一个周期。

先算出13块路砖有几个这样的周期:13÷4=3…1,余数是1,这块路砖是第3个周期之后的红色彩砖。

同理,算出24块路砖有几个这样的周期:24÷4=6,无余数,这块路砖是第6个周期的最后一个颜色,即白色。

【全国通用】小学四年级奥数经典培训讲义——周期问题(三)

周期问题(三)姓名1. 把所有自然数按下列方法排列起来,那么42、86、26各应在哪一列?2. 208个学生按下列方法编成五列,最后一个学生应站在第几列?3. 456个学生按下列方法编成6列,最后一个学生应站在第几列?4. 把自然数1、2、3、4、5、……如下表依次排列5列,1992在第几列?5. 把自然数中的双数2、4、6、8、……按下表排成5列,请问:数2000出现在第几列?6. 把自然数中的双数2、4、6、8、10、……按下表排成5列,请问:数1500出现在第几列?7. 1994个学生按下列方法编成五列,最后一个学生应站在第几列?8. 把把自然数中的双数2、4、6、8、10、……按下表排列后可分成A、B、C、D、E五列,请问:数1876出现在第几列?9. 在下列数表中,第7行右边第一个数是多少?第100行左边第一个数是多少?10. 如果,电子跳蚤每跳一步,可以从一个圆圈跳到相邻的圆圈。

现在一只红跳蚤从标有数字“0”的圆圈按顺时针方向跳了1991不,落在一个圆圈里。

一只黑跳蚤也从标有“0”的圆圈起跳,但它是沿着逆时针的方向跳了1949步,落在另一个圆圈里。

问:这两个圆圈里数字的乘积是多少?思考题11. 数手指,如图。

大拇指为1,食指为2,中指为3,无名指为4,小指为5;然后换向,无名指为6,中指为7,食指为8,大拇指为9;再换向,食指为10,……这样数到1998时,应该停在哪个手指上?割圆术数学意义:“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。

刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。

1110987654321即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率。

刘徽发明“割圆术”是为求“圆周率”。

那么圆周率究竟是指什么呢?它其实就是指“圆周长与该圆直径的比率”。

很幸运,这是个不变的“常数”!我们人类借助它可以进行关于圆和球体的各种计算。

小学奥数模块教程周期问题(A级)

流星雨(Meteor Shower)的产生一般认为是由于流星体与地球大气层相摩擦的结果(流星体可以是小行星带上的小行星),流星群往往是由彗星分裂的碎片产生,因此,流星群的轨道常常与彗星的轨道相关。

成群的流星就形成了流星雨。

流星雨看起来像是流星从夜空中的一点迸发并坠落下来。

这一点或这一小块天区叫作流星雨的辐射点。

通常以流星雨辐射点所在天区的星座给流星雨命名,以区别来自不同方向的流星雨。

例如每年11月1 7 日前后出现的流星雨辐射点在狮子座中,就被命名为狮子座流星雨。

猎户座流星雨、宝瓶座流星雨、英仙座流星雨也是这样命名的。

单个出现的流星,在方向和时间上都很随机,也无任何辐射点可言,这种流星称为偶发流星。

与偶发流星有着本质不同的流星雨的重要特征之一,是所有流星的反向延长线都相交于辐射点。

世界上最早的关于流星雨的记载是在公元前687年,中国关于天琴座流星雨的记载:“夜中星陨如雨”。

同学们你们知道科学家是如何知道什么时间出现美丽而又神秘的流星雨吗? 这就用到了我们今天的学习内容,周期问题。

周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题; 2.数列中的周期问题; 3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结知识框架课前预习周期问题果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.1.找准变化的规律2.确定解题的突破3. 同余知识的应用(杯赛考试涉及)【例 1】小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?......例题精讲重难点【巩固】★○○○★★○○○★★○○○……这样的一排图形中第87个是什么图形,在87个图形中一共有多少个五角星?【例 2】植树节那天,同学们按1棵松树,2棵柏树,3棵香樟树的顺序植树,第15棵是什么树?第150棵又是什么树?【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【例 3】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【例 4】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A,第二组是“们,B……我们爱科学我们爱科学我……A B C D E F G A B C D……⑴写出第62组是什么?⑵如果“爱,C”代表1991年,那么“科,D”代表1992年……问2008年对应怎样的组?【巩固】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“赵,甲,第二组是“钱,乙……第66组是什么?赵钱孙李周吴郑王赵钱孙……甲乙丙丁戊己庚辛壬癸甲……模块二、数列中的周期问题【例 5】哈利波特在地上写了一列数:7,8,4,5,3,3,7,8,4,5…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【巩固】根据下面一组数列的规律求出51是第几个数?1、2、3、4、6、7、8、9、11、12、13、14、16、17……【例 6】100个13相乘,积的个位数字是几?【巩固】93个18相乘,积的个位数字是几?【例 7】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈,现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了100步,落在一个圆圈里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档