小学奥数教程(精简版)

合集下载

小学四年级奥数教程30讲(经典讲解)

小学四年级奥数教程30讲(经典讲解)

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

【最新】小学数学奥数基础教程(六年级)目30讲全

【最新】小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

小学奥数-精品PPT课件可修改全文

小学奥数-精品PPT课件可修改全文

10+9+8+7+6+5+4+3+2+1=55条 11×10÷2=55条
数角 探究下面图中有多少个角?再说说你的方法
探究下面图中有多少个角?再说说你的方法
想一想:数角的方法与数线段 的方法有什么联系?
数线段:线段总数=断点数×基本线段数÷ 2 数角:角总数=基本射线数×基本角数 ÷ 2
数出下列图中有几个长方形?
课后作业:
1、数出下图有几个正方形?
2、有1~6六个数字,这些数 字能组成多少个个位上的 数字与十位上的数字不同 的两位数?
你学会了吗?
再见
拓展提升
5×4÷2=10个 10×2=20个
6×5÷2=15个 15×3=45个
5×4÷2=10种 答:售票员需要准备10种车票。
数长方形 数出下图有几个长方形
A
B
D
C
数长方形 数出下图有几个长方形
A
B
D
C
数长方形的方法和数线段方法一样。长方形是由长和宽组成, 首先先数一数长CD边上线段数:4× 3 ÷ 2=6,再数宽AD边上 的线段数:3× 2 ÷ 2=3,最后长线段数×宽线段数=长方形数, 即:6×3=18个
下面图中有多少个角?
下面图中有多少个角?
5×4÷2=10个
7×6÷2=21个
数数三角形
数三角形
数三角形
方法一: 4+3+2+1=10个 方法二: 5×4÷2=10个
数三角形和数线段及数角的方法一样
方法一: 5+4+3+2+1=15个
方法二: 6×5÷2=15个
15个

三年级全册奥数教程精编版

三年级全册奥数教程精编版

三年级全册奥数教程精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】三年级全册奥数培训教材适合年级:小学三年级目录第二讲找规律填数(二)--------------------------------- -7-第三讲找规律填数(三)-------------------------------- -10-第四讲从数表中找规律---------------------------------- -12-第五讲数线段------------------------------------------ -15-第六讲数三角形---------------------------------------- -17-第七讲数长方形和正方形-------------------------------- -20-第八讲加法的渐变运算-----凑整------------------------- -23-第九讲减法简便运算-----凑整--------------------------- -25-第十讲加减法的速算与巧算------------------------------ -27-第十一讲添加运算符号(一)---------------------------- -29-第十二讲添加运算符号(二)---------------------------- -31-第十三讲横式算式谜(一)------------------------------ -33-第十四讲横式算式谜(二)------------------------------ -35-第十五讲竖式加减算式谜-------------------------------- -37-第十六讲竖式乘除算式谜-------------------------------- -40-第十七讲文字算式谜------------------------------------ -43-第十八讲填数阵图(一)-------------------------------- -46-第十九讲填数阵图(二)-------------------------------- -49-第二十讲不封闭路线上植树------------------------------ -52-第二十一讲封闭路线上植树------------------------------ -55-第二十二讲与植树相关的问题(一) ------------------------ -58-第二十三讲数三角形------------------------------------ -61-第二十四讲等量代换------------------------------------ -64-第二十五讲用等量代换解应用题-------------------------- -66-第二十六讲等差数列------------------------------------ -69-第二十七讲配对求和------------------------------------ -72-第二十八讲乘法的简便运算-------凑整 ------------------- -74-第二十九讲乘法的速算与巧算---------------------------- -76-第三十讲除法中的巧算---------------------------------- -78-第三十一讲乘除法的简便运算---------------------------- -81-第三十二讲数的整除------------------------------------ -84-第三十三讲有余数的除法-------------------------------- -88-第三十四讲周期问题------------------------------------ -90-第三十五讲个位数字是几-------------------------------- -93-第三十六讲时间与日期---------------------------------- -96-第三十七讲试商技巧------------------------------------ -99-第三十八讲包含与排除--------------------------------- -102-第三十九讲盈亏问题----------------------------------- -105-第四十讲鸡兔同笼------------------------------------- -108-第四十一讲平均数(一)------------------------------- -111-第四十二讲平均数(二)------------------------------- -114-第四十三讲和倍问题(一)----------------------------- -117-第四十四讲和倍问题(二)----------------------------- -120-第四十五讲差倍问题(一)----------------------------- -123-第四十六讲差倍问题(二)----------------------------- -126-第四十七讲和差问题(一)----------------------------- -129-第四十八讲和差问题(二)----------------------------- -131-第四十九讲逆推问题----------------------------------- -134-第五十讲行程问题------------------------------------- -137-第五十一讲归一问题----------------------------------- -140-第五十二讲巧求周长----------------------------------- -143-第五十三讲长方形和正方形的周长----------------------- -146-第五十四讲长方形和正方形的面积----------------------- -149-第五十五讲年龄问题(一)----------------------------- -152-第五十六讲年龄问题(二)----------------------------- -155-第五十七讲定义新运算--------------------------------- -157-第五十八讲最大和最小--------------------------------- -160-第一讲找规律填数(一)【专题精析】按一定规律排列起来的一列数叫做数列。

小学奥数教程(最完美)

小学奥数教程(最完美)

1.和差倍问题【和差问题】【和倍问题】【差倍问题】已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题根据题目中的条件确定并求出单一量;4.植树问题基本类型①在直线或者不封闭的曲线上植树,两端都植树;②在直线或者不封闭的曲线上植树,两端都不植树;③在直线或者不封闭的曲线上植树,只有一端植树;④封闭曲线上植树。

基本公式棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题找出总量的差与单位量的差。

小学数学奥数基础教程(五年级)目30讲全精编版

小学数学奥数基础教程(五年级)目30讲全精编版

小学奥数基础教程(五年级)第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

小学数学奥数基础教程(三年级第1-20-21讲)

小学数学奥数基础教程(三年级第1-20-21讲)

第1讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。

加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。

这种“化零为整”的思想是加减法巧算的基础。

先讲加法的巧算。

加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。

即a+b=b+a,其中a,b各表示任意一数。

例如,5+6=6+5。

一般地,多个数相加,任意改变相加的次序,其和不变。

例如,a+b+c+d=d+b+a+c=…》其中a,b,c,d各表示任意一数。

加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。

即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。

例如,4+9+7=(4+9)+7=4+(9+7)。

一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。

把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。

1.凑整法。

先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。

例1计算:(1)23+54+18+47+82;(2)(1350+49+68)+(51+32+1650)。

解:(1)23+54+18+47+82=(23+47)+(18+82)+54=70+100+54=224;(2)(1350+49+68)+(51+32+1650)=1350+49+68+51+32+1650》=(1350+1650)+(49+51)+(68+32)=3000+100+100=3200。

2.借数凑整法有些题目直观上凑整不明显,这时可“借数”凑整。

例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。

例2计算:(1)57+64+238+46;(2)4993+3996+5997+848。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一讲奇妙的幻方 (3)练习卷 (9)第二讲可能性的大小(游戏与对策) (10)练习卷 (12)第三讲图形的面积(一) (13)第四讲认识分数 (17)练习卷 (21)第五讲行程中的相遇(相遇问题) (22)练习卷 (26)第六讲公因数与公倍数 (27)综合演练 (31)第一讲幻方(第一课时)【知识概述】在一个n×n的正方形方格中,填入一些连续的数字,使得所有的横、竖、斜列所加之和都相等,这样的正方形方格叫做幻方。

幻方一般分为奇数幻方和偶数幻方。

(n 是几就表示为几阶幻方)。

本讲,我们将来学习这方面的知识。

例题讲学例1在一个3×3的表格内,填入1-9九个数,(不能重复,不能遗漏),使得3个横列、3个竖列和2个斜列所加之和都相等。

可以怎样填?【和为15】【思路分析】这样的3×3幻方,在填写时有一定的规律和口诀:二、四为肩,六、八为足,左七右三,戴九履一,五为中央。

【注:戴指头,履指脚。

】试试填一填吧!幻方(第二课时)知识概述:上一讲中,我们讲述了如何填写3×3的幻方,其实在幻方的知识世界里,像3×3、5×5、7×7……像这样幻方,称之为奇数幻方,这一讲我们将来学习如何填写五阶幻方。

例题:在一个5×5的方格中,填入1-25这25个数字,使5个横列、5个竖列、2个斜列所加之和都相等。

先试试看!看样子,要想顺利填写好这么多的表格,还真的不容易,没有口诀真的不行,下面这个口诀要记牢:一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。

你能按顺序继续写下去吗?试试看吧!幻方(第三课时)根据上讲中的方法,把口诀运用到所有的奇数幻方中,可以继续填写七阶幻方、九阶幻方、十一阶幻方……,本讲,我们继续试着填写七阶幻方和九阶幻方。

【思路点拨】再来重温一下口诀吧!一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。

①把1-49这49个数字填入下面方格内,使得所有的横、竖、②把1-81这81个数字填入下面表方格内,使得所有的横、竖、斜列所加之和都相等。

幻方(第四课时)上面三讲我们学习了奇数幻方的填法,那么偶数幻方该怎样填呢?下面这节课我们将来学习四阶幻方的填法。

例题讲学将1-16这16个数填入下面这个4×4的方格内,使得所有的横、竖、斜列所加之和都相等。

【思路点拨】首先,偶数幻方的填写不像奇数幻方那样有规律,它的填写要个数按顺序填好。

如:第二步:画两条对角线,把对角线所划住的数字不动。

第三步:把对角线没划住的地方的数字进行交叉调换。

15,幻方(第五课时)知识概述对于幻方中偶数幻方的知识,是非常多的,至于八阶幻方,十二阶幻方等是四的倍数的幻方有统一的方法与技巧:偶阶幻方分两类:双偶数:四阶幻方,八阶幻方、十二阶幻方,....,4K阶幻方,(K 表示一个非零自然数)可用<对称交换法>,方法很简单:1)把自然数依次排成方阵2)把幻方划成4×4的小区,每个小区划对角线,3)把这些对角线所划到的数,保持不动,4)把没划到的数,按幻方的中心,以中心对称的方式,进行对调,【与4×4幻方的方法一样】5)幻方完成!现在试着完成一下八阶幻方吧你能否再按照上述方法完成一个十二阶幻方呢?同步精练:把1-144这144个数填入12×12的方格内,使其成为一个十二阶幻方。

恭喜你顺利完成了考验!练习卷按要求填写幻方:1、三阶幻方3、五阶幻方4、七阶幻方5、八阶幻方6、九阶幻方第二讲可能性的大小(游戏与对策)例题讲学例1 有一堆棋子共53颗,甲、乙两人轮流从中拿走1颗或2颗棋子。

规定谁拿走最后1颗棋子,谁就获胜。

如果甲先拿,那么他有没有获胜的策略?【思路点拨】由于甲、乙两人轮流从中拿走1颗或2颗棋子,即每次保证两人共拿走1+2=3颗,53颗共要取53÷3=17(次)……2(颗),即要保证甲先取获胜,那么甲应先取余下的那2颗。

这样下面轮流时,甲只需要与乙拿的总和是3就必胜无疑了。

关键看两个人拿的时候最多合拿几个,然后再看看剩余几个,就把那剩余的先拿走,这样先拿的人就容易取胜了。

同步精练1、有287个球,甲、乙两人用这些球进行取球比赛,比赛规则是:甲、乙两人轮流取,每人每次最多取2个,最少取1个,取最后一个球的人为胜利者。

甲要想获胜,他应该如何安排?2、有388个球,甲、乙两人用这些球进行取球比赛。

比赛的规则是:甲乙轮流取,每人每次取1个、2个、或3个,取最后一个球的人为失败者。

如果甲先取,甲为了取胜,他应该采取怎样的策略?3、有197粒棋子,甲乙二人分别轮流取棋子,每次至少取1个,最多取4粒,不能不取,取到最后一粒的为胜者,现在两人通过抽签决定谁先取?你认为先取的获胜,还是后取的获胜?第二讲可能性的大小(游戏与对策)第二课时例2 有两堆火柴,一对26根,一堆11根。

甲乙两人轮流从中拿走1根或几根,甚至一堆,但每次都只能在一堆里拿火柴,谁拿走最后一根算谁赢,问甲如何取胜?【思路点拨】这是另一类对策游戏。

我们先考虑特殊情况。

当两堆的火柴根数相同时,后取者只要根据先取者的取法,在另一堆里取相同的根数,就能保证取到最后一根。

对一般情况,可设法将它转化为特殊情况,所以要先取走多的那几根就行了。

同步精练1、有两个箱子分别装有63、108个球。

甲、乙二人轮流在任意一个箱子中任意取球。

规定取到最后一个球的为胜者。

甲先取,他应如何才能获胜?2、取两堆石子,游戏双方理你从其中的任意一堆拿走一粒或几粒石子(甚至可以把这堆石子一次拿走完),但每次至少拿1粒,不准同时在两堆中拿,谁拿最后一粒谁就获胜,问如何才能取胜?3、下面是个圆形,两人轮流在圆形中画规定了大小的△,没人每次画一个△,所画的何才能获胜?练习卷1、有一枚骰子,六个面分别写着1-6六个数,两次掷这枚骰子,将两次朝上的面上的数相加,和的个位数字最大的可能性是()。

2、有102粒纽扣,两个人轮流从中取几粒,每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。

问保证一定获胜的策略是什么?3、桌面上有199根火柴,甲、乙两人轮流地取1根或2根,谁取到最后一根火柴为胜,问获胜的策略是什么?4、王叔叔体重75千克,他从地里摘了2筐西瓜,每筐35千克,王叔叔回家要经过一座小桥,小桥只能载重100千克,请你给他想个办法,让他和西瓜一次安全地过河去。

5、一笔画出(笔尖不离开纸)由四条线段连接而成的折线,把下面九个点串起来,你能做到吗?第三讲 图形的面积(一)第一课时例题讲学例1 已知平行四边形的面积是28平方厘米,求阴影部分的面积。

【思路点拨】4厘米既是平行四边形的高,也是阴影三角形的高,平行四边形的面积是28平方厘米,它的底为28÷4=7(厘米),平行四边形的底减去5厘米就是三角形的底,7-5=2(厘米)。

根据三角形的面积公式直接求出阴影部分的面积。

求阴影部分的面积最直接的方法是利用计算公式直接求阴影面积;便的方法。

同步精练1.下面的梯形中,阴影部分的面积是150平方厘米,求梯形的面积。

2.已知平行四边形的面积是483.如果用铁丝围成如下图一样的平行四边形,需要用铁丝多少厘米?(单位:厘米)第三讲 第二课时例题讲学例2 下图中甲和乙都是正方形,求阴影部分的面积。

(单位:厘米)【思路点拨】图中的阴影部分是一个三角形,它的三条边的长都不知道,三条边上的高也不知道。

所以,无法用公式计算出它的面积。

仔细观察本题的图,我们可以发现,如果延长GA和FC,它们会相交(设交点为H),这样就得到长方形GBFH(如下图),它的面积很容易求,而长方形GBFH中除阴影部分之外的其他三部分(△AGB、△BFC及△AHC)的面积都能直接求出。

同步精练1、求右图中阴影部分的面积。

(单位:厘米)2、求右图中阴影部分的面积。

(单位:厘米)第三讲图形的面积(一)第三课时例题讲学例3 如图所示:,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。

【思路点拨】题目中告诉我们,甲三角形的面积比乙三角形的面积大6平方厘米,即甲-乙=6(平方厘米),而甲和乙分别加上四边形ABCF后相减的结果还是6平方厘米,即:甲-乙=6(平方厘米)(甲+四边形ABCF)-(乙+四边形ABCF)=6(平方厘米)即:正方形ABCD - △ABE=6(平方厘米)这就是说正方形ABCD的面积比三角形ABE的面积大6平方厘米。

用正方形的面积减去6就得到三角形ABE的面积,再用三角形的面积乘以2再除以AB,就得到BE的长度,从而求出CE的长度。

同步精练1、四边形ABCD是一个长为10厘米,宽6厘米的长方形,三角形ADE的面积比三角形CEF的面积大10平方厘米。

求CF的长是多少厘米?2、正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍,求:(1)三角形DEF 的面积。

(2)CF 的长。

第四讲 认识分数第一课时《知识概述》把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

其中的一份又叫分数单位。

分数与除法的关系可以表示a ÷b=ba(b ≠0)。

分数可以分为真分数和假分数;分子与分母是互质数,被称为最简分数。

例题精学例1:分母是91的真分数有多少个?最简真分数有多少个? 【思路点拨】真分数是指分子小于分母的分数,最简真分数是指分子与分母互质的真分数。

分母是91的真分数一共有90个,分别是911,912,913 (91)90,其分子是1~90的自然数。

在这其中有分子和分母有除1之外的相同质因数。

要求最简真分数,那么分子中凡是91的质因数的倍数都应去掉。

而91=7×13,在1~90的自然数中,7的倍数有13-1=12(个),13的倍数有7-1=6(个),这样分子可取的数一共有90-(12+6)=72(个)。

同步精练1.分母是51的真分数有多少个?最简真分数有多少个?2.分子、分母的乘积是420的最简真分数有多少个?3.分数853++⨯a a 中的a 是一个非零自然数,为了使这个分数能够约分,a 最小是多少?第四讲 认识分数第二课时例2 把一个最简分数的分子加上1,这个分数就等于1.(1)如果把这个分数的分母加上1,这个分数就等于98,原分数是多少? (2)如果把这个分数的分母加上2,这个分数就等于,原分数是多少? 【思路点拨】这道题有两个小题,总的条件一样。

由于其他的条件不同,两小题的得数是不同的。

有总的条件来看,要求的两个分数的分子都比分母小1.(1)分母加上1,分子应比分母小2,现在98的分子比分母小1,说明进行过约分了,未约分前的分子比分母小2,说明是用2约分的,也就是说原分数的分母加上1之后,再把分子分母同时除以2所得到的分数是98,说明约分前是1816,这样原分数应是1716。

相关文档
最新文档