苏科版七年级上册数学2-3数轴(1).docx

合集下载

苏科版七年级数学上册《2.3数轴(2)》优质课件

苏科版七年级数学上册《2.3数轴(2)》优质课件
• 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午6时36 分29秒下午6时36分18:36:2921.11.8
例 1 . 比较下列各组数的大小:
(1) 5和0;
(2)
- 3 和0; 2
(3) 3.5和- 2; (4) -4、0、2.6;
a0 bc
3.借助于数轴可知:比0 小 1 的数是_-_1_, 比-3小2的数是_-_5__,比-2大3的数是_1__,
比-1 大
1 2
的数是__-_12__.
4.用“>”或“<”填空 ①若a是正数,则a>0; ②若a是负数,则a____0; ③若a是正数,b是负数,则a____b; ④若x是正数,则x____-x.
-5 -4 -3 -2 -1 0 1 2 3 4
你能比较这几个数的大小吗? 数轴上点的位置与它们所表示的数的 大小有什么关系呢?
在数轴上表示的数,右边的数总比左边的 数大. 正数都大于0,负数都小于0,正数大于负数.
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
议一议:
.下列温度
0℃、 -2℃、 -3℃、 5℃
最高温度是___5_℃____ 最低温度是__-_3_℃____ 从低到高排列依次是: _-3_℃____<__-_2_℃___<__0_℃___<___5_℃__
-3 -2 -1 0 1 2 3 4 5
探索规律

苏科版数学七年级上册2.3绝对值与相反数(二)教案

苏科版数学七年级上册2.3绝对值与相反数(二)教案
2)A、B两点在原点的两侧,分别表示-5和5
——相反数
二.深化主题,提炼定义
1.议一议:观察下列各对有理数,你发现了什么?
5与-5、-2.5与2.5, 与-
归纳1:成对出现。(即有两个数)
2:符号不同。(位于原点两旁)
3:到原点的距离相等。
像5与-5、-2.5与2.5, 与- ……符号不同、绝对值相等的两个数互为相反数,其中一个是另一个的相反数,如5与-5互为相反数,即5是-5的相反数,-5是5的相反数。
教学内容
教师活动内容、方式
学生活动方式
设计意图
一.创设情境,引入课题
1.请将下列4个数分成两类,并说出为什么要这样分类
5,-2,-5,+2
(允许学生有不同的分法,只要能说出道理,都要给予鼓励)
2.出示教材P22图2—8,观察数轴上A、B两点的位置
及其到原点的距离,你有何发现?
归纳:1)A、B两点到原点的距离相等,都等于5
④写已知数的相反数,只要在这个数的前面添一个负号()
3.试一试:说出下列式子的含义
-(-5)的意义-()的意义
-(-3)的意义- 的意义
你能根据它们的含义自己总结出简化符号的规律并化简吗?
1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?

教材P23T1,2,3,4
课题
§2.3绝对值与相反数(2)
课型
新授课
教学目标
1掌握相反数的概念,能求出已知数的相反数,进一步理解数轴上的点与
数的对应关系;
2通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3体验数形结合的思想。

苏科版七年级数学上册《2.3数轴(2)》优质课件1

苏科版七年级数学上册《2.3数轴(2)》优质课件1
1, 0, 2, -3, 5, 1.5. 2
解:如图,在数轴上画出表示各数的点:
根据各点在数轴上的位置,得
-3<1.5< 1 <0<2<5. 2
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
例3 比较-3.5和-0.5的大小.
解:如图,在数轴上分别画出表示-3.5和-0.5
的点A、 B. -A3.5
B
-0.5
-5 -4 -3 -2 -1 0
因为点B在点A的右边,所以-3.5<-0.5.
两个负数比较大小,离原点远的数较小.
例4 在数轴上画出表示下列各数的点,并用“ <”把这些数按从小到大的顺序连接起来:
P
-5 -4 -3 -2 -1 0 1 2
345
1.在数轴上画出表示下列各数的点,并用“<” 号将这些数按从小到大的顺序连接起来:
4.5, 1.5, 0, 4.5, 0.5, 4, 3.
2.如图,点A、B、C表示的3个数中,哪个最 大?哪个最小?
3.数轴上的点A和B分别表示
1
2与
点离原点的距离较近? 1 与 3
初中数学 七年级(上册)
2.3 数轴(2)
1.把0℃、5℃、-3℃、-2℃按从低到高的顺 序排列.在数轴上画出表示0、5、-3、-2的 点,你能比较这几个数的大小吗?
-3 -2
0
5
-3 -2 -1 0 1 2 3 4 5
-3 < -2 < 0 < 5
2.任意给出几个数,并在数轴上画出表示这 几个数的点,你能比较这几个数的大小吗?

苏科版七年级数学上册2-3数轴(2)教案

苏科版七年级数学上册2-3数轴(2)教案


过ቤተ መጻሕፍቲ ባይዱ

教学内容
个案调整
教师主导活动
学生主体活动
【自主学习】
1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;
并比较-3与-1, 与1的大小关系.
2.观察数轴,比较正数、负数、0的大小关系.
【展示交流】
活动一:
1.在数轴上画出表示-5,3,-1,0,4的点.你能将这些数从大到小排列吗?说说你这样排列的理由.
教学札记
主备人
用案人
授课时间
月日
总第6课时
课题
课型
新授课
教学目标
1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;
2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;
3.感受点在数轴上左右运动时,所表示数的大小变化.
重点
利用数轴比较两个数的大小
难点
利用数轴比较两个数的大小
教法及教具
先学后教,当堂训练




教学内容
个案调整
教师主导活动
学生主体活动
活动二:
2.在数轴上画出下列各数的点,并用“<”将它们连接起来.
4 , -2.5 , 0 , -4.5 ,
【盘点收获】
【课堂反馈】
1.课本P18-19练一练1、2、3
2.在数轴上,到原点距离不大于2的所有整数是;
3.如图,在数轴上有三个点A、B、C,请回答:
2. 2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2; -1、0和-3,-4的点,它们的位置关系如何?
3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?

苏科版七年级数学上 2.3 数轴2(共13张PPT)

苏科版七年级数学上 2.3 数轴2(共13张PPT)
例2、画数轴比较 -3.5 和 -0.5的大小
学以致用
例3、在数轴上分别画出表示下列各数的点, 并用“<”号把各数按从小到大连接起来:
1 , 0, 2, 3.5, 1.5 2
练习
1、比较下列各组数的大小
(1)0 ____3 (3)-3 _____ -2
(2)-8 ____0
(4) 1
能力提升
1、如图,在数轴上有3个点A、B、C,请回答
下列问题: A
B
C
- 4 -3 -2 -1 0 1 2 3 4
(1)将点A向右移动4个单位长度后,三个点所
表示的数最大的是

(2)将点C向左移动4个单位长度后,点B表示
的数比点C表示的数大

(3)只移动两个点,如何移动才能使三个点表 示的数一样大?
能力提升
- 4 -3 -2 -1 0 1 2 3 4
2、观察数轴,观察分析并回答: (1)有最大的整数吗?有最小的整数吗? (2)有最大的正数吗?最小的正数呢?有最大 的负数吗?最小的负数呢? (3)最小的正整数是____,最大的负整数是___.
练习
3、利用数轴回答:
(1)写出小于5的所有正整数__________;
归纳总结
-3 -2 -1 O 1 2 3 4
在数轴上表示的两个数, 右边的数 总比左边的数大 正数都大于0,负数都小于0, 正数大于负数
如图,点A,B,C表示的3个数中,哪个最大?
哪个最小?
C
A
B
c
a 0 b1
例1、 不画数轴,比较下列各组数的大小 (1)5 和 0 (2)0 和 1 2 (3)-3 和2
(2)写出所有大于-3但不大于4的整数___ 。

苏科版初中数学教材目录

苏科版初中数学教材目录

七年级上第1章我们与数学同行1.1 生活数学 1.2 活动思考第2章有理数2.1 正数与负数 2.2 有理数与无理数 2.3 数轴 2.4 绝对值与相反数 2.5 有理数的加法与减法 2.6 有理数的乘法与除法 2.7 有理数的乘方 2.8 有理数的混合运算第3章代数式3.1 字母表示数 3.2 代数式 3.3 代数式的值 3.4 合并同类项 3.5 去括号 3.6 整式的加减第4章一元一次方程4.1 从问题到方程 4.2 解一元一次方程 4.3 用一元一次方程解决问题第5章走进图形世界5.1 丰富的图形世界 5.2 图形的运动 5.3 展开与折叠 5.4主视图、左视图、俯视图第6章平面图形的认识(一)6.1 线段、射线、直线 6.2 角 6.3 余角、补角、对顶角 6.4 平行 6.5 垂直七年级下第7章平面图形的认识(二)7.1 探索直线平行的条件 7.2 探索平行线的性质 7.3 图形的平移7.4 认识三角形7.5 多边形的内角和与外角和第8章幂的运算8.1 同底数幂的乘法 8.2 幂的乘方与积的乘方8.3 同底数幂的除法第9章整式乘法与因式分解9.1 单项式乘单项式 9.2 单项式乘多项式 9.3 多项式乘多项式 9.4 乘法公式9.5 多项式的因式分解第10章二元一次方程组10.1 二元一次方程 10.2 二元一次方程组 10.3 解二元一次方程组 10.4 三元一次方程组10.5 用二元一次方程组解决问题第11章一元一次不等式11.1 生活中的不等式11.2 不等式的解集 11.3 不等式的性质11.4 解一元一次不等式11.5 用一元一次不等式解决问题11.6 一元一次不等式组第12章证明12.1 定义与命题12.2 证明 12.3 互逆命题八年级上册第1章全等三角形1.1 全等图形 1.2 全等三角形 1.3 探索三角形全等的条件第2章轴对称图形2.1 轴对称与轴对称图形 2.2 轴对称的性质 2.3 设计轴对称图案 2.4 线段、角的轴对称性 2.5 等腰三角形的轴对称性第3章勾股定理3.1 勾股定理 3.2 勾股定理的逆定理 3.3 勾股定理的简单应用第4章实数4.1 平方根 4.2 立方根 4.3 实数 4.4 近似数第5章平面直接坐标系5.1 物体位置的确定 5.2 平面直角坐标系第6章一次函数6.1 函数 6.2 一次函数 6.3 一次函数的图像 6.4 用一次函数解决问题6.5 一次函数与二元一次方程 6.6 一次函数、一元一次方程和一元一次不等式八年级下第7章数据的收集、整理、描述7.1 普查与抽样调查7.2 统计表、统计图的选用7.3 频数和频率7.4 频数分布表和频数分布直方图第8章认识概率8.1 确定事件与随机事件 8.2 可能性的大小 8.3 频率与概率第9章中心对称图形——平行四边形9.1 图形的旋转9.2 中心对称与中心对称图形 9.3 平行四边形9.4 矩形、菱形、正方形 9.5 三角形的中位线第10章分式10.1 分式10.2 分式的基本性质 10.3 分式的加减 10.4 分式的乘除10.5 分式方程第11章反比例函数11.1 反比例函数11.2 反比例函数的图像与性质11.3用反比例函数解决问题第12章12.1 二次根式12.2 二次根式的乘除 12.3 二次根式的加减九年级上第1章一元二次方程1.1 一元二次方程 1.2 一元二次方程的解法 1.3 一元二次方程的根与系数的关系 1.4 用一元二次方程解决问题第2章对称图形——圆2.1 圆 2.2 圆的对称性 2.3 确定圆的条件 2.4 圆周角2.5 直线与圆的位置关系 2.6 正多边形与圆 2.7 弧长及扇形的面积 2.8 圆锥的侧面积第3章数据的集中趋势和离散程度3.1 平均数 3.2 中位数与众数 3.3 用计算器求平均数3.4 方差 3.5 用计算器求方差第4章等可能条件下的概率4.1 等可能性 4.2 等可能条件下的概率(一) 4.3 等可能条件下的概率(二)九年级下第5章二次函数5.1 二次函数 5.2 二次函数的图像与性质 5.3 用待定系数法确定二次函数表达式 5.3 二次函数与一元二次方程 5.4 用二次函数解决问题第6章图形的相似6.1 图上距离与实际距离 6.2 黄金分割 6.3 相似图形 6.5 探索三角形相似条件 6.6 相似三角形的性质 6.7 图形的位似 6.8 用相似三角形解决问题第7章锐角三角形7.1 正切7.2 正弦、余弦7.3 特殊角的三角函数7.4 由三角函数值求锐角 7.5 解直角三角形7.6 用锐角三角函数解决问题第8章统计和概率的简单应用8.1 中学生的视力情况调查 8.2 货比三家8.3 统计分析帮你做预测 8.4 抽签方法合理吗 8.5 概率帮你做估计8.6 收取多少保险费才合理优质文档,内容可编辑。

苏科版七年级数学上册《2.3数轴(2)》优课件1


3 ,哪一个
4
哪一个数较大?
2
4
课堂小结
谈谈你这一节课有哪些收获.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月13日星期三上午1时52分46秒01:52:4622.4.13
1, 0, 2, -3, 5, 1.5. 2
解:如图,在数轴上画出表示各数的点:
根据各点在数轴上的位置,得
-3<1.5< 1 <0<2<5. 2
例5 观察数轴,能否找出符合下列要求的数: (1)最大的正整数和最小的正整数; (2)最大的负整数和最小的负整数; (3)最大的整数和最小的整数; (4)不小于-3的ቤተ መጻሕፍቲ ባይዱ整数.
初中数学 七年级(上册)
2.3 数轴(2)
1.把0℃、5℃、-3℃、-2℃按从低到高的顺 序排列.在数轴上画出表示0、5、-3、-2的 点,你能比较这几个数的大小吗?
-3 -2
0
5
-3 -2 -1 0 1 2 3 4 5
-3 < -2 < 0 < 5
2.任意给出几个数,并在数轴上画出表示这 几个数的点,你能比较这几个数的大小吗?
谢谢观赏
You made my day!
我们,还在路上……
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月上午1时52分22.4.1301:52April 13, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月13日星期三1时52分46秒01:52:4613 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
例7 在数轴上的点A和B分别表示-8和2,则数轴

练习3 数轴-2020-2021学年七年级数学(苏科版)(解析版)

练习3 数轴1.对数轴上的点P 进行如下操作:先把点P 表示的数乘以m (m ≠0),再把所得数对应的点沿数轴向左平移n (n >0)个单位长度,得到点P '.称这样的操作为点P 的“倍移”,对数轴上的点A ,B ,C 进行“倍移”操作得到的点分别记为A ',B ',C '. (1)当m =12,n =2时,①若点A 表示的数为﹣6,则它的对应点A '表示的数为 ﹣5 . ②若点B '表示的数是3,则点B 表示的数为 10 .③数轴上点M 表示的数为1,若点M 到点C 和点C '的距离相等,求点C 表示的数. (2)若点A '到点B '的距离是点A 到点B 距离的3倍,求m 的值. 【分析】(1)①由∴﹣6×12−2=﹣5,即可得出对应点A '表示的数为﹣5, ②设点B 表示的数为x ,12x ﹣2=3,解得x =10;③设点C 表示的数为a ,则C ′表示的数为a 2−2,由∴|a ﹣1|=|a 2−2﹣1|,解得a =﹣4或83;(2)设点A 表示的数为a ,点B 表示的数为b ,则点A ′表示的数为am ﹣n ,点B ′表示的数为bm ﹣n ,则|bm ﹣n ﹣am +n |=3|b ﹣a |,解得m =±3. 【解答】解:(1)①∵点A 表示的数为﹣6, ∴﹣6×12−2=﹣5,∴它的对应点A '表示的数为﹣5; 故答案为﹣5;②设点B 表示的数为x , ∵点B '表示的数是3,∴12x ﹣2=3,解得:x =10, 故答案为:10;③设点C 表示的数为a ,则C ′表示的数为a2−2,∵点M 到点C 和点C '的距离相等, ∴|a ﹣1|=|a2−2﹣1|,解得:a =﹣4或a =83, 故C 表示的数为:﹣4或83;(2)由题意得:2m +3=﹣5, 解得:m =﹣4, 故答案为:﹣4;(3)设点A 表示的数为a ,点B 表示的数为b , 则点A ′表示的数为am ﹣n ,点B ′表示的数为bm ﹣n , ∴|bm ﹣n ﹣am +n |=3|b ﹣a |, ∴|m (b ﹣a )|=3|b ﹣a |, 解得:m =±3.【点评】本题考查了新概念“倍移”、数轴、两点间的距离、绝对值等知识;熟练掌握数轴上两点间的距离是解题的关键.2.如图,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上一动点,其对应的数为x . (1)若点P 到点A 、点B 的距离相等,求点P 对应的数是 1 ; (2)数轴上存在点P 到点A 、点B 的距离之和为10,则x = ﹣4或6 ;(3)若将数轴折叠,使﹣1与3表示的点重合,则﹣3表示的点与数 5 表示的点重合;(4)若数轴上M 、N 两点之间的距离为2021(M 在N 的左侧),且M 、N 两点经过(3)折叠后互相重合,则M ,N 两点表示的数分别是:M : 1014.5 ,N : 1016.5 .【分析】(1)由于点P 到点A 、点B 的距离相等,所以点P 为线段AB 的中点,即可得出点P 对应的数; (2)由题点P 到点A 、点B 的距离之和为10,对P 的位置进行分类讨论,即可求出x ;(3)由题若将数轴折叠,使﹣1与3表示的点重合,则对折点对应的数值为1,即可求解;(4)由题M,N两点经过(3)折叠后互相重合,可求出对折点对应的数值为1,根据M、N两点之间的距离为2011(M在N的左侧)即可求出M,N两点表示的数.【解答】解:(1)∵点P到点A、点B的距离相等,∴点P为线段AB的中点,∴点P对应的数为1;故答案为:1;(2)∵点P到点A、点B的距离之和为10,对点P的位置分情况讨论如下:①点P在点A左边,∵点P到点A、点B的距离之和为10,且线段AB的距离为4,∴点P到点A的距离为3,∴x=﹣4;②点P在线段AB上,不符合题意,舍去;③点P在点B右边,∵点P到点A、点B的距离之和为10,且线段AB的距离为4,∴点P到点B的距离为3,∴x=6;∴综上所述:x=﹣4或6;故答案为:﹣4或6;(3)若将数轴折叠,使﹣1与3表示的点重合,则对折点对应的数值为1,∵﹣3到1的距离为4,∴5到1的距离也为4,∴则﹣3表示的点与数5表示的点重合;故答案为:5;(4)若数轴上M、N两点之间的距离为2021(M在N的左侧),且M,N两点经过(3)折叠后互相重合,则对折点对应的数值为1,∴点M到1的距离为1015.5,∴M对应的数为﹣1014.5,∵点N到1的距离为1015.5,∴N点对应的数为1016.5.故答案为:﹣1014.5,1016.5.【点评】本题考查了数轴和对称的基本性质以及实数的基本运算,难度不大.3.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:1,B:﹣2.5;(2)观察数轴,与点A的距离为4的点表示的数是:﹣3或5;(3)若将数轴折叠,使A点与﹣3表示的点重合,则B点与数0.5表示的点重合;(4)若数轴上M、N两点之间的距离为2019(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:﹣1010.5,N:1008.5.【分析】(1)观察数轴即可求解;(2)分点A左边4个单位和右边4个单位两种情况;(3)根据点A与﹣3表示的点重合可得对称中心,继而可得点B关于﹣1对称的点;(4)根据题意得出M、N两点到对称中心的距离,继而由对称中心分别向左和向右得出点M、N所表示的数.【解答】解:(1)A:1,B:﹣2.5.故答案为:1,﹣2.5;(2)观察数轴,与点A的距离为4的点表示的数是1﹣4=﹣3或1+4=5.故答案为:﹣3或5;(3)将数轴折叠,使A点与﹣3表示的点重合,则对称点是﹣1,则B点与数0.5表示的点重合.故答案为:0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2019(M在N的左侧)可知,M点表示数﹣1010.5,N点表示数1008.5.故答案为:﹣1010.5、1008.5.【点评】本题考查了数轴的运用.关键是利用数轴,数形结合求出答案,注意不要漏解.4.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)(1)则数轴上数3表示的点与数﹣5表示的点重合.(2)若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是﹣7或3.(3)若数轴上M,N两点之间的距离为2018,并且M,N两点经折叠后重合,如果M点表示的数比N 点表示的数大,则M点表示的数是1008;则N点表示的数是﹣1010.【分析】(1)数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,可得数轴上数3表示的点与数﹣5表示的点重合;(2)点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,分两种情况讨论,即可得到B点表示的数是﹣7或3;(3)依据M、N两点之间的距离为2018,并且M、N两点经折叠后重合,M点表示的数比N点表示的数大,即可得到M点表示的数是1008,N点表示的数是﹣1010.【解答】解:(1)∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,所以数轴上数3表示的点与数﹣5表示的点重合;故答案为:﹣5;(2)点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣1﹣(﹣5)=4,﹣1+4=3,当点A表示5时,5﹣(﹣1)=6,﹣1﹣6=﹣7,∴B点表示的数是﹣7或3;故答案为:﹣7或3;(3)M、N两点之间的距离为2018,并且M、N两点经折叠后重合,∴﹣1+12×2018=1008,﹣1−12×2018=﹣1010,又∵M点表示的数比N点表示的数大,∴M点表示的数是1008,N点表示的数是﹣1010.故答案为:1008,﹣1010.【点评】本题主要考查的是数轴的认识,掌握数轴的定义和点的对称性是解题的关键.5.如图,半径为1的小圆与半径为2的大圆,有一个公共点与数轴上的原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位,(1)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动的时间记为正数,向左滚动时间即为负数,依次滚动的情况录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,+6①第4次滚动后,大圆与数轴的公共点到原点的距离最远;②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(2)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.【分析】(1)①算出每次滚动后大圆与数轴的公共点到原点的距离,然后比较大小即可;②总路程与方向无关把每次的移动的距离相加即可;(2)分同向和反相两种情况讨论,同向路程之差为9π,反向路程之和为9π,然后求出相应时间,再根据不同方向确定两圆与数轴重合的点所表示的数【解答】解:(1)①:第1次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π|=2π第2次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π|=2π第3次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π|=6π第4次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π|=10π第5次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π|=4π第6次滚动后,大圆与数轴的公共点到原点的距离:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π+6×2π|=8π所以第四次滚动后大圆与数轴的公共点到原点的距离最远.故答案为4;②总路程为:|﹣1×2π|+|+2×2π|+|﹣4×2π|+|﹣2×2π|+|+3×2π|+|+6×2π|=36π此时两圆与数轴重合的点之间的距离为:|﹣1×2π+2×2π﹣4×2π﹣2×2π+3×2π+6×2π|=8π(2)当它们同向运动时9π2π−π=9秒,小圆与数轴重合的点所表示的数为9π,大圆与数轴重合的点所表示的数为18π, 或小圆与数轴重合的点所表示的数为﹣9π,大圆与数轴重合的点所表示的数为﹣18π, 当它们反向运动时9π2π+π=3秒,小圆与数轴重合的点所表示的数为﹣3π,大圆与数轴重合的点所表示的数为6π, 或小圆与数轴重合的点所表示的数为3π,大圆与数轴重合的点所表示的数为﹣6π,【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.6.如图,数轴上有A 、B 、C 三点,点A 和点B 所表示的数分别为﹣3和+52,点C 到点A 、点B 的距离相等.(1)点C 表示的数为 −14;(2)若数轴上有一点P ,若满足P A +PB =10,求点P 表示的数; (3)若数轴上有一点Q .若满足QA +QB ﹣QC =103,求点Q 表示的数.【分析】(1)先根据数轴上两点的距离=较大的数﹣较小的数计算AB 的长,由点C 到点A 、点B 的距离相等,可得结论;(2)设点P 表示的数是x ,分两种情况:根据P A +PB =10列方程可得结论; (3)设点Q 表示的数为y ,分四种情况:根据QA +QB ﹣QC =103列方程可得结论. 【解答】解:(1)∵点A 和点B 所表示的数分别为﹣3和+52, ∴AB =52−(﹣3)=5.5, ∵AC =BC , ∴点C 表示的数为52−114=−14,故答案为:−14;(2)设点P 表示的数是x , ∵P A +PB =10,分两种情况:①P 在A 的左边时,52−x +(﹣3)﹣x =10,x =−214②P 在B 的右边时,x −52+x ﹣(﹣3)=10,x =194 ∴点P 表示的数是−214或194; (3)设点Q 表示的数为y , 分四种情况:①当Q 在点A 的左边时,如图1,∵QA +QB ﹣QC =103, ∴QA +BC =103,即﹣3﹣y +114=103,y =−4312∴点Q 表示的数是−4312; ②当Q 在点B 的右边时,如图2,∵QA +QB ﹣QC =103,∴QB +AC =103,即y −52+114=103,y =3712 ∴点Q 表示的数是3712;③当Q 在点A 和点C 之间时,如图3,∵QA +QB ﹣QC =103,∴AB ﹣QC =103,即5.5﹣(−14−y )=103,y =−2912 ∴点Q 表示的数是−2912;④当Q 在点B 和点C 之间时,如图4,∵QA +QB ﹣QC =103, ∴AB ﹣QC =103,即5.5﹣(y +14)=103,y =3312, ∴点Q 表示的数是3312;综上,点Q 表示的数是−4312或3712或−2912或2312.【点评】此题考查了数轴上两点的距离和一元一次方程的应用,弄清题意,得出距离之间的关系是解决本题的关键.7.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,D ,其中点A 与点B 之间距离为3,点B 与点C 之间距离为2,点C 与点D 之间距离为1.设点A ,B ,C ,D 所对应数的和为w . (1)若点C 为数轴的原点.请你写出点A 、B 、D 所对应的数,并计算w 的值; (2)若点C 与数轴原点的距离为2020时,求w 的值; (3)若点C 与数轴原点的距离为a (a >0)时,求w 的值.【分析】(1)利用C 点表示的数为0,再利用A 、B 、D 三点到原点的距离确定它们对应的数,然后计算w 的值;(2)由于点C 与数轴原点的距离为2020,所以C 点对应的数为2020或﹣2020,当C 点对应的数为2020,利用A 、B 、D 三点到C 点的距离确定它们对应的数,再计算w 的值;当C 点对应的数为﹣2020,利用A 、B 、D 三点到原点的距离确定它们对应的数,然后计算w 的值;(3)由于点C 与数轴原点的距离为a (a >0),则C 点对应的数为a 或﹣a ,然后和(2)一样的方法解决问题.【解答】解:(1)若点C 为数轴的原点,即C 点表示的数为0, ∵点C 与点D 之间距离为1, ∴D 点对应的数为1, ∵点B 与点C 之间距离为2,∴B 点对应的数为﹣2,∵点A与点B之间距离为3,∴A点表示的数为﹣5,∴w=﹣5+(﹣2)+1=﹣6;(2)点C与数轴原点的距离为2020时,即C点对应的数为2020或﹣2020,当C点对应的数为2020,∴D点表示的数为2020+1=2021,B点对应的数为2020﹣2=2018,A点表示的数为2018﹣3=2015,∴w=2021+2018+2020+2015=8074;当C点对应的数为﹣2020,∴D点表示的数为﹣2020+1=﹣2019,B点对应的数为﹣2020﹣2=﹣2022,A点表示的数为﹣2022﹣3=﹣2025,∴w=﹣2025﹣2022﹣2020﹣2025=﹣8086;即w的值为8074或﹣8086;(3)若点C与数轴原点的距离为a(a>0),即C点对应的数为a或﹣a,当C点对应的数为a,∴D点表示的数为a+1,B点对应的数为a﹣2,A点表示的数为a﹣2﹣3=a﹣5,∴w=a﹣5+a﹣2+a+a+1=4a﹣6;当C点对应的数为﹣a,∴D点表示的数为﹣a+1,B点对应的数为﹣a﹣2,A点表示的数为﹣a﹣2﹣3=﹣a﹣5,∴w=﹣a﹣5﹣a﹣2﹣a﹣a+1=﹣4a﹣6;即w的值为﹣4a﹣6或4a﹣6.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数;数轴上右边的数总比左边的数大.也考查了数形结合的思想.8.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4,表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(请依据此情境解决下列问题)①则数轴上数4表示的点与数﹣6表示的点重合.②若点A到原点的距离是6个单位长度,并且A,B两点经折叠后重合,则点B点表示的数是4或﹣8.③若数轴上M,N两点之间的距离为2020,并且M,N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是1009,则N点表示的数是﹣1011.【分析】①数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,4﹣(﹣1)=5,而﹣1﹣5=﹣6,可得数轴上数4表示的点与数﹣6表示的点重合;②点A到原点的距离是6个单位长度,则点A表示的数为6或﹣6,分两种情况讨论,即可得到B点表示的数是5或7;③依据M、N两点之间的距离为2020,并且M、N两点经折叠后重合,M点表示的数比N点表示的数大,即可得到M点表示的数是1007,N点表示的数是﹣1013.【解答】解:①∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,4﹣(﹣1)=5,而﹣1﹣5=﹣6,∴数轴上数4表示的点与数﹣6表示的点重合;故答案为:﹣6;②点A到原点的距离是6个单位长度,则点A表示的数为6或﹣6,∵A、B两点经折叠后重合,∴当点A表示﹣6时,﹣1﹣(﹣6)=5,﹣1+5=4,当点A表示6时,6﹣(﹣1)=7,﹣1﹣7=﹣8,∴B点表示的数是4或﹣8;故答案为:4或﹣8;③M、N两点之间的距离为2020,并且M、N两点经折叠后重合,∴﹣1+12×2020=1009,﹣1−12×2020=﹣1011,又∵M点表示的数比N点表示的数大,∴M点表示的数是1009,N点表示的数是﹣1011,故答案为:1009,﹣1011.【点评】本题主要考查的是数轴的认识,掌握数轴的定义和点的对称性是解题的关键.9.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.【点评】本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.10.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是G;写出【N,M】美好点H所表示的数是﹣4或﹣16.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?【分析】(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据没好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,须区分各种情况分别确定P点的位置,进而可确定t的值.【解答】解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件,故答案是:G.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定﹣4符合条件.点M 的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是﹣16.故答案是﹣4或﹣16.(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2﹣3=﹣1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,当2PM=PN时,NP=6,点P对应的数为2﹣6=﹣4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2﹣18=﹣16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2﹣27=﹣25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2﹣13.5=﹣11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,第八种情况,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.【点评】本题考查实数与数轴、点是【M,N】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.11.如图,在数轴上,点A 表示﹣10,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t 为何值时,P 、Q 两点相遇?相遇点M 所对应的数是多少?(2)在点Q 出发后到达点B 之前,求t 为何值时,点P 到点O 的距离与点Q 到点B 的距离相等; (3)在点P 向右运动的过程中,N 是AP 的中点,在点P 到达点C 之前,求2CN ﹣PC 的值.【分析】(1)根据题意,由P 、Q 两点的路程和为28列出方程求解即可;(2)由题意得,t 的值大于0且小于7.分点P 在点O 的左边,点P 在点O 的右边两种情况讨论即可求解;(3)根据中点的定义得到AN =PN =12AP =t ,可得CN =AC ﹣AN =28﹣t ,PC =28﹣AP =28﹣2t ,再代入计算即可求解.【解答】解:(1)根据题意得2t +t =28, 解得t =283, ∴AM =563>10,∴M 在O 的右侧,且OM =563−10=263, ∴当t =283时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在点O 的左边,则10﹣2t =7﹣t ,解得t =3. 若点P 在点O 的右边,则2t ﹣10=7﹣t ,解得t =173. 综上所述,t 的值为3或173时,点P 到点O 的距离与点Q 到点B 的距离相等;(3)∵N是AP的中点,∴AN=PN=12AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.【点评】本题考查了一元一次方程的应用,数轴.解题时,一定要“数形结合”,这样使抽象的问题变得直观化,降低了题的难度.12.阅读下面的材料:如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点A的距离CA=5cm;若数轴上有一点D,且AD=4,则点D表示的数为﹣5或3;(3)若将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)表示出CA和AB,再相减即可得出结论.【解答】解:(1)如图所示:(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为:5,﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为:﹣1+x;(4)CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化.【点评】此题考查了数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.13.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【分析】(1)根据路程除以速度等于时间,可得答案;(2)根据相遇时P,Q的时间相等,可得方程,根据解方程,可得答案;(3)根据PO与BQ的时间相等,可得方程,根据解方程,可得答案.【解答】解:(1)点P 运动至点C 时,所需时间t =10÷2+10÷1+8÷2=19(秒), (2)由题可知,P 、Q 两点相遇在线段OB 上于M 处,设OM =x . 则10÷2+x ÷1=8÷1+(10﹣x )÷2, 解得x =163.故相遇点M 所对应的数是163.(3)P 、O 两点在数轴上相距的长度与Q 、B 两点在数轴上相距的长度相等有4种可能: ①动点Q 在CB 上,动点P 在AO 上,则:8﹣t =10﹣2t ,解得:t =2. ②动点Q 在CB 上,动点P 在OB 上,则:8﹣t =(t ﹣5)×1,解得:t =6.5. ③动点Q 在BO 上,动点P 在OB 上,则:2(t ﹣8)=(t ﹣5)×1,解得:t =11. ④动点Q 在OA 上,动点P 在BC 上,则:10+2(t ﹣15)=t ﹣13+10,解得:t =17. 综上所述:t 的值为2、6.5、11或17.【点评】本题考查了数轴,一元一次方程的应用,利用PO 与BQ 的时间相等得出方程是解题关键,要分类讨论,以防遗漏.14.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A 景区,继续向东走2.5千米到达B 景区,然后又回头向西走8.5千米到达C 景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A 、B 、C 三个景区的位置. (2)A 景区与C 景区之间的距离是多少?(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.【分析】(1)根据以景区大门为原点,向东为正方向,在数轴上表示出A 、B 、C 的位置; (2)根据两点间的距离公式列式计算即可; (3)计算出电瓶车一共走的路程,即可解答. 【解答】解:(1)如图,(2)A 景区与C 景区之间的距离是:2﹣(﹣4)=6(千米);(3)不能完成此次任务.理由如下:电瓶车一共走的路程为:|+2|+|2.5|+|﹣8.5|+|+4|=17(千米),因为17>15,所以不能完成此次任务.【点评】本题考查了利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.。

新苏科版七年级数学上册《2.3数轴(2)》精品课件

分48秒下午12时16分12:16:4821.11.8
1.用”<“或”>”填空:
(1)3.6___2.5
(3)-16___-1.6
(5)-2.1___+1.2
(7)
3 2
____
2 3
随堂练习
(2)-3___0 (4)+1___-10 (6)-9___-7
2. 在数轴上画出表示下列各数的点,并 用“<”把这些数按从小到大的顺序连 接起来:
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午12时16分21.11.812:16November 8, 2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观
察是思考和识记之母。”2021年11月8日星期一12时16分48秒12:16:488 November 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午12时16
动脑筋
观察数轴,回答下列问题。
1、有没有最小的有理数? 没有
2、有没有最大的负整数? -1
3、最小的正整数是什么? +1
4、最小的非负整数是什么,最大的非正整数
是什么?
0
0
动脑筋
利用数轴解答下列问题:
1.写出所有不大于4且大于-3的整数有

2.不小于-4的非正整数有

3.到原点距离不大于2的所有整数有
(1) 5 和 0 (3) 2 和 – 3
(2) - 1 和 0 2
(4) - 3,0,1.5
解:(1) 5 > 0
1

苏科版七年级数学上册《2.3数轴(2)》课件

初中数学七年级上册
(苏科版)
2.3 数轴(2)
复习: 数轴的三要素是__原_点___、 _正__方__向__、___单_位__长__度_____。
口答.判断下面哪些是数轴,哪些不是?为什么?
0 12 3 4
-2 -1 0 1 2 -2 0 1 2
-1 -2 0 1 2
-2 -1 0
12
-2 -1 0 1 2
议一议 ☞
1.把0℃、5℃ 、 -3℃、-2℃按从低到高的顺 序排列;
在数轴上画出表示-3、-2、0、5的点,你能比 较这几个数的大小吗?
解: -3℃ < -2℃ < 0℃ < 5℃
-3 -2
0
5
-3 -2 -1 0 1 2 3 4 5
-3 < -2 < 0 < 5
那如果给你两个数,你能比较它们的大小吗? 2和0 0和-3 5和-4
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午6时36分21.11.818:36November 8, 2021
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月8日星期一6时36分16秒18:36:168 November 2021
连接
4,0,-1 1 ,5, 2, 3.5 2
例3.找到满足下面条件的数,并把对应的点 在数轴上找到
1.比0大3的数是什么数?
2.比-3小7的数是什么数?
3.比-2大
31 2
的数是什么数?
4.比-3大6的数是什么数?
例4.观察数轴,回答下列问题。
1.有没有最小的有理数?有没有最大的有理数 ? 2.有没有最大的正数?有没有最小的正数? 3.有没有最大的正整数?有没有最小的正整数? 4.有没有最大的负整数?有没有最小的负整数? 5.有没有最大的非负整数?有没有最小的非负整数? 6.有没有最大的非正整数?有没有最小的非正整数?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3 数轴(1)
一、选择
1.四位同学画数轴如下图所示,你认为正确的是 ( )

2.数轴上表示-712的点在 ( )
A.-6与-7之间 B.-7与-8之间
C.7与8之间 D.6~7之间
3.点A为数轴上表示-1的点,将A点沿数轴向左移动2个单位长度到B点,则B点所表
示的数为 ( )
A.-3 B.3 C.1 D.1或-3
4.在数轴上,—个点从原点开始,先向左移动5个单位,再向右移动7个单位,这个终点
表示的数是 ( )
A.12 B.-12 C.2 D.-2
5.如图,在数轴上点M表示的数可能是 ( )

A.1.5 B.-1.5 C.-2.4 D.2.4
6.在数轴上,通过观察可以发现,表示与原点相距3个长度单位以内 (包括3个长度单位)
的整数点共有 ( )
A.4个 B.5个 C.6个 D.7个
二、填空
7.在数轴上,与表示-3的点距离为2个单位长度的点所表示的数是 .
8.数轴上点A,B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为 .

9.数轴上表示的数是整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意
画出一条长2015 cm的线段AB,则线段AB盖住的整点的个数是 .
10.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位长,在圆的4等分
点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再
将数轴按逆时针方向环绕在该圆上 (如圆周上表示数字3的点与数轴上表示-2的点重
合……),则数轴上表示-2012的点与圆周上表示数字 的点重合.
11.如图,半径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点A (滚动时与
原点重合) 由原点到达点B,则AB的长度就等于圆的周长 ,所以数轴上点B
代表的数是 ,它是一个 数.
12.如图,点A,B,C为数轴上的3点,请回答下列问题:
(1) 将点A 向右平移3个单位长度后,点 表示的数最小;
(2) 将点C向左平移6个单位长度后,点A表示的数比点C表示的数小 ;

(3) 将点B向左平移212个单位长度后,点B与点C的距离是 .
三、解答
13.画出数轴,并在数轴上表示下列各数:+5,-3.5,12,-112,-4,0,2.5.

14.作图题:在数轴上画出面积为8的正方形的边长a (保留作图痕迹,不要求写作法)
15.在一条东西走向的马路上,有少年宫、学校、商场、医院四家公共场所,已知少年宫在
学校东300 m,商场在学校西200 m,医院在学校东500 m.若将马路近似地看成一条
直线,以学校为原点,向东方向为正方向,用1个单位长度表示100 m.
(1) 画出数轴,在数轴上表示出四家公共场所的位置;
(2) 列式计算少年宫与商场之间的距离.
16.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进
行家访,从学校出发先向东走250 m到小明家,后又向东走350 m到小兵家,再向西
行800 m到小颖家,最后又回到学校.
(1) 以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置.
(2) 小明家距离小颖家多远?
(3) 这次家访,老师共行了多少千米的路程?

17.操作与探究:
已知在纸面上有数轴 (如图),折叠纸面.
例如:若数轴上数2表示的点与数-2表示的点重合,则数轴上数-4表示的点与数4
表示的点重合,根据你对例题的理解,解答下列问题:
(1) 若数轴上数1表示的点与-1表示的点重合,则数轴上数3表示的点与数 表
示的点重合.

(2) 若数轴上数-3表示的点与数1表示的点重合.
①则数轴上数3表示的点与数 表示的点重合.
②若数轴上A,B两点之间的距离为7(A在B的左侧),并且A,B两点经折叠后重
合,则A,B两点表示的数分别是 .
参考答案
1.C 2.B 3.A 4.C 5.C 6.D 7.-5或-1 8.-5 9.2015或2016

10.1 11.2π 2π 无理 12.(1) B (2) 1 (3) 122
13.

14.

画一个边长为4的正方形,连接对角线,用圆规在数轴上截取即可.
15. (1)

(2) 500 m 16.(1) 以向东为正,100 m为单位长度,可建立数轴如

(2) 小明家距离小颖家450 m;(3) 250+350+800+200=1 600(米),∴这次家访,老师共行了1.6
千米的路程. 点拨:(1) 由于数轴必须具有原点、正方向和单位长度三要素,而本题已知
原点是学校,我们必须确定一个正方向,如可令向东为正方向,100 m为单位长度;(2) 可
借助数轴读出小明家和小颖家距离的单位长度数,然后再转化成实际距离;(3) 路程没有方
向,不管向东,还是向西都要记作路程,最后还要加上回到学校的那段路程.当讨论成一条
直线的街面的几个地点的问题时,如果借助数轴来解决,会使得原本抽象的问题变得直
观. 17.-3,-5,2.5,-4.5

初中数学试卷
鼎尚图文**整理制作

相关文档
最新文档