2018年高考浙江卷数学试题解析(精编版)(解析版)
2018年高考数学浙江卷(精校版)

2018年高考数学浙江卷(精校版)一、选择题:1.[2018浙江1]已知全集{}1,2,3,4,5U =,{}1,3A =,则=U A ð( )A.∅B.{}1,3C.{}2,4,5D.{}1,2,3,4,5【答案:C 】2.[2018浙江2]双曲线221 3=x y -的焦点坐标是( )A.()),B.()()2,0,2,0-C.((0,,D.()()0,2,0,2-【答案:B 】3.[2018浙江3]某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A.2B.4C.6D.8【答案:C 】4.[2018浙江4]复数21i- (i 为虚数单位)的共轭复数是( ) A.1i +B.1i -C.1i -+D.1i --【答案:B 】5.[2018浙江5]函数2sin 2xy x =的图象可能是( )俯视图正视图A. B. C. D.【答案:D 】6.[2018浙江6]已知平面α,直线,m n 满足m α⊄,n α⊂,则“//m n ”是“//m α”的( )A.充分不必要条件B.必不充分条件C.充分必要条件D.既不充分也不必要条件【答案:A 】7.[2018浙江7]设01p <<,随机变量ξ的分布列是222则当P 在()0,1内增大时,A.()D ξ减小B.()D ξ增大C.()D ξ先减小后增大D.()D ξ先增大后减小【答案:D 】8.[2018浙江8]已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )A.123θθθ≤≤B.321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤【答案:D 】9.[2018浙江9] 已知,,a b e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+=,则a b -的最小值是( )1 1 C.2 D.2【答案:A 】10.[2018浙江10]已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( )A.1324,a a a a <<B.1324,a a a a ><C.1324,a a a a <>D.1324,a a a a >> 【答案:B 】二、填空题:11.[2018浙江11]我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,x y z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x = , y =________.【答案:8;11】12.[2018浙江12]若,x y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最小值是 ,最大值是 . 【答案:28-,】 13.[2018浙江13]在ABC ∆中,角,,A B C 所对的边分别为,,a b c .若a 2b =,60A =,则sin B =___________,c = .】 14.[2018浙江14]二项式81)2x的展开式的常数项是 . 【答案:7】15.[2018浙江15]已知R λ∈,函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩,当2λ=时,不等式()0f x <的解集是 .若函数()f x 恰有2个零点,则λ的取值范围是 . 【答案:()(]()1,4;1,34,+∞】16.[2018浙江16]从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答) 【答案:1260】17.[2018浙江17]已知点()0,1P ,椭圆()2214x y m m +=>上两点,A B 满足2AP PB =,则当m = 时,点B 横坐标的绝对值最大. 【答案:5】三、解答题:18.[2018浙江18]已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34,54P ⎛⎫-- ⎪⎝⎭.(1)求()sin απ+的值; (2)若角β满足()5sin 13αβ+=,求cos β的值. 【答案】:(1)45. (2)5665-或1665-.19.[2018浙江19]如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.【答案】:(1)略,(2.20.[2018浙江20]已知等比数列{}n a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列(){}1n n n b b a +-的前n 项和为22n n +. (1)求q 的值;(2)求数列{}n b 的通项公式.【答案】:(1)2q =;(2)()2115432n n b n -⎛⎫=-+⋅ ⎪⎝⎭.21.[2018浙江21]如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上. (1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆()22104x y x +=<上的动点,求PAB ∆面积的取值范围.【答案】:(1)略;(2)⎡⎢⎣⎦.22.[2018浙江22]已知函数()ln f x x =.(1)若()f x 在()1212,x x x x x =≠处导数相等,证明:()()1288ln 2f x f x +>-; (2)若34ln 2a ≤-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.【答案】:(1)略; (2)略.。
2018年度浙江数学高考试题(整理汇编含标准答案)

绝密★启用前2018年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分 3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题 纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求, 在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共 10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
1.已知全集 U={1 , 2, 3, 4, 5}, A={1 , 3},则 e u A=A .B . {1 , 3} C. {2 , 4, 5} D . {1 , 2, 3, 4, 5}22 .双曲线—y 2 = 1的焦点坐标是参考公式:若事件A, B 互斥,贝U P(A B) P(A) P(B) 若事件A, B 相互独立,贝U P(AB) P(A) P(B) 若事件A 在一次试验中发生的概率是p,则n次独立重复试验中事件 A 恰好发生k 次的概率_ k kn kP n (k) C n P (1 p) (k 0,1,2,L ,n)台体的体积公式V 1(Si - S1S 2 S 2)h其中Si,&分别表示台体的上、下底面积,h 表柱体的体积公式V Sh其中S 表示柱体的底面积, h 表示柱体的高 锥体的体积公式V - Sh3其中S 表示锥体的底面积, h 表示锥体的高 球的表面积公式―_2S 4 R球的体积公式R 33A . (- y/2 , 0),(握,0)D.既不充分也不必要条件7 .设0<p<1,随机变量E 的分布列是3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位: cm 3)是A . 2B . 44 .复数—(i 为虚数单位)的共轴复数是1 iC.充分必要条件A .充分不必要条件B.必要不充分条件则|a- b|的最小值是则当 p 在(0, 1)内增大时,B. D ( &增大C. D ( &先减小后增大D. D ( &先增大后减小8 .已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设 SE与BC 所成的角为SE 与平面ABCD 所成的角为也,二面角S- AB- C 的平面角为 饱 则C.9 .已知a, b, e 是平面向量, e 是单位向量. 若非零向量 a 与e 的夹角为,向量 b 满足 b 2-4e b+3=0,A . 73-1B . ^3+1 C. D . 2-4310.已知 ai,a 2,a 3,a 4成等比数列,且 a i a? & a 4 ln(a i a ? a 3).若 A. a 〔 a 3,a 2a 4B. a 1 a 3,a 2 a 4C. a a 3,a 2 a 4非选择题部分(共110分)二、填空题:本大题共 7小题,多空题每题 6分,单空题每题4分,共36分。
2018年浙江数学高考试题及答案解析

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .84.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =||2x sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件侧视图俯视图正视图22117.设0<p <1,随机变量ξ的分布列是ξ 012P12p- 12 2p 则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1B .3+1C .2D .2−310.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年高考数学浙江卷含答案

3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是))6.己知平面a,直线〃满足mua,nua,贝!j a m//〃"是“m//a”的)A.充分不必要条件C.充分必要条件B.必要不充分条件D,既不充分也不必要条件绝密★启用前1 f ;;在------此------卷------上------答------题------无------效浙江省2018年普通高等学校招生全国统一考试数学本试卷分选择题和非选择题两部分.全卷共4页,满分150分,考试时间120分钟. 参考公式:若事件 A, B 互斥,则 P(A+8) = P(A) + P(8).若事件A, 8相互独立,则P(AB) = P(A)P(B).若事件A 在一次试验中发生的概率是p ,则〃次独立重复试验中事件A 恰好发生 k 次的概率 P n (k) = C£P k (1 - 以= 0,1,2,-•,n) .台体的体积公式:v = *Si+q^ + S2)/i,其中S],分别表示台体的上、下底 面积,"表示台体的高.柱体的体积公式:V = Sh,其中S 表示柱体的底面积,力表示柱体的高.锥体的体积公式:V = -Sh,其中S 表示锥体的底面积,//表示锥体的高.3球的表面积公式:5 = 4兀犬2,其中r 表示球的半径.球的体积公式:V = -ti R 3,其中R 表示球的半径.3选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1. 已知全集U = {1,2,3,4,5}, A = {1,3},则 ( )A. 0 B. {1,3}C. {2,4,5} D. (1,2,3,4,5)2. 双曲线土的焦点坐标是 ( )A. (-V2,0) , (V2,0)B. (-2,0), (2,0)C. (0,-a /2) , (0而D. (0,-2), (0,2)x+y+z=◎鸡母,鸡雏个数分别为x,y,z,则L°1心当z=81时,x=_________,5x-i3y+y=■x-yNO,12.若工,y满足约束条件<2x+yW6,则z=x+3y的最小值是,最大值x+yN2,是.13.在ZiABC中,角A,B,C所对的边分别为a,b, c.若a=$,b=2,A=60。
2018年全国高考数学试卷真题与答案(浙江卷)

1 p 2
1 2
p 2
A.D( ξ)减小 C.D(ξ)先减小后增大
B.D(ξ)增大 D.D(ξ)先增大后减小
8.已知四棱锥 S−ABCD 的底面是正方形,侧棱长均相等,E 是线段 AB 上的点(不含端点),设 SE 与 BC 所成的角为 θ1,SE 与平面 ABCD 所成的角为 θ2,二面角 S−AB−C 的平面角为 θ3,则 A. θ1≤ θ2≤ θ3 B.θ3≤θ2≤θ1 C.θ1≤θ3≤θ2 D.θ2≤ θ3≤ θ1
2
B.{1, 3}
C.{2, 4, 5}
D.{1, 2,3, 4, 5}
2.双曲线
x y 2 =1 的焦点坐标是 3
B.(−2,0),(2, 0) D.(0,−2),(0, 2)
A.(− 2 ,0),( 2 ,0) C.(0, − 2 ),(0, 2 )
3.某几何体的三视图如图所示(单位: cm) ,则该几何体的体积(单位: cm3)是
2 1 1 正视图 2 侧视图
俯视图
A. 2 4.复数
B.4
C.6
D.8
2 (i 为虚数单位)的共轭复数是 1 i
B.1−i C.−1+i D.−1−i
A. 1+i
5.函数 y = 2| x| sin2x 的图象可能是
A.
B.
C.
D.
6.已知平面 α,直线 m,n 满足 m α,n α,则“m∥n”是“m∥α”的 A.充分不必要条件 C.充分必要条件 7.设 0<p<1,随机变量 ξ 的分布列是 ξ P 则当 p 在(0,1)内增大时, 0 1 2 B.必要不充分条件 D.既不充分也不必要条件
9. 已知 a, b, e 是平面向量, e 是单位向量. 若非零向量 a 与 e 的夹角为 则|a−b|的最小值是 A. 3 −1 B. 3 +1 C.2
2018年浙江省高考数学试卷及解析(20200802202439).pdf

实用文档用心整理2018年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4.00分)已知全集U={1,2,3,4,5},A={1,3},则?U A=()A.?B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4.00分)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4.00分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.84.(4.00分)复数(i为虚数单位)的共轭复数是()1实用文档用心整理A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4.00分)函数y=2|x|sin2x的图象可能是()A.B.C.D.6.(4.00分)已知平面α,直线m,n满足m?α,n?α,则“m∥n”是“m∥α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4.00分)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()2A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4.00分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4.00分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣10.(4.00分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2018年高考(浙江省)真题数学(理)试题及答案解析
2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )。
2018年高考数学浙江卷-答案
浙江省2018年普通高等学校招生全国统一考试数学答案解析一、选择题1.【答案】C【解析】由补集概念知,把全集U 中去掉元素1,3得,2,,={}45U A ð.【考点】集合的补集运算2.【答案】B 【解析】从双曲线的标准方程2213x y -=知,焦点在x 轴上,且223,61a ==,则c 222314a b =+=+=,进而焦点坐标为(2,0)±.【考点】双曲线的标准方程和几何性质3.【答案】C【解析】由三视图知,该几何体为直四棱柱,且侧棱长为2,上下底面为上边为1,下边为2,高为2的直角梯形.故(12)2262V +⨯=⨯= 【考点】空间几何体的三视图4.【答案】B 【解析】22(1i)1i 1i (1i)(1i)+==+--+所以21i -的共轭复数为1i -. 【考点】复数的基本概念5.【答案】D【解析】设||()2sin 2x f x x =,因为||||()2sin 2()2sin 2()x x f x x x f x ---=-=-=-,所以函数()f x 为奇函数,选项A ,B 不符,当2π3x =时,()0f x <,则选项C 不符合,故选D. 【考点】函数的图象和性质6.【答案】A【解析】如图,作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM ,则23,SEO SMO θθ==∠∠,而23tan ,tan SO SO OE OMθθ==,且EO MO ≥,故32θθ≥,根据线面所成角定义可推得,线面所成角是鞋面与平面内直线所成角中最小的角,所以选D.9.【答案】A【解析】由2430b e b -+=g 可得22441b e b e +=g -,即2(2)1b e -=,即|2|1b e -=,如图,由几何意义得,b 的终点B 在以F 为圆心,半径为1的圆上运动,a 的终点A 在射线OP 上,当点B 为点F 到OP 的垂线与圆F 的交点时,||a b -最小,即min π|2sin 113|a b -=-=【考点】平面向量的运算及几何意义10.【答案】B【解析】由1234123ln()a a a a a a a +++=++结构,想到常用对数放缩公式ln 1x x -≤,所以1234123123ln()()1a a a a a a a a a a +++=++++-≤,即41a -≤.若1q -≤,则212341(1)(1)0a a a a a q q +++=++≤即123ln()0a a a ++≤而212311(1)1a a a a q q a ++=++>≥,故123ln()0a a a ++>,即与123ln()0a a a ++≤矛盾,所以10q -<<,所以选B【考点】等比数列中的基本量以及对数的有关性质二、填空题11.【答案】811【解析】当81z =时,得195373x y x y +=⎧⎨+=⎩,解得811x y =⎧⎨=⎩. 【考点】数学文化与方程组的解法12.【答案】2-8【解析】由3z x y =+得133z y x =-+,欲求3z x y =+的最值,即求3z x y =+的最值,即求直线133z y x =-+在可行域内纵截距的最值,由图知,在点A (4,-2),B (2,2)处分别取得最小值和最大值,即min max 43(2)22328z z =+⨯-=-=+⨯=,.【考点】二元一次不等式表示平面区域以及线性规划等知识13.32sin B =,即sin 7B =,由余弦定理得227222cos60c c =+-⨯︒,解得3,1c c ==-(舍).【考点】解三角形中的正弦定理与余弦定理14.【答案】7【解析】设84831881122r rr r r r r T C C x x --+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭g ,令8403r -=,得2r =,此时37T =. 【考点】二项式定理的通项公式15.【答案】(1,4)(1,3](4,)+∞U【解析】当2λ=,由()0f x <得402x x -<⎧⎨⎩≥或24302x x x ⎧-+<⎨<⎩,即24x <≤或12x <<,故不等式()0f x <的解集为(1,4)令()0f x =,得4x =或1x =或3x =,欲使得函数()f x 恰好有2个零点,则使4λ>或13λ<≤.【考点】一元一次不等式、一元二次不等式的解法、函数零点的求法16.【答案】1 260【解析】分两类讨论,第一类不取0,则有224534720C C A =,第二类,取0,则有21145334540C C C A =21145334540C C C A =,一共可以组成1 260个没有重复数字的四位数.【考点】计数原理中排列组合等知识17.【答案】5【解析】设点1122,),((,)A x y B x y ,当直线AB 的斜率不存在时,此时9m =;当直线AB 的斜率存在时,设直线AB 为1y kx =+,代入方程22(1)4x y m m +=>可得22(14)8440k x kx m +++-=,由0∆>得2410mk m +->,由书达定理得121222844,1414k m x x x x k k -+=-=++,由2AP PB =u u u r u u u v 得122x x =-,联立解得1222168,1414k k x x k k =-=++,所以228||8||21144||||k x k k k ==++≤(当且仅当1||2k =时取等号),此时122216881414k k x x k k -==-++g ,而动122442214m x x m k-==-+,解得5m =,经检验,5m =符合题意。
2018浙江卷数学高考真题+答案[1]
2018浙江卷数学高考真题+答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018浙江卷数学高考真题+答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018浙江卷数学高考真题+答案(word版可编辑修改)的全部内容。
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分.考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项"的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式: 若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式11221()3V S S S S h =柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R =π其中12,S S 分别表示台体的上、下底面积,h 表示台体的高球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
2018年浙江数学高考试题及答案
2018年普通高等学校招生全国统一考试(浙江卷)数 学·参考答案一、选择题:本题考查基本知识和基本运算。
每小题4分,满分40分。
1.C2.B3.C4.B5.D6.A7.D8.D9.A10.B二、填空题:本题考查基本知识和基本运算。
多空题每题6分,单空题每题4分,满分36分。
11.8;1112.−2;814.715.(1,4);(1,3](4,)+∞16.1260 17.5三、解答题:本大题共5小题,共74分。
18.本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。
满分14分。
(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-, 由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 19.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。
满分15分。
方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =, 由2,120AB BC ABC ==∠=︒得AC =,由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(Ⅱ)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.学科.网由111111B C A B AC ===得111111cos C A B C A B ∠=∠=,所以1C D =,故111sin C D C AD AC ∠==. 因此,直线1AC 与平面1ABB. 方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,(1,0,0),(0,4),(1,0,2),A B A B C因此111112),2),(0,3),AB A B A C ==-=-u u u r u u u u r u u u u r由1110AB A B ⋅=u u u r u u u u r得111AB A B ⊥. 由1110AB A C ⋅=u u u r u u u u r得111AB A C ⊥.所以1AB ⊥平面111A B C .(Ⅱ)设直线1AC 与平面1ABB 所成的角为θ.由(Ⅰ)可知11(0,(0,0,2),AC AB BB ===u u u r u u u r u u u r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,||||AC AC AC θ⋅===⋅u u u ru u u r u u u r n |n n |. 因此,直线1AC 与平面1ABB. 20.本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 2018年普通高等学校招生全国统一考试(浙江卷)
数 学 本试题卷分选择题和非选择题两部分。全卷共4页,选择题部分1至2页;非选择题部分3至4页。满分150分。考试用时120分钟。 考生注意: 1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定
的位置上。 2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的
作答一律无效。 参考公式:
若事件A,B互斥,则 若事件A,B相互独立,则 若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率
台体的体积公式 其中分别表示台体的上、下底面积,表示台体的高
柱体的体积公式 其中表示柱体的底面积,表示柱体的高 锥体的体积公式 其中表示锥体的底面积,表示锥体的高 球的表面积公式
球的体积公式 其中表示球的半径
选择题部分(共40分) 一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 已知全集U={1,2,3,4,5},A={1,3},则 A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 【答案】C 【解析】分析:根据补集的定义可得结果. 详解:因为全集,,所以根据补集的定义得, 故选C. 点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2. 双曲线的焦点坐标是
A. (−,0),(,0) B. (−2,0),(2,0) C. (0,−),(0,) D. (0,−2),(0,2) 【答案】B 【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标. 详解:因为双曲线方程为,所以焦点坐标可设为, 因为,所以焦点坐标为,选B.
点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为. 3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是
A. 2 B. 4 C. 6 D. 8 【答案】C 【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果. 详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C. 点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等. 4. 复数 (i为虚数单位)的共轭复数是
A. 1+i B. 1−i C. −1+i D. −1−i 【答案】B 【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果. 详解:,∴共轭复数为,选B. 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为. 5. 函数y=sin2x的图象可能是
A. B.
C. D. 【答案】D 【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择. 详解:令, 因为,所以为奇函数,排除选项A,B; 因为时,,所以排除选项C,选D. 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的
A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立. 详解:因为,所以根据线面平行的判定定理得. 由不能得出与内任一直线平行,所以是的充分不必要条件, 故选A. 点睛:充分、必要条件的三种判断方法: (1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分
条件. (2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定
式的命题,一般运用等价法. (3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.
7. 设0的分布列是
ξ 0 1 2
P
则当p在(0,1)内增大时, A. D(ξ)减小 B. D(ξ)增大 C. D(ξ)先减小后增大 D. D(ξ)先增大后减小 【答案】D 【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性. 详解:, , ,∴先增后减,因此选D. 点睛: 8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所
成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则 A. θ1≤θ2≤θ3 B. θ3≤θ2≤θ1 C. θ1≤θ3≤θ2 D. θ2≤θ3≤θ1 【答案】D 【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系. 详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB, 因此 从而 因为,所以即,选D. 点睛:线线角找平行,线面角找垂直,面面角找垂面. 9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b
2−4e·b+3=0,则|a−b|
的最小值是 A. −1 B. +1 C. 2 D. 2− 【答案】A 【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值. 详解:设, 则由得, 由得 因此的最小值为圆心到直线的距离减去半径1,为选A. 点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法. 10. 已知成等比数列,且.若,则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则,令得,所以当时,,当时,,因此, 若公比,则,不合题意; 若公比,则 但, 即,不合题意; 因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如
非选择题部分(共110分) 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。 11. 我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,
值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则
当时,___________,___________. 【答案】 (1). 8 (2). 11 【解析】分析:将z代入解方程组可得x,y值. 详解: 点睛:实际问题数学化,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.
12. 若满足约束条件则的最小值是___________,最大值是___________. 【答案】 (1). -2 (2). 8 【解析】分析:先作可行域,再平移目标函数对应的直线,从而确定最值. 详解:作可行域,如图中阴影部分所示,则直线过点A(2,2)时取最大值8,过点B(4,-2)时取最小值-2.
点睛:线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得. 13. 在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________. 【答案】 (1). (2). 3 【解析】分析:根据正弦定理得sinB,根据余弦定理解出c. 详解:由正弦定理得,所以 由余弦定理得(负值舍去). 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的. 14. 二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.
详解:二项式的展开式的通项公式为, 令得,故所求的常数项为