VOLTE寻呼拥塞分析优化案例
Volte-VoLTE语音质量优化案例精编个

VoLTE语音质量优化案例1:VoLTE窄带与宽带语音质量对比【问题现象】在3GPPLTE中,VoLTE业务编码有AMR-NB窄带和AMR-WB宽带两种编码,两种编码速率具有不同的话音质量,所以又分别称为VoLTE标清语音(或VoLTE12.2kbps)和VoLTE高清语音(或VoLTE23.85kbps)。
【问题分析】AMR-NB和AMR-WB这2种编码具有如下特点:●每20ms产生一个语音包,包括了RTP/UDP/RLC-Security压缩头;●每160ms生成一个SID语音静默包。
●帧长20ms;AMR-NB编码特点为:● 4.75kbps到12.2kbps共8个码率,分别为:4.75、5.15、5.9、6.7、7.4、7.95、10.2、12.2kbps;●采样率为8kHz。
AMR-WB编码特点为:● 6.6kbps到23.85kbps共8个码率,分别为:6.6、8.85、12.65、14.25、15.85、18.25、19.85、23.05、23.85kbps;●采样率为16kHz。
可见两者显着的差异是采样速率不一样,窄带一个语音帧是160个点,宽带一个语音帧采样320个点。
AMRNB的语音带宽范围:300-3400Hz,8KHz采样。
AMRWB 的语音带宽范围:?50-7000Hz,16KHz采样。
用户可主观感受到话音比以前更加自然、舒适和易于分辨。
AMRWB与AMRNB不同之处在于AMRWB按16kHz采样,分别按频率带50~6400Hz?和6400~7000Hz进行编码。
用来降低复杂度,AMRWB将位算法集中到更重要的频率区。
低频带使用ACELP算法进行编码。
添加几个特征来达到一个高的主观质量。
线性预测(LP)算法是在每隔20ms的帧要进行一次线性预测算法,每5ms搜索一次自适应码本,这个过程是在12.8Kbs速率下进行。
高频带是在解码器端使用低带和随机激励的参数重建的,目的是调整与在声音基础上的低频有关的高频带.高频带的声频通过使用由低带LP过滤器产生的LP滤波器进行重建。
(4G学习)中兴VoLTE优化案例5篇经验分享

VOLTE优化案例案例1:异频重定向掉话案例【问题描述】主叫占用广州天河区鱼珠木材市场D-ZLH-3(EARFCN=38100 PCI=83CELLID=135693)小区通话时,信号强度为-101dbm左右,出现一次RRC Connection Release,导致承载拆除,引起一次主叫掉话。
【问题分析】分析测试数据,发现UE占用服务小区广州天河区鱼珠木材市场D-ZLH-3(EARFCN=38100 PCI=83CELLID=135693)在通话的过程中信号越来越差,之后上报测量报告A2事件,eNODEB 收到报告后发起异频重定向判决,下发RRC Connection Release,由异频重定向后,eNodeB 向MME发送ue context release request,mme释放专用承载。
当UE被重定向后在新的小区发起RRC连接,网络只建立了默认承载,UE发送BYE消息,导致掉话。
从地理环境上看,服务小区与UE重定向目标小区相距较远,不需配邻区关系,UE在该路段仅是偶尔测量到目标小区的信号,这种环境极容易触发异频重定向。
【解决方案】关闭异频重定向,复测问题解决,服务小区后台统计指标无异常。
【问题总结】根据拉网统计,目前该类掉话占总掉话次数的82%以上,对测试指标影响非常严重。
异频重定向触发原理:小区间没定义邻区关系,当邻区满足切换条件时,主服务小区无法切换到邻区,基站会给UE下发系统内重定向。
优化办法:通过关闭异频重定向的功能来规避该事件,除此之外,异频邻区的完善需要加大优化力度。
后续解决办法:除了做好邻区优化外,中兴将在下个版本加入基于QCI的异频重定向功能,禁止专用承载的业务发生异频重定向。
案例2:异系统重定向掉话案例【问题描述】VoLTE测试eSRVCC过程中,发现eSRVCC执行的是CCO,而不是PS切换。
而CCO对于VoLTE语音来说,必然导致掉话。
【问题分析】具体如下图所示。
VoLTE呼叫建立时延长案例分析

VOLTE呼叫建立时延长案例分析问题描述呼叫建立时延为VOLTE用户感知竞争力之一,经用户反馈使用VOLTE手机的呼叫建立时延有时较长,针对反馈的问题点进行实际测试,现个别呼叫建立时延在4s以上,影响用户感知,降低了用户满意度。
原因定位无线侧问题描述:正常呼叫建立时延在3s以内,针对用户反馈的问题,我们对网格进行VoLTE拉网测试,呼叫建立时延均在3.1s以上,最高时达3.5S:无线侧信令分析对多轮测试数据进行信令分段统计,筛选出INVITE REQUEST→180 RINGING信令段时间差大于5s的通话。
对超长时延通话的各个信令段占用时长进行统计,发现影响通话时长的主要信令段集中在100 trying->183段。
对超长时延的通话进行信令分析,均为主叫发送INVITE Request 到被叫收到INVITE Request时间长,在此段信令中进行深入分析,为被叫收到Paging 消息耗时长。
针对此情况在端到端信令分析平台上进行回溯分析,发现对被叫寻呼时,一次寻呼未成功,6s后再次寻呼,导致时延额外增加6秒,影响整体呼叫建立时延。
参数调整测试为减小呼叫建立时延,对一次寻呼成功率进行优化提升,因此在eNodeB侧进行最优参数组合优化,“开”寻呼信道干扰随机化开关、“降”寻呼码率、“增”寻呼下发次数,达到提升空口寻呼成功概率。
对测试网格主服务小区进行参数的修改优化,并对金湖网格进行复测,复测后网格的拉网测试呼叫建立时延由最高的3.5s降低到1.99s,大大降低了呼叫建立时延,提高了VOLTE用户感知。
问题原因:主叫发送INVITE Request到被叫收到INVITE Request时间较长,为被叫收到Paging消息耗时长,深入分析问题根因,为一次寻呼未成功,从而二次寻呼导致呼叫建立时延长,其次100 trying->183 这段信令的时延较长导致整体呼叫建立时延较长。
影响范围:全网解决方案通过eNodeB侧最优参数组合优化,“开”寻呼信道干扰随机化开关、“降”寻呼码率、“增”寻呼下发次数,达到提升空口寻呼成功概率,从而解决语音呼叫建立时延长问题。
VoLTE语音质量优化案例(14个)

VoLTE语音质量优化案例1:VoLTE窄带与宽带语音质量对比【问题现象】在3GPP LTE中,VoLTE业务编码有AMR-NB窄带和AMR-WB宽带两种编码,两种编码速率具有不同的话音质量,所以又分别称为VoLTE标清语音(或VoLTE 12.2kbps)和VoLTE 高清语音(或VoLTE 23.85kbps)。
【问题分析】AMR-NB和AMR-WB这2种编码具有如下特点:●每20ms产生一个语音包,包括了RTP/UDP/RLC-Security压缩头;●每160ms生成一个SID语音静默包。
●帧长20ms;AMR-NB编码特点为:● 4.75kbps到12.2kbps共8个码率,分别为:4.75、5.15、5.9、6.7、7.4、7.95、10.2、12.2kbps;●采样率为8kHz。
AMR-WB编码特点为:● 6.6kbps到23.85kbps共8个码率,分别为:6.6、8.85、12.65、14.25、15.85、18.25、19.85、23.05、23.85kbps;●采样率为16kHz。
可见两者显著的差异是采样速率不一样,窄带一个语音帧是160个点,宽带一个语音帧采样320个点。
AMR NB的语音带宽范围:300-3400Hz,8KHz采样。
AMR WB的语音带宽范围:50-7000Hz,16KHz采样。
用户可主观感受到话音比以前更加自然、舒适和易于分辨。
AMR WB与AMR NB不同之处在于AMR WB按16kHz采样,分别按频率带50~6400Hz 和6400~7000Hz 进行编码。
用来降低复杂度,AMR WB将位算法集中到更重要的频率区。
低频带使用ACELP算法进行编码。
添加几个特征来达到一个高的主观质量。
线性预测(LP)算法是在每隔20ms 的帧要进行一次线性预测算法,每5ms搜索一次自适应码本,这个过程是在12.8Kbs 速率下进行。
高频带是在解码器端使用低带和随机激励的参数重建的, 目的是调整与在声音基础上的低频有关的高频带. 高频带的声频通过使用由低带LP 过滤器产生的LP 滤波器进行重建。
VoLTE常见问题及优化策略

五、常见问题分析二 异系统重定向(1/2)
➢问题现象
终端在弱场区域,基站下发盲重定向的RRC Release消息,消息中包含重定向的2G 频点列表。
➢优化方法 1)可以通过调整天线方向角和下倾角、增加天线挂高、更换更高增益天线、 增强RS功率等方法来优化覆盖 2)对于相邻基站覆盖区不交叠部分内用户较多或者不交叠部分较大时,应新 建基站,或增加周边基站的覆盖范围,使两基站覆盖交叠深度加大 3)对于凹地、山坡背面等引起的弱覆盖区可用新增基站或RRU,以延伸覆盖 范围;对于电梯井、隧道、地下车库或地下室、高大建筑物内部的信号盲区可 以利用RRU、室内分布系统、泄漏电缆、定向天线等方案来解决
五、常见问题分析三 RSRP/SINR差(1/2)
➢问题现象 终端在弱场区域,RSRP/SINR过差,导致业务中断,原因多为RTP inactivity 导致RRC Release。 ➢分析方法 查看RRC Release之前的终端测量,确定终端是否处在RSRP/SINR过差区域。
五、常见问题分析三 RSRP/SINR差(2/2)
五、常见问题分析二 异系统重定向(2/2)
➢ 优化方法 1. LTE弱覆盖:优化LTE覆盖 2. 假性弱覆盖:优化切换、重选参数 3. 终端测量B2不及时:一是高通正在验证新的芯片,新芯片支持DRX休
眠期对异频异系统进行测量,缩短测量周期;二是通过删减无用的异 频频点,减少终端测量的频点数以达到缩短测量周期的目的 4. 2G邻区配置错误:做好eSRVCC的邻区精细化规划和周期一致性核查 5. 基站功能改进: 601P02版本可针对语音业务关闭重定向功能
经典案例-内蒙古利用业务分层手段解决警用设备干扰VoLTE优化实践总结-内蒙古-优秀

利用业务分层手段解决警用设备干扰VOL TE优化实践总结1优化背景问题描述:当UE在新华东街与腾飞大道交汇路段附近,主叫占用ECI=62063,PCI=55的小区(RSRP=-90Dbm,SINR=9.9dB)发生未接通。
2问题分析通过分析主被叫通话信令发现呼叫建立过程中,UE占用到警用设备无法正常起呼,因警用设备的小区TAC及ECI异常,UE不能识别,最终T300超时RRC Connection Failur后导致未接通。
3优化思路和手段将众生大厦周边路段利用基于业务的切换功能实现指定L800M承载VoLTE 业务,从而解决警用设备干扰问题。
基于业务的切换实现原理:在建立承载时,基站下发重配消息,消息中携带A5事件,然后UE根据测量到的信息上报A5测量报告,发起异频切换,成功切换至异频小区进行业务。
如针对VOLTE业务开启了基于业务的切换,则在建立QCI1承载过程中下发基于语音业务的切换门限。
互操作策略:为了使手机做数据业务尽量在1800M&2100M网络,打VOLTE 电话在800M网络,800M和1800M&2100M站点按照以下策略实施,空闲态1800M&2100M重选优先级设为5,L800M重选优先级设置为3,在空闲态,终端驻留在1800M&2100M网络下,连接态打开基于语音业务的切换开关,拨打VoLTE 电话时利用基于业务的切换功能切换至L800M网络;正常数据上网时,尽量驻留在1800M&2100M网络上。
参数配置:➢L1800M侧:1)配置基于业务的异频切换开关,参数路径为【修改区-> 管理网元->无线参数 -> LTE FDD-> E-UTRAN FDD小区->测量参数->基于业务的切换开关】,配置基于业务的切换开关为1[通用策略]。
2)配置基于业务类型切换的语音接纳开关,参数路径为【修改区-> 管理网元->无线参数 -> LTE FDD-> E-UTRAN FDD小区->测量参数->基于业务类型切换的语音接纳开关】,配置为开关。
VOLTE-SIP协议异常原因排查优化VOLTE网络总结创新案例

VOLTE-SIP协议异常原因排查优化VOLTE网络总结创新案例广东茂名+ VOLTE-SIP协议异常原因排查优化VOLTE网络总结创新案例目录利用VOLTE-SIP协议分析优化VOLTE网络总结创新案例............................错误!未定义书签。
一、概述 (3)二、创新方案 (3)2.1技术原理 (3)2.1.1 SIP协议定义 (3)2.1.2 SIP协议主要概念模型 (5)2.1.3 SIP协议主要消息 (8)2.1.4 消息格式 (13)2.1.5 SIP协议主要响应码 (16)2.1.6 SIP呼叫过程实例 (17)2.2 SIP协议异常原因优化指导 (18)2.2.1网络侧下发503问题分析 (18)2.2.2呼叫前转号码签约SIP格式,前转失败 (19)2.2.3 CSCF返回的RTA消息报错 (19)2.2.4 呼叫转移失败 (19)2.2.5注册失败,ims回500错误 (20)2.2.6 SIP平台拒绝主叫的INVITE呼叫请求 (20)2.2.7 SIP呼叫主叫用户无法听回铃音 (21)2.3 茂名VOLTE经典问题分析 (21)2.3.1QCI1建立与切换流程冲突,核心网下发INVITE503问题 (21)2.3.2无线信号环境差导致网络侧未收到BYE200 (23)2.3.2 核心网信令丢失导致未收到寻呼 (25)三、经验总结 (26)VOLTE-SIP协议异常原因排查优化VOLTE网络总结创新案例【摘要】本文主要论述通过对VOLTE的SIP协议信令分析对VOLTE问题进行原因挖掘分析,总结出VOLTE优化过程中所遇到的各类异常SIP协议消息的处理思路与方法,优化网络,提升volte用户感知。
【关键字】VOLTE异常事件、SIP消息、响应码【业务类别】VoLTE、流程类一、概述VOLTE日常分析优化过程中经常会遇到出现注册异常、掉话、未接通等异常事件,而L3信令用于呈现的是SIP消息响应码,信令分析时,正确解析L3中的SIP请求或响应码是分析问题的关键,现就前期遇到的异常响应消息进行总结,与大家分享。
经典案例-高铁场景VoLTE优化方法总结

浙江省杭州市VoLTE问题处理最佳实践高铁场景VoLTE优化方法总结1.背景伴随着移动互联网的快速发展,VoLTE对网络的要求比LTE更高,高铁网络面临着频率资源紧张,用户数多,容量受限,频偏效应等一系列问题,现有的部分站点站间距、站轨距已不能满足网络要求。
因此,杭州为实现重点场景“五高一地”高品质优化要求,打造高铁VoLTE精品网,从频率、站址、容量、驻留、公专网干扰等等几方面集中开展高铁网络精确化规划优化。
2.高铁场景VoLTE优化方案2.1高铁场景特点2.1.1 站址结构宏站●站轨距:考虑频偏及倒杆距离,站点距铁路线垂直距离建议在80-150米之间的范围内,对于特殊场景如U型路段,以满足覆盖要求优先,选择能够直视铁路的位置;●站间距:1.8G频段站间距控制在1.1公里之内; 2.1G频段控制在0.8公里之内;●站点分布:对于直线轨道,相邻站点宜交错分布于铁路的两侧,形成“之”字型布局,有助于改善切换区域,有利于车厢内两侧信号质量的均衡。
隧道●隧道内除隧道两头外,内部每500米一个避车洞,为方便施工,LTE漏缆500米一段,即站间距0.5公里。
●隧道群隧道之间的路段用隧道口的H杆进行覆盖,为确保隧道口内外信号有序衔接,使用同一套RRU设备覆盖,即对RRU公分后一路连接高增益天线覆盖隧道外,一路连接漏缆覆盖隧道内。
对于隧道口站点,需要注意扇区绑定方式,如下图,标准组网方案为RRU1和RRU2双拼级联组成一个扇区。
RRU3,和RRU4级联双拼成一个扇区。
实际发现一种错误的组网方式为:RRU1和RRU3级联双拼一个扇区,RRU2和RRU4级联双拼组成一个扇区,这种组网方式下会增加扇区间切换次数。
2.1.2 天线选型高铁场景具有覆盖点集中,轨面高度多样,需要保证铁轨安全等特点,因此高铁的天线选型需要满足以下标准:●高增益天线尽量使用高增益窄水平波瓣天线,更好控制其信号覆盖范围,另一方面减少对大网话务的吸收;●保证挂高天线挂高建议距离火车车顶15米左右,城区路段考虑对公网影响挂高稍低,应保证天线与轨面视通;●保证安全塔桅的倒杆距离需满足如下要求:(塔桅净高+3.1米)< 塔桅至铁轨中心距离;●配置合理LTE为确保覆盖范围和覆盖质量,宏专网每一个基站上配置两个双通道RRU,每个RRU 分别连接一副双极化天线建设方式2.2优化方法2.2.1 覆盖优化常见的RSRP覆盖问题主要有如下几种情况:1)邻区缺失引起的弱覆盖;2)天线方位角/下倾角不合理;3)参数设置不合理引起的弱覆盖;4)缺少基站引起的弱覆盖;5)越区覆盖;6)背向覆盖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VOLTE寻呼拥塞分析优化案例
一、案例背景
VOLTE(Voice over LTE)是指通过LTE网络进行语音通信的技术,它提供了高质量的语音通话和丰富的通话功能。
然而,在实际网络运营中,由于网络拥塞等原因,VOLTE寻呼过程中可能出现延迟或失败的情况,影响用户的通话体验。
因此,我们需要进行VOLTE寻呼拥塞分析优化,以提高寻呼成功率和通话质量。
二、问题分析
1. 寻呼拥塞原因分析:我们需要对VOLTE寻呼拥塞问题进行深入分析,找出导致寻呼失败或延迟的具体原因。
可能的原因包括网络拥塞、信号覆盖不足、信道干扰等。
2. 寻呼成功率分析:对于寻呼成功的情况,我们需要分析成功率,并根据不同地区、时间段等因素进行对比分析,找出成功率较低的地区或时间段,并进一步分析原因。
3. 通话质量分析:除了寻呼成功率外,我们还需要分析VOLTE通话质量,包括音质、时延、丢包率等指标。
通过对通话质量的分析,我们可以找出影响通话质量的因素,并进行优化。
三、数据收集与分析
1. 数据收集:我们需要收集VOLTE寻呼过程中的相关数据,包括寻呼请求次数、寻呼成功次数、寻呼失败次数、寻呼延迟时间、通话质量指标等。
这些数据可以通过网络监测设备、基站设备、用户设备等进行采集。
2. 数据分析:收集到的数据需要进行详细的分析,包括寻呼成功率的计算、寻呼延迟时间的统计、通话质量指标的计算等。
通过对数据的分析,我们可以找出问题所在,并制定相应的优化方案。
四、优化方案
1. 网络优化:针对网络拥塞问题,我们可以通过增加基站、优化网络参数、调
整信道分配等手段来提高网络容量和覆盖范围,从而减少寻呼拥塞情况的发生。
2. 信号优化:对于信号覆盖不足的问题,我们可以通过增加基站或调整天线方
向来改善信号覆盖情况,提高寻呼成功率。
3. 干扰处理:针对信道干扰问题,我们可以通过频谱分析、干扰源定位等手段
来找出干扰源,并采取相应的干扰消除措施,提高寻呼成功率和通话质量。
4. QoS优化:针对通话质量问题,我们可以通过优化QoS(Quality of Service)策略,对VOLTE通话进行优先处理,确保通话质量的稳定性和优良性。
五、优化效果评估
在实施优化方案后,我们需要对优化效果进行评估。
可以通过再次收集
VOLTE寻呼过程的相关数据,并与优化前的数据进行对比分析。
通过对比分析,
我们可以评估优化方案的有效性,并根据评估结果进行进一步的优化调整。
六、总结与建议
通过对VOLTE寻呼拥塞分析优化案例的研究,我们可以得出以下结论:
1. 寻呼拥塞问题可能由网络拥塞、信号覆盖不足、信道干扰等多种因素导致。
2. 通过网络优化、信号优化、干扰处理和QoS优化等手段,可以有效提高VOLTE寻呼成功率和通话质量。
3. 在实施优化方案后,需要进行优化效果评估,以确保优化方案的有效性。
建议:
1. 加强网络规划和优化,提高网络容量和覆盖范围。
2. 定期进行信号覆盖评估,及时调整基站和天线方向。
3. 加强干扰监测和处理,找出干扰源并采取相应措施。
4. 优化QoS策略,确保VOLTE通话的优先处理。
通过以上的优化措施和建议,我们可以有效提高VOLTE寻呼成功率和通话质量,提升用户的通话体验。