海上主墩钢平台计算书
墩身模板计算书

钢模板验算书一、工程概况1、主墩为单曲线墩,墩身最小截面尺寸为3m*11m,最大截面尺寸为15m*3m,为了计算方便取值,墩身截面取最小值11m*3m 。
2、因墩高较低,故采用一次性拼装模板到顶,整体浇筑方式。
3、本计算书只针对砼对模板的侧压力分析,不包含施工时托架计算。
4、混凝土为C50混凝土,浇筑时温度约25摄氏度,混凝土浇筑速度为603m/h。
二、模板设计1、模板按高度分为2m、1m,其中1m为墩顶模板。
2、块件组合:1节模板包括6块正面模板、2块侧面模板,共计8 块模板组成。
3、模板构造:面板采用6mm钢板,边框法兰设置竖肋(t12*100),竖肋为10#槽钢,间距0.3m,模板最外侧采用2[20#槽钢作横向背杠,平向间距1m。
对拉杆采用PSB830精扎螺纹钢,直径为Φ25。
详见构造设计图。
墩身模板截面构造图三、模板验算依据1、计算依据:(1)、《公路桥涵施工规范》对模板的相关要求;(2)、《路桥施工计算手册》>对模板计算的相关说明。
2、荷载组合:(1)、强度校核:新浇砼对侧模板的压力+振捣砼产生的荷载(2)、挠度验算:新浇砼对侧模板的压力(3)、Q235钢材许用应力(新模板是提高系数1.25): 轴向应力: 140Mpa ,新模板计算采用175Mpa . 弯曲应力: 145Mpa ,新模板计算采用181Mpa . 剪应力: 85Mpa ,新模板计算采用106Mpa .弹性模童: Mpa E 5101.2⨯=.(4)、PCB830精轧螺纹钢许用应力为1030Mpa.3、变形里控制值:结构外露模板,其挠度值为≤L/400钢模面板变形≤1.5mm钢模板的钢棱、柱箍变形≤L/5004、计算范围:因墩身截面尺寸不固定,墩身下部截面较小,在固定砼输入的情况下,墩身部分有效压头高度最大,墩顶有效压头高度最小。
因此计算时只计算最不利的施工情况(最大混泥土浇筑速度,墩身下部模板所受混凝土侧压力最大时模板变形)。
钢结构平台设计计算书

哈尔滨工业大学(威海)土木工程钢结构课程设计计算书姓名:学号:指导教师:二零一五年七月土木工程系钢结构平台设计计算书一、设计资料某厂房内工作平台,平面尺寸为18×9m 2(平台板无开洞),台顶面标高为 +4.000m ,平台上均布荷载标准值为12kN/m 2,设计全钢工作平台。
二、结构形式平面布置,主梁跨度9000mm ,次梁跨度6000mm ,次梁间距1500mm ,铺板宽600mm ,长度1500mm ,铺板下设加劲肋,间距600mm 。
共设8根柱。
图1 全钢平台结构布置图三、铺板及其加劲肋设计与计算1、铺板设计与计算 (1)铺板的设计 铺板采用mm 6厚带肋花纹钢板,钢材牌号为Q235,手工焊,选用E43 型焊条,钢材弹性模量25N/mm 102.06E ⨯=,钢材密度33kg/mm 1085.7⨯=ρ。
(2)荷载计算平台均布活荷载标准值: 212q m kN LK =6mm 厚花纹钢板自重:2D 0.46q m kN K =恒荷载分项系数为1.2,活荷载分项系数为1.3。
均布荷载标准值: 2121246.0q m kN k =+=均布荷载设计值:235.174.1122.146.0q m kN k =⨯+⨯=(3)强度计算花纹钢板0.25.26001500a b >==,取0.100α=,平台板单位宽度最大弯矩设计值为:m kN a ⋅=⨯⨯==6264.06.015.16100.0q M 22max α2222max max mm 215mm 87006.02.10.626466M M N N t W <=⨯⨯==γγ (4)挠度计算取520.110, 2.0610/E N mm β==⨯1501166161006.26001046.12110.0v 353333<=⨯⨯⨯⨯⨯==-Et a q a k β 设计满足强度和刚度要求。
2、加劲肋设计与计算图2加劲肋计算简图(1)型号及尺寸选择选用钢板尺寸680⨯—,钢材为Q235。
(完整版)钢模板计算书

主墩大块钢模验算书一、薄壁墩概况1、两河口下游永久交通大桥主线2#、3#桥墩均采用双薄壁墩,薄壁墩宽8.0m ,厚2.0m ,双壁中心间距6.0m ,双壁净距为4.0m ; 2#墩身高度50m ,3#墩身高度54m 。
2、每次浇筑节段高度:4.5m (3.0m+1.5m )。
二、薄壁墩模板设计1、按高度分为1.5m 、3.0m 两种模板,1.5m 高度的设8套,3.0m 高度的设4套。
2、块件组合:一套1.5m 高模板包括800×150cm 大板两块、200×150cm 大板两块;一套3.0m 高模板包括800×300cm 大板两块、200×300cm 大板两块。
模板构造:面板采用6mm 钢板,背面设置竖向小肋(100×5mm 扁钢/间距0.25m ),每隔0.5m 高度设置一层工10#工字钢水平肋,模板最外侧采用2[10#槽钢作竖向背杠,平向间距1.2m 。
详见构造设计图。
三、模板验算依据1、 计算依据:⑴、《公路桥涵施工规范》对模板的相关要求;⑵、《路桥施工计算手册》对模板计算的相关说明。
2、 荷载组合:⑴、强度校核:新浇砼对侧模板的压力+振捣砼产生的荷载⑵、挠度验算:新浇砼对侧模板的压力⑶、采用Q235钢材:轴向应力:140 1.25()175MPa ⨯=提高系数弯曲应力:145 1.25()181MPa ⨯=提高系数剪 应 力: 85 1.25()106MPa ⨯=提高系数弹性模量:52.110E MPa =⨯3、 变形量控制值:结构外露模板,其挠度值为≤L/400钢模面板变形≤1.5mm钢模板的钢棱、柱箍变形≤L/500四、模板验算1、 荷载⑴混凝土浇筑速度:两岸主墩的浇筑面混凝土供应速度为15~243/m h ,因两薄壁墩的断面为322m ,故浇筑速度为:0.469~0.75/m h ,从偏于安全考虑,下述计算中浇筑速度取值为0.75/m h 。
大桥主墩承台钢板桩设计计算书_secret

x 大桥主墩承台钢板桩设计 计算 书主墩承台钢板桩计算已知条件:1、施工水位:2、平台土围堰标高:承台底面标高:厚4.8 m 。
3、土的重度为:内摩擦角Ф=20.1°4、距板桩外1.5m 20KN/ m 2计。
5、围堰内50cm 厚C20封底砼。
6、拉森Ⅳ型钢板桩 W=2037cm 3,[f]=200MPa钢板桩平面布置、板桩类型选择,支撑布置形式,板桩入土深度、基底稳定性设计计算如下:(1)作用于板桩上的土压力强度及压力分布图 ka=tg а(45°-υ/2)= tg а(45°-20.1/2)=0.49Kp= tg а(45°+Ф/2)= tg а(45°+20.1/2)=2.05 板桩外侧均布荷载换算填土高度h1, h1=q/r=20/18.8 =1.06m+17.50m 以上土压力强度Pa 1:Pa 1=r*(h1+1.5)Ka=18.8*(1.06+1.5)*0.49 =23.6KN/m2+17.50m 以下土压力强度Pa 2:Pa 2=[r*(h1+1.5)+(r-rw )*(17.5-11.67)]*Ka =[18.8*(1.06+1.5)+()18.8-10*5.83]*0.49 =48.7KN/m 2水压力(围堰抽水后)Pa 3: Pa 3=rw*(17.5-11.67)=10*5.83=58.3 KN/m 2则总的主动压力(土体及水压力)Ea :Ea=(23.6*2.56)/2+23.6*(2.56+5.83)+(48.72-23.6)*5.83/2+58.3*5.83/2 =471.4 KN/m 2合力Ea 距承台底的距离y :471.4*y=23.6*2.56*5.83+2.56/3+23.6*5.83*5.83/2+(48.72-23.6)/2*5.83*5.83/3+58.3*5.83/2*5.83/3 =2.28m(2)确定内支撑层数及间距按等弯距布置确定各层支撑的间距,根据拉森Ⅳ型许跨度h:h=6[f]w rka3=6*200*2037*10518.8*103*0.493=298cm =2.98mh1=1.11h=1.11*2.98=3.3m h2=0.88H=0.88*2.98=2.62m h3=0.77h=0.77*2.98=2.3m根据具体情况,确定采用的布置如右图所示: (3)各内支撑反力采用简支梁法近似计算各内支撑反力P1=23.6×2.56/2+23.6×(0.34+2.89/2)+31.22×0.34/2+31.22×2.89/2+(95.97-31.22)/2×2.89/2 =146.15 KN/mP2=95.97×(2.6/2+2.89/2)+(130.62-95.97)/2×2.6/2-(95.97-31.22)/2×2.89/2 =227.11KN/m(4)钢板桩入土深度:R土的重度考虑浮力影响后,取r=8.8KN/m 2 Kn=r(Kp-Ka)=8.8*(2.05-0.49) =13.73 KN/m 3则r*( Kp-Ka)*X*X*X*2/3*1/2 =2.28*471.4 得X=6.12 取安全系数K=1.1 X=1.1*6.12=6.73m 所以钢板桩的总长度L 为: L=6.73+1.06+7.33=14.76m选用钢板桩长度16.0m ,7号墩考虑为(5) 基坑底部的隆起验算考虑地基土质均匀,依据地质勘察资料,指标如下:r=18.8 KN/m 3,c=21.1Kpa ,q=20 KN/m 2 由抗隆起安全系数K=2πC/(q+rh )≥则:h ≤(2πC -1.2q)/1.2r≤(2*3.14*21.1-1.2*20)/1.2*18.8 ≤ 4.8m即钢板桩周围土体不超过4.8m 时,地基土稳定,不会发生隆起。
水上平台设计及计算

洋溪河大桥水上平台设计及计算钱洛路新建一期工程的主要工程为洋溪河大桥水中灌注桩的施工,洋溪河大桥总长334.6m,其中主桥为预应力混凝土简支组合箱梁,全长30m;引桥为20m、25m预应力混凝土空心板梁,全长300m;跨径组合为:(20+20+25+20)+(20+20+25)+(25+30+20)+(20+20+25+20+20)m,全桥共有88根桩基。
其中7#、8#、9#、10#、11#墩桩基位于洋溪河中,有一定的施工难度,经过技术、经济等方面考虑,决定搭设水上作业平台进行桩基的施工。
一、编制依据1、钱洛路新建一期工程施工图设计2、相关水文资料和地质资料及现有施工条件3、相关海事、航道的法律、法规及通航要求4、施工期间人员、各种机械的施工荷载和空间要求二、编制原则1、满足通航、防洪有关要求,确定作业平台位置、大小2、本着“安全第一”的原则,确保施工期间人员设备的安全及通航船只的安全3、以经济实用、减低成本为原则,达到易施工、易拆卸的要求,提高所使用的材料周转使用。
三、现场条件简介1、现场情况现有河道150M宽,主航道宽30M,现在水位高程1.90M,历年设计水位2.38M,主墩处水深4.0M,附近驳岸高程2.33M。
2、地质情况高程土质极限承力KPa 极限摩阻力KPa-2.9~-5.9M 粘土 190 40四、工程特点及难点1、作为施工人员行走和钻机的轨道,便道和水上平台是极为重要的工程,对安全和稳定性要求极高,施工环境均在水中,施工难度大。
2、便道和平台施工木桩基础均位于水中,在水中进行测量放样控制、定位、施工难度大。
3、沿路线方向有一污水管线位于中分带位置,施工时要为其留有一定的安全距离。
五、排架施工工艺1.木桩的插打木桩采用振动沉桩的方法进行木桩的施工,采用船载10吨的振动打桩锤进行施工,木桩插打按最后的入土深度控制,通过桩承载力的计算洋溪河桥木桩打入粘土层不小于2米,即可保证单桩承载力满足要求。
钢栈桥和钢平台计算书

钢栈桥和钢平台计算书中交一公局集团技术中心二零二零年三月目录1计算说明................................................................................................................................................ - 2 -1.1设计依据 (2)1.2技术标准 (2)2栈桥结构 ................................................................................................................................................. - 3 - 3钢平台结构 ............................................................................................................................................. - 4 - 4钢栈桥主要荷载参数.............................................................................................................................. - 5 -4.1QUY75履带吊 (5)4.2土方车荷载 (6)4.3其他荷载 (6)5钢栈桥上部结构检算.............................................................................................................................. - 6 -5.1桥面板验算 (6)5.2横梁强度验算 (7)5.3贝雷梁验算 (8)5.4桩顶承重梁验算 (11)6钢平台上部结构验算............................................................................................................................ - 13 - 7钢管桩计算 ........................................................................................................................................... - 13 -7.1钢管桩长度计算 (13)7.2钢管桩强度及稳定性验算 (14)8钢管桩基础锚固深度计算.................................................................................................................... - 17 -8.1锚固体的弯矩零值点计算 (18)8.2锚固体的弯矩零值点的反力计算 (18)9采用MIDAS CIVIL对栈桥进行验算................................................................................................ - 20 -钢栈桥和钢平台计算书1计算说明1.1设计依据《公路桥涵设计通用规范》(JTG D60-2015)《公路工程技术标准》(JTG B01-2003)《钢结构设计规范》(GB 50017-2003)《路桥施工计算手册》(周水兴等编著)《港口工程荷载规范》(JTJ215-98)《港口工程桩基规范》(JTJ254-98)1.2技术标准1.2.1荷载1)QUY75型起重机,自重61t履带吊,钢围堰最大分块考虑为22t,自重加吊重重83t;2)土方运输车最大装土25m³,自重15t,自重加土方重量为70t;3)公路-Ⅰ荷载;由于公路-Ⅰ级的车辆荷载的轴重少于运土车的轴重,在栈桥和平台的局部加载的计算过程中,不考虑公路-Ⅰ级的车辆荷载,分别考虑如下工况:履带吊、运土车;在栈桥和平台的整体计算时,分别考虑如下工况:运土车、公路-Ⅰ级车道荷载、履带吊。
海上钻孔平台计算书精品文档7页
拉各斯轻轨四期跨海桥钻孔平台结构计算中国铁建大桥工程局集团有限公司二O一四年八月目录1概述 02、计算依据 03、基本资料 04钻孔平台计算 (1)4.1贝雷梁计算结果 (2)4.2分配梁计算结果 (2)4.2钢管桩计算结果 (2)5.结论 (5)1概述平台采用可拆装式贝雷梁拼装而成,钻孔平台平面布置图如下。
平台布置图2、计算依据1、《拉各斯轻轨四期跨海桥施工设计图》2、《工程地质勘测报告》3、《钢结构设计规范》4、《铁路桥涵设计基本规范》5、《港口工程技术规范》6、简明施工计算手则7、《铁路桥涵施工规范》8、《装配式公路钢桥多用途使用手册》3、基本资料1、设计水位:根据委托方提供的水文资料确定钻孔施工期间水位标高取+0.94米。
2、材料:除贝雷梁外,其他材料均采用Q235b;由于平台为临时结构,Q235b钢材弯曲容许应力取170MPa,剪切容许应力取100MPa,局部承压应力为210MPa。
3、荷载: (1)水流荷载设计水流速度为1.0m/s ,考虑最大水深为17m ,计算水流力如下: 作用于结构上的水流力按下式计算:2 2.92/2w w F C v A kN m ρ==式中:wF ——水流力标准值(KN);v ——水流设计速度(m/s);wC ——水流阻力系数,平台桩断面为圆形断面,其0.73w C =;ρ——水的密度,淡水取1t/m3;A ——计算构件与水流方向垂直平面上的投影面积(m2)。
其作用点位于水面以下1/3处。
(2)钻机荷载考虑三台GPS15B 钻机交错进行钻孔作业,单台钻机按自重200kN 计,考虑1.2冲击系数,钻机荷载由四点支承,各支点受力均为:200×1.2÷4=60kN ;(3)平台堆载:2kN/m 2(4)风荷载:取10年一遇基本风压0300W Pa = 4.计算内容(1)验算平台梁的强度、刚度; (2)验算桩的承载能力;4钻孔平台计算为简化计算,钻机施工时荷载以集中荷载形式作用于贝雷梁上,以一片贝雷梁计算,一片3m 贝雷梁自重为2.7kN ,考虑附属结构及连接系对贝雷梁取1.3自重系数,则一片贝雷梁的自重荷载为 2.7×1.3=3.5kN ,换算成线性均布荷载为3.5/3=1.2kN/m 。
主墩钢板桩围堰受力计算书
某大桥主墩水中承台钢板桩围堰设计书一、工程概况某大桥主墩河床标高较高,其承台施工适宜于采用钢板桩围堰,本设计书以河床标高最低的32#墩作为算例。
承台平面尺寸为9.5×35.9m,厚度为4m,拟采用德国拉森(Larseen)Ⅳ型锁口钢板桩施工。
桥位处最高潮水位 6.0m,最低潮水位 3.8m,最大水流速度V=1.50m/s,河床标高为-1.5m。
河床地质情况为,上覆为较薄冲积层,其次为淤泥质亚粘土(流塑状),内摩擦角ψ为7°,粘结力c为4.1kPa,天然容重γ为16.9KN/m3,地基容许承载力[σ]=50kPa。
二、地基承载力验算主墩承台共分三层浇筑,底层、第二层及顶层厚度分别为1.5m、1.25m及1.25m,设计要求”每浇一层间隔时间7~12天,同时下层混凝土应达到80%强度才能浇筑上层混凝土”。
因此地基承载力验算,如果底层混凝土能承重第二层混凝土,则地基承载力可只考虑底层混凝土的施工荷载。
首先,计算底层混凝土强度达到80%设计强度即强度为28MPa的承载力,容许抗拉应力[σ]=1.2MPa。
因为主墩承台为群桩,底层混凝土为双向板,但为简化计算(且偏于安全),按桩的最大间距5.6m单向简支板计算,取板宽1m。
q=24×1.25(第二层混凝土重量)+26×1.5(底板自重)+2.0(振捣荷载)=71kPa/m则最大弯矩Mmax=1/8×71×5.62=278.32kN.m不考虑低层钢筋的作用,以混凝土作为受力截面,其最大拉应力为σl=M/(bh2/6)=6×278.32/(1×1.52)=742.2kPa=0.74MPa<[σ]=1.2MPa,故安全,底层混凝土不会出现裂缝。
其次,验算基底承载力,基底荷载为σ=1.5×24+2=38kPa<[σ]=50kPa。
故基底承载力完全满足要求(尚未考虑4.2m砂垫层的应力扩散作用)。
墩柱模板计算书
墩柱模板计算书主墩最大墩柱尺寸为高14.4m、宽11.3m、厚2.5m,按最大墩柱尺寸计算。
墩高14.4m分两次浇筑,第一次浇筑8米,第二次浇筑剩余部分。
浇筑速度按4m/h考虑,砼冲击荷载为6KN/m2,振捣荷载为4KN/m2。
砼密度取25KN/m2。
1、面板计算砼荷载Pa=0.22*γ*t0*K1*K2*√ν取K0=1;K2=1.15;t0=1hPa=0.22*25*1*1*1.15*√4=12.65KN/m2侧向总荷载p=12.65+6+4=22.65 KN/m2钢模面板棱间距为400mm*400mm,面板厚为4mm,按二边固结计算。
强度计算取1mm宽的板条作为计算单元线荷载q=0.022.65*1=0.02265N/mm最大弯矩M=K*q*L2查表得K=0.0698M max=0.0698*0.02265*400*400=253N.mmW=b*h2/6=1*42/6=2.67mm3σmax=M max/W=253/2.67=94.8Mpa<σ=[180]Mpa 满足要求挠度计算B0=Eh3/12(1-υ2) 取υ=0.3; E=2.1*105MPaB0=2.1*105*43/[12*(1-0.32)]=12.3*105Nmmω=K f*q*L4/B0 查表得K f=0.00192ω=0.00192*0.02265*4004/(12.3*105)=0.9mm<1.5mm满足要求2、 肋的计算水平肋用2[8槽钢,间距为1m ;竖向肋用2[10,间距为1.5m 。
[8槽钢:W=25.3*103mm 3 I=10.1*105 mm 4S=1024.8 mm 2[10槽钢:W=39.5*103mm 3 I=19.8*105 mm 4取三跨连续进行计算强度 M=K*q*L 2 查表得K=0.08=0.08*22.65*1500*1500=4.1*106N .mm σmax =M max /W=4.1*106/(2*25.3*103)=81Mpa<σ=[180]Mpa 满足要求挠度ω=K f *q*L 4/B 0 查表得K f =0.677 ω=0.677*22.65*15004/(100*2.1*105*2*10.1*105)=1.8mm<1500/500=3mm 满足要求剪力V B =K V *q*L 查表得K V =0.60=0.6*22.65*1500=20385Nτ=VB /S=22950/(1024.8*2)=9.9Mpa<[85]MPa3、拉杆验算间距为100cm*150cm布置N=1500*1000*0.02265=33975N采用ф18拉杆A=9*9*3.1415926=254.5mm2σmax=N/A=33975/254.5=133.5Mpa>[140] Mpa满足要求。
墩柱钢模板计算书
墩柱模板计算1、工程概况为保证墩柱外观质量,做到内实外美,主线高架桥、组合立交以及奉化江大桥边墩墩柱均采用大块钢模进行施工。
根据各墩柱设计高度,模板节高主要分为:3.5m(顶层)、3.0m(顶层)、5.0m(标准节)、3.0m(标准节)、2.0m(标准节)、1.0m(调整节)、0.5m(调整节)、0.2m(调整节)及0.1m(调整节),分为圆弧和直线段模板,每个墩柱根据实际墩柱高度选择模板进行组合达到最佳。
连接墩墩柱模板采用6mm钢板做面板,以[8#槽钢作竖楞,以[25#槽钢和[14#槽钢作横向背带,以Φ24圆钢作拉杆,连接螺栓采用BR8.8 M16*60,如下图所示。
现对连接墩模板设计进行受力计算。
模板拼装平面示意图2、侧模受力计算2.1混凝土侧压力计算F 1 =0.22γctβ1β2V½=0.22×24×{200/(25+15)}×1.2×1.15×1.5½=44.62(kN/㎡)式中:F1—新浇混凝土对模板的最大侧压力;γc—砼的重力密度(KN/ m3),取24 kN/ m3;t—新浇砼的初凝时间(h)t=200/(T+15);T为砼浇筑时温度,通常取25℃;v—混凝土的浇筑速度(m/h),本次取1.5 m/h;β1—外加剂影响系数;掺具有缓凝作用的外加剂时取1.2;β2—混凝土坍落度影响修正系数,取1.15;F 2=γCH=24×3=72(kN/㎡)取最小值,故最大侧压力为44.62 kN/㎡。
2.2混凝土侧压力设计值F= F1×1.2×0.85=44.62×1.2×0.85=45.51 kN/㎡2.3倾倒混凝土时产生的水平荷载用串筒输出混凝土,倾倒时产生的水平荷载为2 kN/㎡荷载设计值:2×1.4×0.85=2.38 kN/㎡2.4 6mm钢面板验算钢模板厚6mm,计算宽度取2000mm,E=206000 N/mm2;I板=2000×63/12=36000mm4;W板=2000×152/6=12000mm3;[σ钢板] =215MPa;[W钢板] =1.5mm,内楞间距300mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 结构设计及计算模型
效果图
二、荷载取值
1 9m 3罐车荷载
荷载模型
荷载模型
最不利位置为后轮作用在一根工字钢上,作用长度为0.2m ,荷
载力为3
17010350/0.2
k q kN m ⨯=
=,按照1.4倍荷载系数,0.05倍冲击系数,1350 1.45=507.5/q kN m =⨯,计算I20工字钢分配梁及贝雷梁使用。
计算1㎝厚钢板时采用均布荷载值2
2140
583.33/20.60.2
k q kN m ==⨯⨯考虑。
2 吊车荷载
现按照35t 汽车吊吊装20t 荷载,支腿全部打开的形式来考虑,荷载模型为:
荷载模型
支腿B 处的反力最大为393kN ,按照支腿下部支垫1m ×1m 垫板考虑将支腿荷载均匀分散至钻孔平台上。
因此在计算时考虑三根I20工字钢受力,每根承受的荷载值为3
1
39310131/31
k q kN m ⨯==⨯吊,考虑系数
为1.45后荷载取值为1131 1.45=189.95/q kN m =⨯吊。
其他按照43kN 计算
32
431014.33/31
k q kN m ⨯==⨯吊,214.33 1.4520.783/q kN m =⨯=吊。
3 履带吊荷载
履带吊50t (计算中考虑最大吊重20t ),不吊装重物时自身重量为35.28t ,现按照配重后吊装20t 计算,受力模型如下:
荷载模型
因此在计算时考虑一根I20工字钢受力,每根承受的荷载值为56kN/m ,考虑系数为1.45后荷载取值为 1.4556=81.2/q kN m =⨯履。
4 钻机荷载
钻机按照10t 考虑,钻机尺寸为10m ×3m ,按照均布荷载计算为:
3
210010 3.33/103
k q kN m ⨯==⨯,计算时按照下部7根I20工字钢受力长度为
2m ,每根工字钢的荷载值为: 31100107.14/72
k q kN m ⨯==⨯钻;工作状态下重量按照430kN 计算荷载值为32
4301030.7/72
k q kN m ⨯==⨯钻受力模型为:
非工作状态
工作状态
5 泥浆池荷载
泥浆池尺寸为3m ×4m ×2m ,泥浆的密度为1.2g/cm 3,按照满布计算。
泥浆池为钢模板拼装制作,自身重量为42kN,泥浆重量为288kN ,342+288
1012.22/93
k q kN m =
⨯=⨯池。
泥浆池荷载模型
6 荷载工况
施工过程中主要存在以下四种工况:
工况一:43t 钻机钻孔工作荷载+泥浆池荷载;
工况二:20t 钻机荷载+50履带吊吊放钢筋笼(16.5t );
工况三:20t 钻机荷载+35t 吊车首盘料斗(26.5t )荷载+9m 3罐车荷载;
通过工况分析,工况三为施工中最不利荷载工况,验算时主横梁、主纵梁、螺旋钢管桩受力时取用该工况;验算桥面板、分配横梁时取用50t 吊车车轮荷载;工况一验算平台变形对钻孔桩施工的影响。
三、荷载工况验算
1 荷载工况一
钻机荷载工作状态下重量按照430kN 计算下部为6个I20 工字钢,荷载值为3
2
4301027.56/6 2.6
k q kN m ⨯==⨯钻。
泥浆池荷载为
342+288
1011/103
k q kN m =
⨯⨯=⨯池。
荷载模型如下: 受力模型
计算结果
Mn16材料
变形图
通过计算满足要求 2 荷载工况二
20t 钻机荷载钻机按照10t 考虑,钻机尺寸为10m ×3m ,按照均
布荷载计算为: 3
210010 3.33/103
k q kN m ⨯=
=⨯,计算时按照下部7根I20工字钢受力长度为2m ,每根工字钢的荷载值为:
31
100107.14/72
k q kN m ⨯==⨯钻; 现按照35t 汽车吊吊装20t 荷载,支腿全部打开的形式来考虑,荷载模型为:
荷载模型
支腿B 处的反力最大为393kN ,按照支腿下部支垫1m ×1m 垫板考虑将支腿荷载均匀分散至钻孔平台上。
因此在计算时考虑三根I20工字钢受力,每根承受的荷载值为3
1
39310131/31
k q kN m ⨯==⨯吊,考虑系数
为1.45后荷载取值为1131 1.45=189.95/q kN m =⨯吊。
其他按照43kN 计算
32
431014.33/31
k q kN m ⨯==⨯吊,214.33 1.4520.783/q kN m =⨯=吊
受力模型
Q235材料
Mn16材料
3 荷载工况三
罐车满载时:罐车荷载值:最不利荷载形式就是满载罐车形式至履带吊位置处,该处单轴后轮为一根I20工字钢承重。
每个双后轮的荷载值为37010116.667/0.6
q kN m ⨯==后
罐,前轮的荷载值为
33510116.667/0.3
q kN m ⨯==罐前。
履带吊的荷载:履带吊50t (计算中考虑最大吊重20t ),不吊装重物时自身重量为35.28t ,现按照配重后吊装20t 计算,受力模型如下:
荷载模型
履带吊总重按照50t 计算,承重工字钢为10根,单边长度为0.7m ,
荷载值为35001035.714/100.72
q kN m ⨯==⨯⨯k 履。
受力模型
Q235材料
Mn16材料
反力图4 荷载工况四
受力模型
计算结果。