求不定方程整数解的常用方法

合集下载

不定方程常用六大解法

不定方程常用六大解法

不定方程常用六大解法不定方程,听起来是不是有点高深?其实嘛,这就像找一把钥匙,钥匙能打开无数扇门。

今天咱们就聊聊不定方程的常用六大解法,轻松又幽默地走一遭,保证你听了后,能够眉开眼笑。

我们得说说“枚举法”。

这法子就像是逛超市,看见什么就试什么。

对于简单的不定方程,咱可以一个个地把可能的解都试一遍,最后总能找到那个合适的,简直就是开盲盒的乐趣!比如,假如有个方程让你找两个数,能不能说得通呢?你就一个个试着往里代,嘿,看看有没有合适的答案,简直像是在和数学玩捉迷藏。

接下来是“辗转相除法”。

这法子就像是把问题拆开,从大到小,一步步走。

这就像是做减法,遇到难题,咱就把它分解成更小的部分,慢慢来。

比如说你有个复杂的方程,先算出个简单的结果,然后再逐步递推,真是稳扎稳打,像是爬山一样,一步一个脚印,最后能看到山顶的美景。

然后,我们不能忘记“数形结合法”。

这玩意儿就像把方程画成图,形象化的东西总是让人觉得好理解。

想象一下,把数轴上点一点,给每个可能的解都标上一个小旗子,嘿!一眼就能看出哪些地方有解,哪些地方是死胡同,简直就像开了一场小小的数学派对,大家欢聚一堂,热热闹闹。

再往下说“求解特解法”。

这个方法有点像找特定的那种解,比如你想找一个特定的答案,可以试着先求出特解,然后再加上一些通解,哇,简直就是在做数学的“DIY”。

把各种材料拼凑在一起,最终呈现出一个完整的方程,就像做蛋糕,先有底再加上奶油,最后切开一看,哇,真香!接着咱们说说“同余法”。

这玩意儿有点像打麻将,讲究的是配合和策略。

你得找到一些数字之间的关系,像是把牌搭配起来,才能找到那种刚刚好的解。

用同余法解决不定方程,就像是在解谜,你得灵活应对,变换策略,嘿,最后能把谜底揭开,真是让人倍感成就感。

最后得提一下“二次方程法”,听上去很专业对吧?但其实不然。

这个方法就像是利用已知的解来推导未知的解。

比如说,你已经知道了一个方程的解,接着就可以运用二次方程的方法,推导出更多的解,简直就像是在编故事,从一个角色引出另外的角色,最后形成一个完整的故事链。

不定方程全部整数解的表示

不定方程全部整数解的表示

不定方程全部整数解的表示
不定方程是一种未知数的个数多于方程个数的方程,它没有唯一解,但可以找到一组解,或者证明没有整数解。

要表示不定方程的全部整数解,首先需要将方程进行变形以使其只包含加法和乘法运算。

这可以通过使用模运算来实现。

假设我们的不定方程是ax + by = c,我们可以将其改写为ax + by mod n = c,其中n 是一个大质数。

然后,我们可以使用暴力枚举法来找到所有整数解x 和y。

这可以通过以下步骤实现:
1.对于x 从0 到n-1,计算ax mod n 和by mod n。

2.如果(ax + by) mod n = c,则(x, y) 是一个整数解。

3.对于找到的每个整数解(x, y),可以继续寻找下一个整数解,直到所有整数
解都被找到。

这种方法可以找到不定方程的所有整数解。

不定方程的通解

不定方程的通解

不定方程的通解一、引言不定方程是数学中的一类基本问题,它的解决方法和通解对于数学研究以及应用领域都具有重要意义。

本文将对不定方程的通解进行详细探讨,介绍其定义、解决方法以及应用。

二、不定方程的定义不定方程是指形如ax + by = c的方程,其中a、b、c为已知整数,而x、y为未知整数。

不定方程的解是指满足这个方程的所有整数解的集合。

三、求解不定方程的方法1. 欧几里得算法欧几里得算法,也称为辗转相除法,是解决不定方程的常用方法之一。

它的基本思想是利用整数除法的性质,将一个大的数表示为另外两个数的线性组合。

通过迭代运算,最终可以得到不定方程的通解。

2. 扩展欧几里得算法扩展欧几里得算法是对欧几里得算法的扩展,它可以求解不定方程的特解。

通过扩展欧几里得算法求解得到的特解,再利用通解的性质,可以得到不定方程的通解。

3. 线性同余方程线性同余方程是不定方程的一种特殊形式,形如ax ≡ b (mod m)。

解决线性同余方程的方法可以应用于一般的不定方程。

通过求解线性同余方程,可以得到不定方程的特解,从而得到通解。

四、不定方程的应用不定方程在密码学、数论、组合数学等领域都有广泛的应用。

其中,密码学中的离散对数问题就是一个不定方程的应用。

离散对数问题是指求解形如a^x ≡ b (mod m)的方程,其中a、b、m为已知整数,x为未知整数。

通过求解离散对数问题,可以实现密码算法中的加密和解密操作。

五、结论不定方程的通解是数学研究和应用中的重要内容,它的求解方法和应用领域都非常广泛。

本文介绍了不定方程的定义、解决方法以及应用,并通过具体的例子进行了说明。

希望读者通过本文的阅读,对不定方程有更深入的了解,并能够在实际问题中灵活运用。

数学竞赛中方程整数解的实用求法

数学竞赛中方程整数解的实用求法

数学竞赛中方程整数解的实用求法(本讲适合初中)近年来,在各级各类数学竞赛中,方程整数解的问题备受关注,它将古老的整数理论与传统的初中数学知识相综合,涉及面宽、范围广,往往需要灵活地运用相关概念、性质、方法和技巧. 笔者根据自己的体会讲讲求解这类问题的方法和基本思考途径,供读者参考.1 不定方程的整数解一般地,不定方程有无数组解. 但是,若加上限制条件如整数解等,就可以求出确定的解. 由于含参数的方程的整数解多能转化为不定方程求解,所以先讲不定方程整数解的求法. 常用的有下述三种方法.1.1 因式分解法这是最常用的方法,它适用于一边可以分解因式,另一边为常数的方程. 根据是正整数的惟一分解定理:每一个大于1的正整数都可以惟一地分解成素数的乘积. 方法是分解常数后构造方程组求解.例1 求方程xy +x +y =6的整数解.(1996,湖北省黄冈市初中数学竞赛)解:方程两边加上1,得xy +x +y +1=7.左边=(x +1)(y +1),右边=1×7=(-1)×(-7).故原方程的整数解由下列方程组确定:⎩⎨⎧++;=,=7111y x ⎩⎨⎧++;=,=1171y x ⎩⎨⎧++;=-,=-7111y x ⎩⎨⎧++.1171=-,=-y x 解得⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧.2882066044332211=-,=-;=-,=-;=,=;=,=y x y x y x y x 1.2 选取主元法有些含有二次项的不定方程,可以选取其中的某一变量为主元,得到关于主元的二次方程,再用根的判别式△≥0定出另一变量的取值范围,在范围内选出整数值回代得解.例2 求方程7322=yxy x y x +-+的所有整数解. (第十二届全俄数学竞赛)解:以x 为主元,将方程整理为3x 2-(3y +7)x +(3y 2-7y)=0因x 是整数,则△=[-(3y +7) ]2-4×3(3y 2-7y )≥0 ⇒931421-≤y ≤931421+ ⇒整数y =0,1,2,3,4,5.将y 的值分别代入原方程中计算知:只有y =4或5时,方程才有整数解,即x 1=5,y 1=4;x 2=4,y 2=5. 1.3 整式分离法当分式中分子的次数不小于分母的次数时,可将分子除以分母,把整式(即所得商式)分离出来.若所得余式为常数,则用倍数约数分析法求解较容易;若余式不是常数,则可以根据实际情况构造二次方程,选取原先变量为主元求解. 例3 题目同例1.解:用含y 的式子表示x ,得x =16+-y y . 分离整式得x =-1+17+y . 因x 为整数,则17+y 为整数.故y +1为7的约数,y +1=±1,±7.(笔者注:这种思考方法就是倍数约数分析法)得y =0,-2,6,-8.进而x =6,-8,0,-2.2 含参数的二次方程的整数解这类整数根问题,近年考查最频繁.实用思考途径有下列四种.2.1 途径一:从判别式入手因为一元二次方程ax 2+bx +c =0在△=b 2-4ac ≥0时有根x =ab 2∆±-,所以要使方程有整数根,必须△=b 2-4ac 为完全平方数,并且-b ±∆为2a 的整数倍.这是基本思想.常用方法如下.1. 当△=b 2-4ac 为完全平方式时,直接求方程的解,然后解不定方程.例4 已知方程a 2x 2-(3a 2-8a )x +2a 2-13a +15=0(其中a 为非负整数)至少有一个整数根.那么,a =_________.(1998,全国初中数学竞赛)解:显然a ≠0.故原方程为关于x 的二次方程.△=[-(3a 2-8a )]2-4a 2(2a 2-13a +15)=[a (a +2)]2是完全平方式.故x =222)2()83(aa a a a +±- 即 x 1=a a 32-=2-a 3,x 2=a a 5-=1-a5. 从而,由倍数约数分析法知a =1,3或5.2. 当△=b 2-4ac ≥0且不是完全平方式时,一般有下列三种思考途径.(1)利用题设参数的范围,直接求解.例5 设m ∈Z ,且4<m <40,方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.解:因方程有整数根,则△=[-2(2m -3)]2-4(4m 2-14m +8)=4(2m +1)为完全平方数.从而,2m +1为完全平方数.又因m ∈Z 且4<m <40,故当m =12或24时,2m +1才为完全平方数.因为x =(2m -3)±12+m ,所以,当m =12时,x 1=16,x 2=26;当m =24时,x 3=38,x 4=52.(2)先用△≥0求出参数的范围.例6 已知方程x 2-(k +3)x +k 2=0的根都是整数.求整数k 的值及方程的根.解:△=[-(k +3)]2-4k 2=-3k 2+6k +9≥0⇒ k 2-2 k -3≤0⇒-1≤k ≤3⇒整数k =-1,0,1,2,3.由求根公式知x =2)3(∆±+k ,故 当k =-1时,△=0,x =1;当k =0时,△=9,x =0或3;当k =1时,△=12不是完全平方数,整根x 不存在;当k =2时,△=9,x =1或4;当k =3时,△=0,x =3.因此,k =-1,0,2,3,x =1,0,3,4.(3)设参数法,即设△=k 2.当△=k 2为关于原参数的一次式时,用代入法;当△=k 2为关于原参数的二次式时,用分解因式法.例7 当x 为何有理数时-代数式9x 2+23x -2的值恰为两个连续正偶数的乘积?(1998,山东省初中数学竞赛)解:设两个连续正偶数为k ﹑k +2.则9x 2+23-2=k (k +2),即 9x 2+23-( k 2+2k +2)=0.由于x 是有理数,所以判别式为完全平方数,即△=232+4×9(k 2+2 k +2)=565+[6(k +1)]2令△=p 2(p ≥0),有p 2-[6(k +1)]2=565=113×5=565×1.左边=[p +6(k +1)][ p -6(k +1)],p ≥0,k >0,得)(==1,5)1(6,113)1(6⎩⎨⎧+-++k p k p或 )2(,1)1(6,565)1(6⎩⎨⎧+-++==k p k p解(1)得k =8,于是,x =2或-941; 解(2)得k =46,于是,x =-17或9130. 总之,当x =2,-941或x =-17,9130时. 9x 2+23x -2恰为两正偶数8和10,或者46和48的乘积. 2.2 途径二:从韦达定理入手1. 从根与系数的关系式中消去参数,得到关于两根的不定方程.例8 a 是大于零的实数,已知存在惟一的实数k ,使得关于x 的二次方程x 2+(k 2+ak )x +1999+ k 2+ ak =0的两个根均为质数. 求a 的值.(1999,全国初中数学联赛)解:设方程的两个质数根为p ﹑q . 由根与系数的关系,有 p +q =-(k 2+ak ), ①pq =1 999+k 2+ak . ②①+②,得 p +q +pq =1 999则(p +1)(q +1)=24×53. ③由③知,p 、q 显然均不为2,所以必为奇数.故21+p 和21+q 均为整数,且2121+⋅+q p =22×53. 若21+p 为奇数,则必21+p =5r (r =1,2,3),从而,p =2×5r -1为合数,矛盾. 因此,21+p 必为偶数.同理,21+q 也为偶数.所以,21+p 和21+q 均为整数,且4141+⋅+q p =53.不妨设p ≤q ,则41+p =1或5. 当41+p =1时,41+q =53,得p =3,q =499,均为质数.当41+p =5时,41+q =52,得p =19,q =99,q 为合数,不合题意.综上可知,p =3,q =499.代入①得k 2+ak +502=0. ④依题意,方程④有惟一的实数解.故△=a 2-4×502=0.有a =25022.利用“两根为整数时,其和、积必为整数”.例9 求满足如下条件的整数k ,使关于x 的二次方程(k -1) x 2+( k -5) x +k =0的根都是整数.解:设方程的两根为x 1﹑x 2.则x 1+ x 2=-15--k k =-1+14-k , x 1 x 2=1-k k =1+11-k , 且 x 1+x 2和x 1 x 2都是整数.从而,14-k 和11-k 都是整数. 于是,k -1为4和1的约数.故k -1=±1⇒ k =0或2.检验知,k =0或2时,方程的两根均为整数.所以,k =0或2. 2.3 途径三:联想二次函数因为一元二次方程与二次函数联系密切,所以适时地借助二次函数知识解决方程问题,往往十分奏效.例10 已知b ,c 为整数,方程5x 2+bx +c =0的两根都大于-1且小于0.求b 和c 的值.(1999,全国初中数学联赛)解:根据二次函数y =5x 2+bx +c 的图像和题设条件知: 当x =0时,5x 2+bx +c >0,有c >0; ① 当x =-1时,5 x 2+bx +c >0,有b >5+c . ②因抛物线顶点的横坐标-52⨯b 满足1-<-52⨯b <0, 则0<b <10. ③ 又因△≥0,即b 2-20c ≥0,故b 2≥20c. ④ 由①、③、④得100>b 2≥20c ,c <5.若c =1,则由②、④得0<b <6且b 2≥20,得b =5; 若c =2,则0<b <7且b 2≥40,无整数解;若c =3,则0<b <8且b 2≥60,无整数解;若c =4,则0<b <9且b 2≥80,无整数解.故所求b 、c 的值为b =5,c =1.2.4 途径四:变更主元法当方程中参数的次数相同时,可考虑以参数为主元求解. 例11 试求所有这样的正整数a ,使方程ax 2+2(2a -1)x +4(a-3)=0至少有一个整数解.(第三届祖冲之杯数学竞赛)解: 因为方程中参数a 是一次,所以可将a 用x 表示,即a =2)2()6(2++x x . ① 又a 是正整数,则2)2()6(2++x x ≥1. 解得-4≤x ≤2且x ≠-2.故x =-4,-3,-1,0,1,2.分别人入①得a =1,3,6,10.3 其他类型3.1 分类讨论型当方程中最高次项的系数含有变参数时,应先分系数为0或不为0讨论.例12 求使关于x 的方程kx 2+(k +1)x +(k -1)=0的根都是整数的k 值.(第十三届江苏省初中数学竞赛)解:分k =0和k ≠0两种情况讨论.当k =0时,所给方程为x -1=0,有整数根x =1.当k ≠0时,所给方程为二次方程.设两个整数根为x 1和x 2,则有 ⎪⎪⎩⎪⎪⎨⎧-=-=--=+-=+②① .111,1112121k k k x x k k k x x由①-②得x 1+x 2-x 1x 2=-2⇒(x 1-1)(x 2-1)=3.=1×3=(-1)×(-3).有⎩⎨⎧=-=-;31,1121x x ⎩⎨⎧-=--=-;31,1121x x ⎩⎨⎧=-=-;11,3121x x ⎩⎨⎧-=--=-.11,3121x x 故x 1+x 2=6或x 1+x 2=-2,即 -1-k 1=6或-1-k1=-2. 解得k =-71或k =1. 又△=(k +1)2-4k (k -1)=-3k 2+6k +1,当k =-71或k =1时,都有△>0.所以,满足要求的k 值为k =0,k =-71,k =1. 3.2 数形结合型当问题是以几何形式出现,或容易联想到几何模型的时候,可考虑用数形结合法.这是一种极为重要的解题方法,它具有形 象直观的特点,可使许多问题获得巧解.例13 以关于m 的方程m 2+(k -4)m +k =0数根为直径作⊙O.P 为⊙O 外一点,过P 切线PA 和割线PBC ,如图1,A 为切点.这时发现PA 、PB 、PC 都是整数,且PB 、BC 都不是合数,求PA 、PB 、PC 的长. 解: 设方程两根为m 1、m 2则⎩⎨⎧=-=+②① .,42121k m m k m m 又设PA =x ,PB =y ,BC =z ,则x ﹑y ﹑z 都是正整数. 由切割线定知PA 2=PB •PC =PB (PC +BC ),即 x 2=y 2+yz ⇒(x +y )(x -y )=yz . ③消去①和②中的k ,得m 1m 2=4-m 1-m 2.整理分解,得(m 1+1)(m 2+1)=5.图1因为⊙O 的直径是方程的最大整数根,不难求得最大整根m =4.进而,z =BC ≤4.又正整数z 不是合数,故z =3,2,1.当z =3时,(x +y )(x -y )=3y ,有⎩⎨⎧=-=+;,3y y x y x ⎩⎨⎧=-=+;3,y x y y x ⎩⎨⎧=-=+.1,3y x y y x 可得适合题意的解为x =2,y =1.当z =1和z =2时,没有适合题意的解,所以,PA =x =2,PB =y =1,PC =y +z =4.3.3 综合探索型当已知方程不止一个或结论不明确时,常用综合分析、假设探索法求解.例14 已知关于x 的方程4x 2-8nx -3n =2和x 2-(n +3)x -2n 2+2=0.问是否存在这样的n 的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的n 值;若不存在,请说明理由.(2000,湖北省初中数学选拔赛)解: 由△1=(-8n )2-4×4×(-3n -2)=(8n +3)2+23>0,知n 为任意实数时,方程(1)都有实数根.设第一个方程的两根为βα、.则α+β=2n ,αβ=42n 3--. 于是,(βα-)2=(βα+)2-4αβ=4n 2+3n 2+2.由第二个方程得[x -(2n +2)][x +(n -1)]=0解得两根为x 1=2n +2,x 2=-n +1.若x 1为整数,则4n 2+3n +2=2n +2.于是n 1=0,n 2=-41. 当n =0时,x 1=2是整数;n =-41时,x =23不是整数,舍去.若x 2为整数,则4n 2+3n +2=1-n .有n 3=n 4=-21.此时x 2=23不是整数,舍去. 综合上述知,当n =0时,第一个方程的两个实数根的差的平方等于第二个方程的一个整数根.练 习 题1. 设a 为整数. 若存在整数b 和c ,使(x +a)(x -15)-25=(x +b )(x +c ),则a 可取的值为_________(1998,上海市鹏欣杯数学竞赛)(提示:变形后用因式分解法. a =9,-15,-39)2. 设关于x 的二次方程(k 2-6k +8)x 2+(2k 2-6k -4)x +k 2=4的两根都是整数. 求满足条件的所有实数k 的值.(2000,全国初中数学联赛)(提示:求出二根x 1=-1-42-k ,x 2=-1-24-k ,从中消去k 得x 1x 2+3x 1+2=0,分解得x 1(x 2+3)=-2.借助方程组得k =6,3,310) 3. 求所有的正整数a 、b 、c ,使得关于x 的方程x 2-3ax +2b =0,x 2-3bx +2c =0,x 2-3cx +2a =0的所有的根都是正整数. (2000,全国初中数学联赛)(提示:从根与系数的关系入手,结合奇偶性分析,得a =b =c =1.)4. 已知方程:x 2+bx +c =0及x 2+cx +b =0分别各有二整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.(1)求证:x 1<0,x 2<0,x ’1<0,x ’2<0.(2)求证:b -1≤c ≤b +1.(3)求b 、c 的值.(1993,全国初中数学竞赛)(答案:b =5,c =6或b =6,c =5.)5.x 、y 为正整数,100111=-y x .则y 的最大值为_________. (1998,重庆市初中数学竞赛)(提示:用因式分解法,结果为9 900.)6.k 为什么整数时,方程(6-k )(9-k )x 2-(117-15k )x +54=0的解都是整数?(1995,山东省初中数学竞赛)(提示:对系数(6-k)(9-k)分为0与不为0讨论,得k值为3,6,7,9,15.)一元二次方程的整数根问题(本讲适合初中)迄今为止,尚未找到使得整系数一元二次方程有整数根的充分条件,通常的方法都是通过讨论其判别式,利用根与系数的关系进行分析和归纳,即使用必要条件解题,然后通过检验确定答案.下面举例说明常用的几种方法,并指出每种方法适合的范围.整系数一元二次方程有整数根的必要条件:(1)两个根都是整数;(2)判别式是整数;(3)判别式是整数的完全平方;(4)两根和是整数,两根积是整数.例1 设方程mx2-(m-2)x+m-3=0有整数解,试确定整数m的值,并求出这时方程的所有整数解.分析:若m=0,则2x-3=0,此时方程无整数解;当m≠0时,考察△=-3m2+8m+4,注意到二次项系数为负,方程有解,则-3m2+8m+4≥0.解得3724-≤m≤3724+.+因为m是整数,故只能取1,2,3.当m=1时,方程有解:-2和1;当m=2时,方程无整数解:当m=3时,方程有整数解:0.注:当判别式二次系数为负时,解不等式得关于参数的一个有限长区间,又因为参数为整数,可以讨论得解.例2 当x为何有理数时,代数式9x2+23x-2的值恰好为两个连续的偶数积.(1998,山东省初中数学竞赛)分析:设两个连续的偶数为n,n+2,问题转化为:当n为何值时,方程9x2+23x-2=n(n+2)有有理数根.有理根问题本质上也是整数根的问题,要求方程的根的判别式必须为一个整数或有理数的完全平方.考察判别式△=232+36(n2+2n+2)=36(n +1)2+565.由于n 是整数,所以判别式应为整数的完全平方.设 36(n +1)2+565=m 2(m 为大于565的自然数).移项因式分解,得(m +6n +6)(m -6n -6)=1×5×113.只有⎩⎨⎧=--=++566,11366n m n m 或 ⎩⎨⎧=--=++.166,56566n m n m 解得n =8,或n =46.分别代入原方程得方程有理数解为-941,2或9130,-17. 注:当判别式为关于某一参数的二次式,且二次项系数为正时,可采用配方法变形为:ƒ2(α) +常数(α是整数).然后采用例1的方法,通过分析得解.例3 求一实数p ,使用三次方程5x 3-5(p +1)x 2+(71p -1)x+1=66p 的三个根均为自然数.(1995,全国高中数学联赛)分析:观察可知,1是方程的解,方程可转化为(x -1)(5x 2-5px +66p -1)=0问题转化为:求一切实数p 使方程5x 2-5px +66p -1=0的解为自然数.由韦达定理知,p 为方程两根之和,即p 是自然数.仿例2得△=(5p -132)2-17 404.设(5p -132)2-17 404=n 2(n >0,n 为自然数).移项分解可得(5p -132+n)(5p -132-n)=22×19×229.又(5p -132+n),(5p -132-n)同奇偶,所以,⎩⎨⎧⨯=--⨯=+-.1921325,22921325n p n p 解得p =76.注:从表面上看,此题中的p 是一切实数,但由韦达定理判断它实际上是自然数,故可采用前法求得.例4设m 为整数,且4<m <40,又方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.(1993,天津市初中数学竞赛)分析:考察判别式△=4(2m +1),因是关于m 的一次式,故例1,例2的方法均不可用.由已知4<m <40,可知9<2m +1<81.为使判别式为完全平方数,只有2m +1=25或2m +1=49.当2m +1=25时,m =12,方程两根分别为16,26; 当2m +1=49时,m =24,方程两根分别为38,52.注:当判别式不是二次式时,可结合已知条件通过讨论得出参数的范围,进而求解;当判别式较复杂时,则应改用其他办法,参见例5.例5 α是大于零的实数,已知存在惟一的实数k ,使得关于x的方程x 2+(k 2+αk )x +1 999+k 2+αk =0的两根为质数.求α的值.(1999,全国初中数学联赛)分析:因为α、k 均为实数,判别式法不能解决.设方程两根为x 1、x 2,且x 1≤x 2,x 1、x 2均为质数,则⎪⎩⎪⎨⎧++=--=+.9991,221221k k x x k k x x αα 消掉参数得x 1+x 2+x 1x 2=1 999,即 (x 1+1)(x 2+1)=2 000=24×53.显然,x 1≠2. 于是,x 1+1,x 2+1都是偶数且x 1+1≤x 2+1.故只有如下可能:⎪⎩⎪⎨⎧⨯=+=+;521,2132221x x ⎪⎩⎪⎨⎧⨯=+=+;521,213231x x ⎩⎨⎧⨯=+⨯=+;521,5212321x x ⎪⎩⎪⎨⎧⨯=+⨯=+;521,52122221x x ⎪⎩⎪⎨⎧⨯=+⨯=+22221521,521x x ⎪⎩⎪⎨⎧⨯=+⨯=+.521,5212231x x符合题意的只有⎩⎨⎧==.499,321x x 于是,3+499=-k 2-αk .因为存在惟一的k ,故方程k 2+αk +502=0有两等根. 判别式△=α2-4×502=0,解得α=2502.注:应用韦达定理的关键在于消去参数,首先求得方程的解,在消去参数之后,要注意因式分解的使用.例6 设关于x 的二次方程(k 2-6k +8)﹒x 2+(2k 2-6k -4)x +k 2=4的两根都是整数.求满足条件的所有实数k 的值.(2000,全国初中数学联赛)分析:方程的表达式比较复杂,判别式法和韦达定理均不可用.将原方程变形得(k -2)(k -4)x 2+(2k 2-6k -4)x +(k -2)(k +2)=0. 分解因式得[(k -2)x +k +2][(k -4)x +k -2]=0.显然,k ≠2,k ≠4.解得x 1=-42--k k , x 2=-22-+k k . 消去k 得x 1x 2+3x 2+2=0∴ x 2(x 1+3)=-2.讨论得⎩⎨⎧=+-=;13,212x x 或⎩⎨⎧-=+=;13,221x x 或⎩⎨⎧-=+=.23,121x x 解x 1、x 2,代入原式得k 值为6,3,310. 注:当判别式与韦达定理均难解决时,这时反而意味着可用因式分解法求出方程的根,然后再整理转化.例7 设α为整数,若存在整数b 和c ,使得(x +α)(x -15)-25=(x +b )(x +c )成立,求α可取的值.(1998,上海市初中数学竞赛)分析:此题可转化为:当α为何值时,方程(x +α)(x -15)-25=0有两个整数根.方程可化为x 2-(15-α)x -15α-25=0视其为关于α的一次方程,整理得α(x -15)=-x 2+15x +25.易知x ≠15,∴α=1525152-++-x x x =-x +1525-x .注:此解法为分离参数法,它适合于参数与方程的根均是整数,且参数较易于分离的情况.如此题变形为α=ƒ(x ),然后利用函数的性质求解,这是一种应用较广泛的方法.上面只介绍了处理整数根问题的常用解法,这些解法的基本依据是:方程有整数根的必要条件. 基本方法是:(1)判别式讨论法(主要讨论由判别式决定的参数范围,由判别式为完全平方数求参数);(2)韦达定理法;(3)判别式与韦达定理结合法;(4)分离参数法(通过分离参数,利用根为整数的条件讨论).需说明的是,每个题的解法都不是惟一的,本文所给的只是较简洁的一种.同学们在解题时,应因题而定方法,不断求新,才能领悟数学的美感.练习题1. 求满足如下条件的所有k 值,使关于x 的方程kx +(k +1)x +(k -1)=0的根都是整数.(第十三届江苏省初中数学竞赛)(k =0,k =-71,k =1) 2. 关于x 的方程(m 3-2m 2)x 2-(m 3-3m 2-4m +8)x +12-4m =0的根均为整数,求实数m 的值.(提示:应用求根消参法,得m =1,或m =2.)3. 求所有正实数α,使方程x 2-αx +4α=0仅有整数根. (1998,全国初中数学联赛)(提示:分离参数法. α=42-x x =x +4+416-x ,讨论得α=25,或18,或16).4. 已知方程x 2+bx +c =0及x 2+cx +b =0分别各有两个整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.①求证:x 1<0,x 2<0,x ’1<0,x ’2<0;②求证:b -1≤c ≤b +1;③求b 、c 所有可能的值.(1993,全国初中数学联赛)(提示:应用韦达定理,得⎩⎨⎧==65c b ⎩⎨⎧==56c b ⎩⎨⎧==44c b )5.某顾客有钱10元,第一次在商店买x 件小商品花去y 元,第二次再去买该小商品时,发现每打(12件)降价0.8元,他比第一次多买了10件,花去2元.问他第一次买的小商品是多少件?(x 、y 为正整数)(提示:列方程128.0102=+-x x y 问题转化为:y 为何值时,方程x 2+(40-15y )x -150y =0有正整数解,利用判别式可求得x =5,或x =50.)。

简单不定方程的四种基本解法

简单不定方程的四种基本解法

简单不定方程的四种基本解法
简单不定方程的四种基本解法
简介
不定方程是指含有未知数的整数方程,其解为整数或分数。

不定方程
是数论中的一个重要分支,具有广泛的应用价值。

在实际问题中,往
往需要求解不定方程来得到问题的解答。

本文将介绍四种基本的解决
不定方程的方法。

一、贪心算法
贪心算法是一种常见且有效的算法,它通常用于求解最优化问题。


求解不定方程时,贪心算法可以通过枚举未知数的值来逐步逼近最优解。

二、辗转相除法
辗转相除法也称为欧几里得算法,它是一种求最大公约数的有效方法。

在求解不定方程时,我们可以使用辗转相除法来判断是否存在整数解。

三、裴蜀定理
裴蜀定理是指对于任意给定的整数a和b,它们的最大公约数d可以
表示成ax+by的形式,其中x和y为整数。

在求解不定方程时,我们可以使用裴蜀定理来判断是否存在整数解,并且可以通过扩展欧几里
得算法来求得x和y。

四、同余模运算
同余模运算是指在模n的情况下,两个整数a和b满足a≡b(mod n)。

在求解不定方程时,我们可以使用同余模运算来判断是否存在整数解,并且可以通过中国剩余定理来求得解的具体值。

结论
以上四种方法是求解不定方程的基本方法,在实际问题中,我们可以
根据具体情况选择合适的方法来求解问题。

同时,需要注意的是,在
使用这些方法时需要注意算法复杂度和精度问题,以保证算法的正确
性和效率。

不定方程解法范文

不定方程解法范文

不定方程解法范文不定方程是指形如 ax + by = c 的方程,其中 a、b、c为已知数,x、y为未知数,且要求x、y为整数。

解不定方程的方法有多种,下面将介绍三种常见的解法。

1.暴力穷举法暴力穷举法是最简单直接的方法,通过遍历所有可能的x、y的取值,寻找满足方程的整数解。

步骤如下:-首先确定x、y的取值范围。

可以通过观察方程中系数的最小公倍数来确定。

-在确定的范围内,依次计算所有可能的x、y的组合,直到找到满足方程的解。

例如,求解方程3x+7y=91,观察发现3和7的最小公倍数为3*7=21,因此x、y的范围可以设定为0到21依次计算3x+7y是否等于91,直到找到满足条件的x、y。

2.辗转相除法辗转相除法是一种通过求解方程的最大公约数来求解不定方程的方法。

步骤如下:- 首先求解方程的最大公约数gcd(a, b),可以使用欧几里得算法来求解。

- 如果 c mod gcd(a, b) 不等于 0,则方程无整数解,结束。

- 如果 c mod gcd(a, b)等于 0,则方程有整数解。

-通过扩展欧几里得算法求解方程的一组特解x0、y0。

- 方程的所有解可以通过 x = x0+ k * b/gcd(a, b),y = y0 - k * a/gcd(a, b) 来表示,其中k取任意整数。

例如,求解方程 3x + 7y = 91,首先求解gcd(3, 7),得到1,因此方程有整数解。

然后使用扩展欧几里得算法求解方程3x+7y=1的一组特解,得到x0=3,y0=-1再根据公式x=3+k*7,y=-1-k*3,可以得到方程3x+7y=91的所有解。

3.模线性方程组模线性方程组的方法适用于形式为 ax + by ≡ c (mod m) 的不定方程,其中 a、b、c、m为已知数,x、y为未知数,且要求x、y为整数。

步骤如下:- 首先求解方程的最大公约数gcd(a, m),如果 c mod gcd(a, m)不等于 0,则方程无整数解,结束。

不定方程的四种常用解法,多种方法叠加使用效果更佳

不定方程的四种常用解法,多种方法叠加使用效果更佳含有未知数的等式称之为方程。

小学阶段最开始接触的是一个方程只有一个未知数的情况。

比如3x+2=8,解得x=2,这样解出来的答案是唯一性的。

但是有时候我们会遇到一个方程,有两个甚至三个未知数。

这样未知数个数大于方程个数的方程(组)叫不定方程(组)。

不定方程,一般情况下解是不唯一的。

方程比如说x+y=10,问这个方程有多少组解?如果不给其他条件限制,那么这个方程会有无数组解。

所以大多数的不定方程都会有较多的限制条件。

比如说限制这些未知数均为自然数,或在某个范围内。

还是以x+y=10为例,如果x、y都是自然数,那么x、y的解会有11组。

在小升初或各大小学杯赛题目中,会出现解不定方程。

不定方程,有四种比较常用的解法。

第一种:枚举法。

枚举法在很多地方都会用得上。

比如说计数,找规律等,虽然效率不是很高但适用范围比较广。

这种方法适用于一些系数比较大的不定方程。

因为系数比较大,出现的可能性就比较少,所以可以利用枚举的方法来解答。

比如说求这个不定方程的解,7x+2y=24(x、y均为自然数)。

因为x前面的它的系数比较大,所以说x的取值范围相对来说会比较小。

因为x、y都属于自然数,x最大是3,最小是0。

也就是说,x 有可能等于0、1、2、3,最多就这4种情况,我们可以把这些x的值分别代入这个方程中解出y的值。

我们会发现x=1和x=3这两种情况是不成立的。

第二种方法,奇偶性分析。

照样以上面的例题为例,我们用奇偶分析来帮助我们缩小x的取值范围。

两个数的和等于24,是一个偶数。

2y也一定是个偶数,所以说7x 的值一定是个偶数。

7是奇数,所以说x只能是偶数。

那么x又是从0~3,那么所以说x只能是0或者2这两种可能。

最后算出有两组答案:x=0,y=12;x=2,y=5。

第三种:余数分析。

也是用的比较多的方法,通常从系数较小的未知数入手。

它的原理其实就是利用了:和的余数等于余数的和,进行判断分析。

如何求解二元一次不定方程的整数解

如何求解二元一次不定方程的整数解这里讨论的二元一次不定方程专指ax+by=c(a*b≠0,a,b,c∈Z)-----①定理一:方程①有整数解的充分必要条件是(a,b)|c((a,b)即Gcd(a,b),下同)定理二(裴蜀定理)设(a,b)=1,则方程①的全部整数解可表为:x=x0+bt,y=y0-at(x0,y0是方程的一组整数解,t为任意整数)也可以表述为:方程①的全部整数解可表为:x=x0+bt/(a,b),y=y0-at/(a,b)(x0,y0是方程的一组整数解,t为任意整数)我以前的一个想法是求出(a,b)并判断是否(a,b)|c,然后约简a,b,c(都除以(a,b)),这样(a,b)=1,如果方程①有整数解的话,根据定理二,在一个长度为|b|的整数范围内必存在一个x的解,在一个长度为|a|的整数范围内必存在一个y的解。

那么在x的[0,|b|-1]或者y的[0,|a|-1]上试解吧,找到x0可以求出y0,找到y0可以求出x0。

为了减少搜索次数,我们先比较|a|和|b|,如果|a|≤|b|就在y上试解,反之则在x上试解。

我用这种办法ac了sgu106和poj1061,但是这种办法的代价并非是最低的,因为有一个著名的欧几里德扩展算法。

这个算法源自于求gcd的欧几里德算法,二者的算法复杂度基本上是一样的。

回忆一下欧几里德算法:有两个数a,b,我们把它们写成u0和u1,求gcd的步骤如下:u0=q0*u1+u2u1=q1*u2+u3u2=q2*u3+u4...uj=qj*u(j+1)u(j+1)便是a和b的最大公约数。

要求出一组整数解,可以先求出ax+by=(a,b)的一组解x0,y0,然后x0=x0*c/(a,b),y0=x0*c/(a,b).同样地,把a和b写成u0和u1,设ui=u0*xi+u1*yi(必然存在这样的xi和yi,因为uj是gcd(u0,u1)的倍数),那么x0=1,y0=0,x1=0,y1=1;u(i+1)=u(i-1)-q(i-1)*ui=u0*x(i-1)+u1*y(i-1)-q(i-1)*u0*x(i)-q(i-1)*u1*y(i)=u0*(x (i-1)-q(i-1)*x(i))+u1*(y(i-1)-q(i-1)*y(i)),而u(i+1)=u0*x(i+1)+u1*y(i+1),因此x(i+1)=x(i-1)-q(i-1)*x(i)y(i+1)=y(i-1)-q(i-1)*y(i)伟大的递推式!我们要求的是xj和yj(uj=u0*xj+u1*yj,uj为gcd),所以只要递推到xj和yj即可。

数学竞赛中方程整数解的实用求法

数学竞赛中方程整数解的实用求法1 不定方程的整数解一般地,不定方程有无数组解. 但是,若加上限制条件如整数解等,就可以求出确定的解. 由于含参数的方程的整数解多能转化为不定方程求解,所以先讲不定方程整数解的求法.常用的有下述三种方法.1.1 因式分解法这是最常用的方法,它适用于一边可以分解因式,另一边为常数的方程. 根据是正整数的惟一分解定理:每一个大于1的正整数都可以惟一地分解成素数的乘积. 方法是分解常数后构造方程组求解.例1 求方程xy +x +y =6的整数解.(1996,湖北省黄冈市初中数学竞赛)解:方程两边加上1,得xy +x +y +1=7.左边=(x +1)(y +1),右边=1×7=(-1)×(-7).故原方程的整数解由下列方程组确定:⎩⎨⎧++;=,=7111y x ⎩⎨⎧++;=,=1171y x ⎩⎨⎧++;=-,=-7111y x ⎩⎨⎧++.1171=-,=-y x 解得⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧.2882066044332211=-,=-;=-,=-;=,=;=,=y x y x y x y x 1.2 选取主元法有些含有二次项的不定方程,可以选取其中的某一变量为主元,得到关于主元的二次方程,再用根的判别式△≥0定出另一变量的取值范围,在范围内选出整数值回代得解.例2 求方程7322=y xy x y x +-+的所有整数解. (第十二届全俄数学竞赛)解:以x 为主元,将方程整理为3x 2-(3y +7)x +(3y 2-7y)=0因x 是整数,则△=[-(3y +7) ]2-4×3(3y 2-7y )≥0 ⇒931421-≤y ≤931421+ ⇒整数y =0,1,2,3,4,5.将y 的值分别代入原方程中计算知:只有y =4或5时,方程才有整数解,即x 1=5,y 1=4;x 2=4,y 2=5. 1.3 整式分离法当分式中分子的次数不小于分母的次数时,可将分子除以分母,把整式(即所得商式)分离出来.若所得余式为常数,则用倍数约数分析法求解较容易;若余式不是常数,则可以根据实际情况构造二次方程,选取原先变量为主元求解.例3 题目同例1.解:用含y 的式子表示x ,得x =16+-y y . 分离整式得x =-1+17+y . 因x 为整数,则17+y 为整数.故y +1为7的约数,y +1=±1,±7.(笔者注:这种思考方法就是倍数约数分析法)得y =0,-2,6,-8.进而x =6,-8,0,-2.2 含参数的二次方程的整数解这类整数根问题,近年考查最频繁.实用思考途径有下列四种.2.1 途径一:从判别式入手因为一元二次方程ax 2+bx +c =0在△=b 2-4ac ≥0时有根x =ab 2∆±-,所以要使方程有整数根,必须△=b 2-4ac 为完全平方数,并且-b ±∆为2a 的整数倍.这是基本思想.常用方法如下.1. 当△=b 2-4ac 为完全平方式时,直接求方程的解,然后解不定方程.例4 已知方程a 2x 2-(3a 2-8a )x +2a 2-13a +15=0(其中a为非负整数)至少有一个整数根.那么,a =_________.(1998,全国初中数学竞赛)解:显然a ≠0.故原方程为关于x 的二次方程.△=[-(3a 2-8a )]2-4a 2(2a 2-13a +15)=[a (a +2)]2是完全平方式.故x =222)2()83(aa a a a +±- 即 x 1=a a 32-=2-a 3,x 2=a a 5-=1-a5. 从而,由倍数约数分析法知a =1,3或5.2. 当△=b 2-4ac ≥0且不是完全平方式时,一般有下列三种思考途径.(1)利用题设参数的范围,直接求解.例5 设m ∈Z ,且4<m <40,方程x 2-2(2m -3)x +4m 2-14m+8=0有两个整数根.求m 的值及方程的根.解:因方程有整数根,则△=[-2(2m -3)]2-4(4m 2-14m +8)=4(2m +1)为完全平方数.从而,2m +1为完全平方数.又因m ∈Z 且4<m <40,故当m =12或24时,2m +1才为完全平方数.因为x =(2m -3)±12+m ,所以,当m =12时,x 1=16,x 2=26;当m =24时,x 3=38,x 4=52.(2)先用△≥0求出参数的范围.例6 已知方程x 2-(k +3)x +k 2=0的根都是整数.求整数k的值及方程的根.解:△=[-(k +3)]2-4k 2=-3k 2+6k +9≥0⇒k 2-2 k -3≤0⇒-1≤k ≤3 ⇒整数k =-1,0,1,2,3.由求根公式知x =2)3(∆±+k ,故 当k =-1时,△=0,x =1;当k =0时,△=9,x =0或3;当k =1时,△=12不是完全平方数,整根x 不存在;当k =2时,△=9,x =1或4;当k =3时,△=0,x =3.因此,k =-1,0,2,3,x =1,0,3,4.(3)设参数法,即设△=k 2.当△=k 2为关于原参数的一次式时,用代入法;当△=k 2为关于原参数的二次式时,用分解因式法.例7 当x 为何有理数时-代数式9x 2+23x -2的值恰为两个连续正偶数的乘积?(1998,山东省初中数学竞赛)解:设两个连续正偶数为k ﹑k +2.则9x 2+23-2=k (k +2),即 9x 2+23-( k 2+2k +2)=0.由于x 是有理数,所以判别式为完全平方数,即△=232+4×9(k 2+2 k +2)=565+[6(k +1)]2令△=p 2(p ≥0),有p 2-[6(k +1)]2=565=113×5=565×1.左边=[p +6(k +1)][ p -6(k +1)],p ≥0,k >0,得)(==1,5)1(6,113)1(6⎩⎨⎧+-++k p k p 或 )2(,1)1(6,565)1(6⎩⎨⎧+-++==k p k p 解(1)得k =8,于是,x =2或-941; 解(2)得k =46,于是,x =-17或9130.总之,当x =2,-941或x =-17,9130时. 9x 2+23x -2恰为两正偶数8和10,或者46和48的乘积. 2.2 途径二:从韦达定理入手1. 从根与系数的关系式中消去参数,得到关于两根的不定方程.例8 a 是大于零的实数,已知存在惟一的实数k ,使得关于x 的二次方程x 2+(k 2+ak )x +1999+ k 2+ ak =0的两个根均为质数. 求a 的值.(1999,全国初中数学联赛)解:设方程的两个质数根为p ﹑q . 由根与系数的关系,有p +q =-(k 2+ak ),①pq =1 999+k 2+ak .②①+②,得 p +q +pq =1 999则(p +1)(q +1)=24×53.③由③知,p 、q 显然均不为2,所以必为奇数.故21+p 和21+q 均为整数,且2121+⋅+q p =22×53. 若21+p 为奇数,则必21+p =5r (r =1,2,3),从而,p =2×5r -1为合数,矛盾. 因此,21+p 必为偶数.同理,21+q 也为偶数.所以,21+p 和21+q 均为整数,且4141+⋅+q p =53. 不妨设p ≤q ,则41+p =1或5. 当41+p =1时,41+q =53,得p =3,q =499,均为质数.当41+p =5时,41+q =52,得p =19,q =99,q 为合数,不合题意.综上可知,p =3,q =499.代入①得k 2+ak +502=0. ④依题意,方程④有惟一的实数解.故△=a 2-4×502=0.有a =25022.利用“两根为整数时,其和、积必为整数”.例9 求满足如下条件的整数k ,使关于x 的二次方程(k -1)x 2+( k -5) x +k =0的根都是整数.解:设方程的两根为x 1﹑x 2.则x 1+ x 2=-15--k k =-1+14-k , x 1 x 2=1-k k =1+11-k , 且 x 1+x 2和x 1 x 2都是整数.从而,14-k 和11-k 都是整数. 于是,k -1为4和1的约数.故k -1=±1⇒ k =0或2.检验知,k =0或2时,方程的两根均为整数.所以,k =0或2. 2.3 途径三:联想二次函数因为一元二次方程与二次函数联系密切,所以适时地借助二次函数知识解决方程问题,往往十分奏效.例10 已知b ,c 为整数,方程5x 2+bx +c =0的两根都大于-1且小于0.求b 和c 的值.(1999,全国初中数学联赛)解:根据二次函数y =5x 2+bx +c 的图像和题设条件知:当x =0时,5x 2+bx +c >0,有c >0;①当x =-1时,5 x 2+bx +c >0,有b >5+c .②因抛物线顶点的横坐标-52⨯b 满足1-<-52⨯b <0,则0<b <10.③又因△≥0,即b 2-20c ≥0,故b 2≥20c.④由①、③、④得100>b 2≥20c ,c <5.若c =1,则由②、④得0<b <6且b 2≥20,得b =5;若c =2,则0<b <7且b 2≥40,无整数解;若c =3,则0<b <8且b 2≥60,无整数解;若c =4,则0<b <9且b 2≥80,无整数解.故所求b 、c 的值为b =5,c =1.2.4 途径四:变更主元法当方程中参数的次数相同时,可考虑以参数为主元求解.例11 试求所有这样的正整数a ,使方程ax 2+2(2a -1)x +4(a -3)=0至少有一个整数解.(第三届祖冲之杯数学竞赛)解: 因为方程中参数a 是一次,所以可将a 用x 表示,即a =2)2()6(2++x x . ①又a 是正整数,则2)2()6(2++x x ≥1. 解得-4≤x ≤2且x ≠-2.故x =-4,-3,-1,0,1,2.分别人入①得a =1,3,6,10.3 其他类型3.1 分类讨论型当方程中最高次项的系数含有变参数时,应先分系数为0或不为0讨论.例12 求使关于x 的方程kx 2+(k +1)x +(k -1)=0的根都是整数的k 值.(第十三届江苏省初中数学竞赛)解:分k =0和k ≠0两种情况讨论.当k =0时,所给方程为x -1=0,有整数根x =1.当k ≠0时,所给方程为二次方程.设两个整数根为x 1和x 2,则有 ⎪⎪⎩⎪⎪⎨⎧-=-=--=+-=+②① .111,1112121k k k x x k k k x x 由①-②得x 1+x 2-x 1x 2=-2⇒(x 1-1)(x 2-1)=3.=1×3=(-1)×(-3).有⎩⎨⎧=-=-;31,1121x x ⎩⎨⎧-=--=-;31,1121x x ⎩⎨⎧=-=-;11,3121x x ⎩⎨⎧-=--=-.11,3121x x 故x 1+x 2=6或x 1+x 2=-2,即 -1-k 1=6或-1-k1=-2. 解得k =-71或k =1. 又△=(k +1)2-4k (k -1)=-3k 2+6k +1,当k =-71或k =1时,都有△>0. 所以,满足要求的k 值为k =0,k =-71,k =1. 3.2 数形结合型当问题是以几何形式出现,或容易联想到几何模型的时候,可考虑用数形结合法.这是一种极为重要的解题方法,它具有形 象直观的特点,可使许多问题获得巧解. 例13 以关于m 的方程m 2+(k -4)m +k =0整数根为直径作⊙O.P 为⊙O 外一点,过P 作切线PA 和割线PBC ,如图1,A 为切点.这时发现PA 、PB 、PC 都是整数,且PB 、BC 都不是合数,求PA 、PB 、PC 的长. 解: 设方程两根为m 1、m 2则图1⎩⎨⎧=-=+②① .,42121k m m k m m 又设PA =x ,PB =y ,BC =z ,则x ﹑y ﹑z 都是正整数.由切割线定知PA 2=PB •PC =PB (PC +BC ),即 x 2=y 2+yz ⇒(x +y )(x -y )=yz . ③ 消去①和②中的k ,得m 1m 2=4-m 1-m 2.整理分解,得(m 1+1)(m 2+1)=5.因为⊙O 的直径是方程的最大整数根,不难求得最大整根m =4.进而,z =BC ≤4.又正整数z 不是合数,故z =3,2,1. 当z =3时,(x +y )(x -y )=3y ,有⎩⎨⎧=-=+;,3y y x y x ⎩⎨⎧=-=+;3,y x y y x ⎩⎨⎧=-=+.1,3y x y y x 可得适合题意的解为x =2,y =1.当z =1和z =2时,没有适合题意的解, 所以,PA =x =2,PB =y =1,PC =y +z =4.3.3 综合探索型当已知方程不止一个或结论不明确时,常用综合分析、假设探索法求解.例14 已知关于x 的方程4x 2-8nx -3n =2和x 2-(n +3)x -2n 2+2=0.问是否存在这样的n 的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的n 值;若不存在,请说明理由.(2000,湖北省初中数学选拔赛)解: 由△1=(-8n )2-4×4×(-3n -2)=(8n +3)2+23>0,知n 为任意实数时,方程(1)都有实数根.设第一个方程的两根为βα、.则α+β=2n ,αβ=42n 3--. 于是,(βα-)2=(βα+)2-4αβ=4n 2+3n 2+2.由第二个方程得[x -(2n +2)][x +(n -1)]=0解得两根为x 1=2n +2,x 2=-n +1.若x 1为整数,则4n 2+3n +2=2n +2.于是n 1=0,n 2=-41. 当n =0时,x 1=2是整数;n =-41时,x =23不是整数,舍去.若x 2为整数,则4n 2+3n +2=1-n .有n 3=n 4=-21.此时x 2=23不是整数,舍去. 综合上述知,当n =0时,第一个方程的两个实数根的差的平方等于第二个方程的一个整数根.练 习 题1. 设a 为整数. 若存在整数b 和c ,使(x +a)(x -15)-25=(x +b )(x +c ),则a 可取的值为_________(1998,上海市鹏欣杯数学竞赛)(提示:变形后用因式分解法. a =9,-15,-39)2. 设关于x 的二次方程(k 2-6k +8)x 2+(2k 2-6k -4)x +k 2=4的两根都是整数. 求满足条件的所有实数k 的值.(2000,全国初中数学联赛)(提示:求出二根x 1=-1-42-k ,x 2=-1-24-k ,从中消去k 得x 1x 2+3x 1+2=0,分解得x 1(x 2+3)=-2.借助方程组得k =6,3,310) 3. 求所有的正整数a 、b 、c ,使得关于x 的方程x 2-3ax +2b =0,x 2-3bx +2c =0,x 2-3cx +2a =0的所有的根都是正整数. (2000,全国初中数学联赛)(提示:从根与系数的关系入手,结合奇偶性分析,得a =b =c =1.)4. 已知方程:x 2+bx +c =0及x 2+cx +b =0分别各有二整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.(1)求证:x 1<0,x 2<0,x ’1<0,x ’2<0.(2)求证:b -1≤c ≤b +1.(3)求b 、c 的值.(1993,全国初中数学竞赛)(答案:b =5,c =6或b =6,c =5.)5.x 、y 为正整数,100111=-y x .则y 的最大值为_________. (1998,重庆市初中数学竞赛)(提示:用因式分解法,结果为9 900.)6.k 为什么整数时,方程(6-k )(9-k )x 2-(117-15k )x +54=0的解都是整数?(1995,山东省初中数学竞赛)(提示:对系数(6-k )(9-k )分为0与不为0讨论,得k 值为3,6,7,9,15.)一元二次方程的整数根问题(本讲适合初中)迄今为止,尚未找到使得整系数一元二次方程有整数根的充分条件,通常的方法都是通过讨论其判别式,利用根与系数的关系进行分析和归纳,即使用必要条件解题,然后通过检验确定答案.下面举例说明常用的几种方法,并指出每种方法适合的范围.整系数一元二次方程有整数根的必要条件:(1)两个根都是整数;(2)判别式是整数;(3)判别式是整数的完全平方;(4)两根和是整数,两根积是整数.例1 设方程mx 2-(m -2)x +m -3=0有整数解,试确定整数m 的值,并求出这时方程的所有整数解.分析:若m =0,则2x -3=0,此时方程无整数解;当m ≠0时,考察△=-3m 2+8m +4,注意到二次项系数为负,方程有解,则-3m 2+8m +4≥0. 解得3724-≤m ≤3724+.+ 因为m 是整数,故只能取1,2,3.当m =1时,方程有解:-2和1;当m =2时,方程无整数解:当m =3时,方程有整数解:0.注:当判别式二次系数为负时,解不等式得关于参数的一个有限长区间,又因为参数为整数,可以讨论得解.例2 当x 为何有理数时,代数式9x 2+23x -2的值恰好为两个连续的偶数积.(1998,山东省初中数学竞赛)分析:设两个连续的偶数为n ,n +2,问题转化为:当n 为何值时,方程9x 2+23x -2=n (n +2)有有理数根.有理根问题本质上也是整数根的问题,要求方程的根的判别式必须为一个整数或有理数的完全平方.考察判别式△ =232+36(n 2+2n +2)=36(n +1)2+565.由于n 是整数,所以判别式应为整数的完全平方.设36(n +1)2+565=m 2(m 为大于565的自然数). 移项因式分解,得(m +6n +6)(m -6n -6)=1×5×113.只有⎩⎨⎧=--=++566,11366n m n m或 ⎩⎨⎧=--=++.166,56566n m n m 解得n =8,或n =46.分别代入原方程得方程有理数解为-941,2或9130,-17. 注:当判别式为关于某一参数的二次式,且二次项系数为正时,可采用配方法变形为:ƒ2(α) +常数(α是整数).然后采用例1的方法,通过分析得解.例3 求一实数p ,使用三次方程5x 3-5(p +1)x 2+(71p -1)x+1=66p 的三个根均为自然数.(1995,全国高中数学联赛)分析:观察可知,1是方程的解,方程可转化为(x -1)(5x 2-5px +66p -1)=0问题转化为:求一切实数p 使方程5x 2-5px +66p -1=0的解为自然数.由韦达定理知,p 为方程两根之和,即p 是自然数.仿例2得△=(5p -132)2-17 404.设(5p -132)2-17 404=n 2(n >0,n 为自然数).移项分解可得(5p -132+n)(5p -132-n)=22×19×229.又(5p -132+n),(5p -132-n)同奇偶,所以,⎩⎨⎧⨯=--⨯=+-.1921325,22921325n p n p 解得p =76.注:从表面上看,此题中的p 是一切实数,但由韦达定理判断它实际上是自然数,故可采用前法求得.例4 设m 为整数,且4<m <40,又方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.(1993,天津市初中数学竞赛)分析:考察判别式△=4(2m +1),因是关于m 的一次式,故例1,例2的方法均不可用.由已知4<m <40,可知9<2m +1<81.为使判别式为完全平方数,只有2m +1=25或2m +1=49. 当2m +1=25时,m =12,方程两根分别为16,26; 当2m +1=49时,m =24,方程两根分别为38,52. 注:当判别式不是二次式时,可结合已知条件通过讨论得出参数的范围,进而求解;当判别式较复杂时,则应改用其他办法,参见例5.例5 α是大于零的实数,已知存在惟一的实数k ,使得关于x 的方程x 2+(k 2+αk )x +1 999+k 2+αk =0的两根为质数.求α的值.(1999,全国初中数学联赛)分析:因为α、k 均为实数,判别式法不能解决.设方程两根为x 1、x 2,且x 1≤x 2,x 1、x 2均为质数,则⎪⎩⎪⎨⎧++=--=+.9991,221221k k x x k k x x αα 消掉参数得x 1+x 2+x 1x 2=1 999,即 (x 1+1)(x 2+1)=2 000=24×53.显然,x 1≠2. 于是,x 1+1,x 2+1都是偶数且x 1+1≤x 2+1.故只有如下可能:⎪⎩⎪⎨⎧⨯=+=+;521,2132221x x ⎪⎩⎪⎨⎧⨯=+=+;521,213231x x ⎩⎨⎧⨯=+⨯=+;521,5212321x x ⎪⎩⎪⎨⎧⨯=+⨯=+;521,52122221x x ⎪⎩⎪⎨⎧⨯=+⨯=+22221521,521x x ⎪⎩⎪⎨⎧⨯=+⨯=+.521,5212231x x 符合题意的只有⎩⎨⎧==.499,321x x 于是,3+499=-k 2-αk .因为存在惟一的k ,故方程k 2+αk +502=0有两等根.判别式△=α2-4×502=0,解得α=2502.注:应用韦达定理的关键在于消去参数,首先求得方程的解,在消去参数之后,要注意因式分解的使用.例6 设关于x 的二次方程(k 2-6k +8)﹒x 2+(2k 2-6k -4)x+k 2=4的两根都是整数.求满足条件的所有实数k 的值.(2000,全国初中数学联赛)分析:方程的表达式比较复杂,判别式法和韦达定理均不可用.将原方程变形得(k -2)(k -4)x 2+(2k 2-6k -4)x +(k -2)(k +2)=0.分解因式得[(k -2)x +k +2][(k -4)x +k -2]=0.显然,k ≠2,k ≠4.解得x 1=-42--k k , x 2=-22-+k k .消去k 得x 1x 2+3x 2+2=0∴ x 2(x 1+3)=-2.讨论得⎩⎨⎧=+-=;13,212x x或⎩⎨⎧-=+=;13,221x x 或⎩⎨⎧-=+=.23,121x x 解x 1、x 2,代入原式得k 值为6,3,310. 注:当判别式与韦达定理均难解决时,这时反而意味着可用因式分解法求出方程的根,然后再整理转化. 例7 设α为整数,若存在整数b 和c ,使得(x +α)(x -15)-25=(x +b )(x +c )成立,求α可取的值.(1998,上海市初中数学竞赛)分析:此题可转化为:当α为何值时,方程(x +α)(x -15)-25=0有两个整数根.方程可化为x 2-(15-α)x -15α-25=0视其为关于α的一次方程,整理得α(x -15)=-x 2+15x +25.易知x ≠15,∴α=1525152-++-x x x =-x +1525-x .注:此解法为分离参数法,它适合于参数与方程的根均是整数,且参数较易于分离的情况.如此题变形为α=ƒ(x ),然后利用函数的性质求解,这是一种应用较广泛的方法.上面只介绍了处理整数根问题的常用解法,这些解法的基本依据是:方程有整数根的必要条件. 基本方法是:(1)判别式讨论法(主要讨论由判别式决定的参数范围,由判别式为完全平方数求参数);(2)韦达定理法;(3)判别式与韦达定理结合法;(4)分离参数法(通过分离参数,利用根为整数的条件讨论).需说明的是,每个题的解法都不是惟一的,本文所给的只是较简洁的一种.同学们在解题时,应因题而定方法,不断求新,才能领悟数学的美感.练习题1. 求满足如下条件的所有k 值,使关于x 的方程kx +(k +1)x +(k -1)=0的根都是整数.(第十三届江苏省初中数学竞赛)(k =0,k =-71,k =1) 2. 关于x 的方程(m 3-2m 2)x 2-(m 3-3m 2-4m +8)x +12-4m =0的根均为整数,求实数m 的值.(提示:应用求根消参法,得m =1,或m =2.)3. 求所有正实数α,使方程x 2-αx +4α=0仅有整数根. (1998,全国初中数学联赛)(提示:分离参数法. α=42-x x =x +4+416-x ,讨论得α=25,或18,或16).4. 已知方程x 2+bx +c =0及x 2+cx +b =0分别各有两个整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.①求证:x 1<0,x 2<0,x ’1<0,x ’2<0;②求证:b -1≤c ≤b +1;③求b 、c 所有可能的值.(1993,全国初中数学联赛)(提示:应用韦达定理,得⎩⎨⎧==65c b ⎩⎨⎧==56c b ⎩⎨⎧==44c b ) 5.某顾客有钱10元,第一次在商店买x 件小商品花去y 元,第二次再去买该小商品时,发现每打(12件)降价0.8元,他比第一次多买了10件,花去2元.问他第一次买的小商品是多少件?(x 、y 为正整数)(提示:列方程128.0102=+-x x y 问题转化为:y 为何值时,方程x 2+(40-15y )x -150y =0有正整数解,利用判别式可求得x =5,或x =50.)。

3.2 不定方程的常用解法

3.2 不定方程的常用解法对于高次不定方程,求出其通解然后再讨论有时是不现实的,因为我们甚至还没有找到判别一个高次不定方程是否有解的统一方法,当然要求出通解就更难了.或许正是因为没有统一的方法来处理高次不定方程,对具体的问题往往有许多方法来处理,并且每一种方法都表现出一定的创造性,所以,高次不定方程的问题频繁在数学竞赛中出现.当然,结合整除与同余的一些理论,求解高次不定方程也有一些常见的处理思路和解决办法. 一、因式分解法将方程的一边变为常数,而含字母的一边可以进行因式分解,这样对常数进行素因数分解后,对比方程两边,考察各因式的每种取值情况就可将不定方程变为若干个方程组去求解.这就是因式分解法处理不定方程的基本思路.例1 求方程()101xy x y -+= ① 的整数解.解:利用十字相乘,可将①变形为()()1010101x y --= 而101为素数,故()1010x y -,-=(1,101),(101,1),(-1,-101),(-101,-1). 分别求解,得方程的整数解为()x y ,=(11,111),(111,11),(9,-91),(-91,9). 例2 是否存在整数x 、y 、z ,使得44422222222224x y z x y y z z x ++=+++?解:若存在整数x 、y 、z 满足条件,则()22222244424222x y y z z x x y z -=++-++ =()()22222242224x yx y z z x y-+++-+=()2222224x y zxy -+-+=()()22222222xy x y z xy x y z ++---+=()()()()2222x y z z x y +---=()()()()x y z x y z z x y y z x +++-+-+-,这要求-24能表示为4个整数x y z ++,x y z +-,z x y +-,y z x +-的乘积的形式,而这4个数中任意两个数之差都为偶数,故这4个数具有相同的奇偶性,由-24为偶数,知它们都是偶数,但这要求42|24,矛盾. 所以,不存在符合要求的整数.说明 熟悉海伦公式的读者可以一眼看穿问题的本质.事实上,ABC S ∆a 、b 、c 为△ABC的三边长,这就是海伦公式.根号里面的式子展开后就是222a b +222b c +222c a -4a -4b -4c .例3 求所有的正整数对(m ,n ),使得5471mn n +=-. ①解:将①移项后作因式分解,得()545433711m n n n n n n =++=++-- =()()()322111n n n n n n ++--++=()()3211n n n n -+++ ② 由①知n >1,而n =2时,可得m =2.下面考虑n >2的情形,我们先看②式右边两个式子的最大公因数.()()()()32322111111n n n n n n n n n n n -+,++=-+-+++-,+=()()()()22212123n n n n n n n n -+,++=-++++-+,+ =()27n -+,.故()3211|7n n n n -+,++.结合②式知31n n -+与21n n ++都是7的幂次,而它们在n ≥3时,都大于7,这导致 ()()2327|11n n n n -+++,与前所得矛盾.综上可知,只有(m ,n )=(2,2)符合要求.说明 对①式变形后,所得②式两边符合因式分解方法解不定方程的套路,但7m并不是一个常数,这里需要有另外的方法来处理才能继续下去.活学活用方能攻城拔寨.二、配方法配方是代数变形中的常见方法,在处理不定方程的问题时还可综合利用完全平方数的特性,因此配方法在求解不定方程时大有用武之地.例4 求不定方程2234335x xy y -+=的全部整数解. 解:对方程两边都乘以3,配方后即得()22325105x y y -+=. ①由①式得 25105y ≤, 所以 4y ≤.当4y =时,325x y -=,此时原方程的解为(x ,y )=(1,4),(―1,―4). 当1y =时,3210x y -=,此时原方程的解为(x ,y )=(4,1),(―4,―1).当023y =,,时,()232x y -分别为105,85,60 .此时,所得的方程组显然无整数解. 上面的讨论表明,原方程有4组解:(x ,y )=(4,1),(1,4),(―4,―1),(―1,―4). 例5 求方程2432x x y y y y +=+++的整数解.解:同上例,对方程两边同乘以4,并对左边进行配方,得()()24322141x y y y y +=++++. ①下面对①式右端进行估计.由于()43241y y y y ++++ ()222212y y y y =++-+ ()2222341y y y y =++++, 从而,当y >2或y <-1时,有()()()2222222121y y x y y +<+<++.由于22y y +与22y y ++1是两个连续的整数,它们的平方之间不会含有完全平方数,故上式不成立. 因此只需考虑当-1≤y ≤2时方程的解,这是平凡的,容易得到原方程的全部整数解是 (x ,y )=(0,-1),(-1,-1),(0,0)(-1,0),(-6,2),(5,2). 例6 求所有的正整数n ≥2,使得不定方程组22121222232322112211501612501612501612501612n nn n nn x x x x x x x x x x x xx x x x ⎧⎪⎪⎪⋯⎨⎪⎪⎪⎩--++=+++=+++=+++=+ 有整数解.解:移项后配方,方程组变形为()()()()()()()()122122223221221850850850850n n n n x x x x x x n x x ⎧⎪⎪⎪⎪⋯⎨⎪⎪⎪⎪⎩---+-6=, ①-+-6=, ②-+-6=, -+-6=.由于50表示为两个正整数的平方和只有两种:2222501755=+=+,所以,由①知261x -=、5或7,而由②知281x -=、5或7,从而21x =、7、13.进一步,可知对每个1≤i ≤n ,都有1i x =,7或13,依11x =、7、13 ,分三种情况讨论. 若11x =,则由①知27x =,再由②知313x =,依次往下递推,可知当()1mod3k ≡时,1k x =;当()2mod3k ≡时,7k x =;当()0mod3k ≡时,13k x =.所以,由第n 式,知当且仅当()11mod3n ≡+时,原方程组有整数解,即当且仅当3|n 时,n 符合要求.对另外两种情况17x =和113x =同样讨论,得到的条件是一样的. 综上可知,满足条件的n 是所有3的倍数.说明 进一步讨论可知,当3|n 时,方程组恰有3组整数解.三、不等式估计利用不等式的知识,先确定不定方程中的某个字母的范围,然后逐个枚举得到所有解,这个方法称为不等式估计,它也是我们处理不定方程的常见方法.当然,如果能够恰当地利用字母的对称性等,那么作不等式估计时会简洁很多.例7 求不定方程3361x y xy -=+的正整数解.解:设(x ,y )为方程的正整数解,则x >y .设x =y +d ,则d 为正整数,且()()3361y d y y d y ++=+-22333dy yd d =++,即有 ()()23313161d y d d y d -+-+=.故 361d <, 于是 3d ≤. 分别令1d =、2、3代入,得222161y y ++=, 2510861y y ++=, 28242761y y ++=.只有第一个方程有整数解,并由y 为正整数知y =5,进而x =6.所以,原方程只有一组正整数解(x ,y )=(6,5). 例8 求所有的正整数a 、b ,使得22444aa b ++=. ①解:若(a ,b )是满足①的正整数数对,则2b 为偶数,且24ab >,从而b 为偶数,且2ab >,故22ab ≥+.于是()22244422a aa b ++=≥+4a =+4·2a +4,知22aa ≥,可得4a ≤(对a 归纳可证:当5a ≥时,有22aa <).分别就a =1,2,3,4代入①式,可得方程的所有正整数解为(a ,b )=(2,6)或(4,18).例9 求所有的正整数数组(a ,b ,c ,x ,y ,z ),使得a b c xyz x y z abc ⎧⎨⎩++=,++=,这里a b c ≥≥,x y z ≥≥.解:由对称性,我们只需考虑x a ≥的情形.这时 33xyz a b c a x =++≤≤, 故 3yz ≤,于是 (y ,z )=(1,1),(2,1),(3,1).当(y ,z )=(1,1)时,a b c x ++=且2x abc +=,于是 2abc a b c =+++. 若2c ≥,则2324a b c a a abc +++≤+≤≤, 等号当且仅当2a b c ===时成立.若1c =,则3ab a b =++, 即 ()()114a b --=,得 (a ,b )=(5,2),(3,3).当(y ,z )=(2,1)时,2266abc x a b c =+=+++,与上述类似讨论可知c =1,进而()()212115a b --=,得 (a ,b )=(3,2). 当(y ,z )=(3,1)时,331212abc x a b c =+=+++,类似可知,此时无解.综上所述,可知(a ,b ,c ,x ,y ,z ) =(2,2,2,6,1,1),(5,2,1,8,1,1),(3,3,1,7,1,1), (3,2,1,3,2,1),(6,1,1,2,2,2),(8,1,1,5,2,1), (7,1,1,3,3,1).说明 此题中如果没有条件a ≥b ≥c 和x ≥y ≥z ,也需要利用对称性作出这样的假设后再处理,解题中利用对称性假设x ≥a 是巧妙的,这样问题就转化为只有3种情况而便于处理了.四、同余方法若不定方程()120n F x x x ,,…,=有整数解,则对任意的*m N ∈,其整数解(1x ,2x ,…,n x )均满足()()120mod n F x x x m ≡,,…,.运用这一条件,同余可以作为不定方程是否有整数解的一块试金石. 例10 证明:不定方程22386x y z +-= ①没有整数解.证明 若(x ,y ,z )是方程①的整数解,对①的两边模2,可知x 、y 同奇偶;再对①两边模4可知x 、y 都为奇数,于是()221mod8x y ≡≡,这要求6()22382mod8x y z ≡=+-,矛盾.故方程①没有整数解.说明 利用同余方法解不定方程问题时,选择恰当的数作为模是十分重要的,它不仅涉及问题解决的繁简程度,重要的是能否卡住字母的范围或导出矛盾. 例11 求所有的非负整数x 、y 、z ,使得223xyz +=. ①解:(1)当y =0时,有()()22111xz z z =-=-+,于是可设 2z α-1=,2z β+1=,0αβ≤≤,因此 222βα-=.此时,若2α≥,则4|22βα-,与42矛盾,故1α≤.而0α=导致23β=,矛盾,故1α=,2β=,所以 z =3,x =3,得 (x ,y ,z )=(3,0,3)(2)当y >0时,由于323xy+,故3z ,所以 ()21mod3z ≡.对①两边模3,知()()11mod3x≡-, 故x 为偶数,现在设x =2m ,则 ()()223mmyz z -+=,所以可设 23mz α-=,23m z β+=,0αβ≤≤,y αβ+=, 于是 1332m βα+-=,若α≥1,则3|33βα-,但132m +,矛盾,故α=0,因此1312m β+-=. 当m =0时,β=1,得(x ,y ,z )=(0,1,2); 当m >0时,()120mod4m +=,故 ()31mod4β=, 这要求β位偶数,设β=2n ,则()()122313131m n n n +=-=-+, 同y =0时的讨论,可知 312n-=,即n =1,进而m =2,得 (x ,y ,z )=(4,2,5). 所以(x ,y ,z )=(3,0,3),(0,1,2),(4,2,5).例12 设m 、n 为正整数,且n >1,求25m n -的最小值.解:由于25m n -为奇数,而m =7,n =3时,253m n -=,故若能证明n >1时,251m n -≠,则所求的最小值为3.若存在正整数m 、n ,使得n >1,且251m n -=,则251m n -=或251m n-=-. 如果251mn-=,那么m ≥3,两边模8,要求()57mod8n ≡, 但对任意正整数n ,51n≡或()5mod8,矛盾,故251mn-=不成立. 如果251m n-=-,那么由n >1,知m ≥3.两边模8,得 ()51mod8n≡,可知n 为偶数.设n =2x ,x 为正整数,则 ()()25151m x x =-+, 由于51x-与51x+是两个相邻偶数,这要求512x -=,514x+=, 不可能.所以,25mn-的最小值为3.说明 上面的两个例子都用到了一个结论:两个差为2的正整数之积为2的幂次,则这两个数只能为2和4.该结论在例11的前半段解答中已予以证明.五、构造法有些不定方程的问题只需证明该方程有解或有无穷多个解,这时经常采用构造法来处理. 例13 证明:方程253x y z +=有无穷多组满足0xyz ≠的整数解.证明 取15102k x +=,642k y +=,1072k z +=,k 为非负整数,则这样的x 、y 、z 满足253x y z +=,所以方程有无穷多组满足0xyz ≠的整数解.另证 先求方程的一组特解,易知x =10,y =3,z =7 是方程253x y z +=的一组解.因而1510k x a =,63k y a =,107k z a =(a ,k 为非负整数)是方程的解.例14 证明:对任意整数n ,方程222x y z n +-= ①证明 现有命题“当m 为奇数或4的倍数时,方程22a b m -=有整数解(a ,b )”,它对解决本题是有用的.这个命题基于下面2个恒等式:()22121k k k +-=+,()()2214k k k +--1=.对于方程①,只需取x ,使x 与n 的奇偶性相反(这样的x 有无穷多个),从而利用上述命题,方程 222y z n x -=- 有整数解,可知方程①有无穷多组整数解.例15 是否存在两两不同的正整数m 、n 、p 、q ,使得m n p q +=+2012都成立?解:存在满足条件的正整数.由方程的结构,我们寻找形如2m a =,3n b =,2p c =,3q d =的正整数.这里a 、b 、c 、d 为正整数. 此时,条件转化为2012a b c d +=+>,2323a b c d +=+,即 a c d b -=-,()()()()22a c a c d b d bd b -+=-++.令1d b -=,即1b d =-,且使2012b >,则b 、d 的奇偶性不同,现令2212b bd d a +++=,2212b bd dc ++-=,那么a 、c 为正整数,且由a 、b 、c 、d 确定的m 、n 、p 、q 满足条件.例16 证明:存在无穷多组正整数组()x y z ,,,使得x 、y 、z 两两不同,并且 33xx y z =+.证明 一个想法是:将x 取为3k +1形式的数,这时()3131k x x k +=+()()33131kk k =++ ()()3333131k kk k k =+++因此,如果使3k 为一个完全立方数,那么符合要求的正整数x 、y 、z 就找到了.为此,令323m k +=,这里m 为正整数,那么令31x k =+,()1331km x k +=+,()31kz k =+,则x 、y 、z 两两不同,且满足33xx y z =+.命题获证.说明 如果不要求x 、y 、z 两两不同,我们还可以这样来构造:取2m y z ==,2x α=,则当231m αα•=+时,就有33xx y z =+.容易看出满足231m αα•=+的正整数对()m α,有无穷多对.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求不定方程整数解的常用方法 摘要:不定方程,是指未知数的个数多于方程的个数,且未知数受到某些限制的方程或方程组.因此,要求一个不定方程的全部的解,是相当困难的,有时甚至是不可能或不现实的.本文利用变量替换、未知数之间的关系、韦达定理、整除性、求根公式、判别式、因式分解等有关理论,求得一类不定方程的正整数解.通过一些具体的例子,给出了常用的不定方程的解法,分别为分离整数法、辗转相除法、不等式估值法、逐渐减小系数法、分离常数项的方法、奇偶性分析法、换元法、构造法、配方法、韦达定理、整除性分析法、利用求根公式、判别式、因式分解法等等.

关键字:不定方程;整数解;整除性 2

1引言 不定方程是数论的一个分支,有悠久的历史与丰富的内容,与其他数学领域有密切联系,是数论中的重要的、活跃的研究课题之一,我国对不定方程的研究以延续了数千年,“百钱百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理,学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学的解题技能.

中学阶段是学生的思维能力迅猛发展的关键阶段.在此阶段要注重培养学生的思维能力,开发学生智力,因此对于初等数论的一般方法、理论有一定的了解是必不可少的.让学生做题讲究思想、方法与技巧、创造性的解决问题,就要有一定的方法与技巧的积累与总结.

不定方程的重要性在中学中得到了充分的体现,无论在中高考还是在每年世界各地的数学竞赛中,不定方程都占有一席之地,而且它还是培养学生思维能力、观察能力、运算能力、解决问题能力的好材料.

2不定方程的定义 所谓不定方程是指未知数的个数多于方程的个数,且未知数受到某些(如要求是有理数,整数或正整数等等)限制的方程或方程组.不定方程也称丢番图方程,是数论的重要分支学科,也是数学上最活跃的数学领域之一,不定方程的内容十分丰富,与代数数论、几何数论、集合数论都有较为密切的联系. 下面对中学阶段常用的求不定方程整数解的方法做以总结:

3一般常用的求不定方程整数解的方法 (1)分离整数法 此法主要是通过解未知数的系数中绝对值较小的未知数,将其结果中整数部分分离出来,则剩下部分仍为整数,则令其为一个新的整数变量,以此类推,直到能直接观察出特解的不定方程为止,再追根溯源,求出原方程的特解.

例1 求不定方程025yxx的整数解 解 已知方程可化为 231232223225xxxxxxxxy

因为y是整数,所以23x也是整数. 由此 5,1,3,1,3,3,1,12xx即

相应的.0,2,0,4y 3

所以方程的整数解为(-1,4),(-3,0),(1,2),(-5,0). (2)辗转相除法 此法主要借助辗转相除式逆推求特解,具体步骤如下: 第一步,化简方程,尽量化简为简洁形式(便于利用同余、奇偶分析的形式); 第二步,缩小未知数的范围,就是利用限定条件将未知数限定在某一范围内,便于下一步讨论; 第三步,用辗转相除法解不定方程.

例2 求不定方程2510737yx的整数解.

解 因为251)107,37(,所以原方程有整数解. 用辗转相除法求特解: 18433,413337,33237107 从最后一个式子向上逆推得到

19107)26(37 所以 25)259(107)2526(37 则特解为

225259650252600yx 通解为 Ztttyttx,)6(37337225)6(1078107650 或改写为 .,3731078Zttytx (3)不等式估值法 先通过对所考查的量的放缩得到未知数取值条件的不等式,再解这些不等式得到未知数的取值范围.

例3 求方程1111zyx适合zyx的正整数解. 解 因为 zyx

所以

zyx111 所以 4

zzzzyxz1111111 即 zz311 所以 31z

所以.32zz或 当2z时有

2111yx 所以 yyyxy11111 所以 yy2211

所以42y 所以;46,43或相应地或xyy 当3z时有

3211yx 所以 yyyxy11111 所以 yy2321

所以.3;3,3xyy相应地 所以).3,3,3(),2,4,4(),2,3,6(),,(zyx (4)逐渐减小系数法 5

此法主要是利用变量替换,使不定方程未知数的系数逐渐减小,直到出现一个未知量的系数为1的不定方程为止,直接解出这样的不定方程(或可以直接能用观察法得到特解的不定方程为止,再依次反推上去)得到原方程的通解.

例4 求不定方程2510737yx的整数解.

解 因为251)107,37(,所以原方程有整数解. 有10737,用y来表示x,得 37412313710725yyyx 则令 12374,37412myZmy即

由4<37,用m来表示y,得 49343712mmmy 令.4,4tmZtm得将上述结果一一带回,得原方程的通解为

Zttytx,3731078 注解一元二次不定方程通常先判定方程有无解.若有解,可先求cbyax的一个特解,从而写出通解.当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易求得其特解为止.

对于二元一次不定方程cbyax来说有整数解的充要条件是cba),(.

)(,)(,0000ZtatyybtxxZtatyybtxx或 (5)分离常数项的方法 对于未知数的系数和常数项之间有某些特殊关系的不定方程,如常数项可以拆成两未知数的系数的倍数的和或差的不定方程,可采用分解常数项的方法去求解方程.

例5 求不定方程14353yx的整数解. 解 原方程等价于 0)28(5)1(331405314353yxyxyx 因为 15,3 所以 6

Zttytx,32851 所以原方程的通解为.,32851Zttytx (6)奇偶性分析法 从讨论未知数的奇偶性入手,一方面可缩小未知数的取值范围,另一方面又可用

n2或)(12Znn代入方程,使方程变形为便于讨论的等价形式.

例6 求方程32822yx的正整数解. 解 显然yx,不妨设 0yx 因为328是偶数,所以x、y的奇偶性相同,从而yx是偶数. 令 112,2vyxuyx

则1u、.0,111vuZv且 所以 1111,vuyvux 代入原方程得 1642121vu 同理,令 2211211(2,2uvvuuvu、)0,222vuZv且 于是,有 822222vu 再令 3223222,2vvuuvu 得 412323vu

此时,3u、3v必有一奇一偶,且 641033uv 7

取,5,4,3,2,13v得相应的 16,25,32,37,4023u 所以,只能是.4,533vu 从而 2,18yx

结合方程的对称性知方程有两组解.18,2,2,18 (7)换元法 利用不定方程未知数之间的关系(如常见的倍数关系),通过代换消去未知数或倍数,使方程简化,从而达到求解的目的.

例7 求方程7111yx的正整数解.

解 显见,.7,7yx为此,可设,7,7nymx其中m、n为正整数. 所以原方程7111yx可化为 717171nm 整理得 .49,777777mnnmnm即 所以 49,1;7,7;1,49332211nmnmnm 相应地 56,8;14,14;8,56332211yxyxyx

所以方程正整数解为.56,8,14,14,8,56 (8)构造法 构造法是一种有效的解题方法,并且构造法对学生的创造性思维的培养有很重要的意义,成功的构造是学生心智活动的一种探求过程,是综合思维能力的一种体现,也是对整个解题过程的一种洞察力、预感力的一种反映.构造体现的是一种转化策略,在处理不定方程问题时可根据题设的特点,构造出符合要求的特解或者构造一个求解的递推式等.

例8 已知三整数a、b、c之和为13且bcab,求a的最大值和最小值,并求出此

时相应的b与c的值.

相关文档
最新文档