2011年普通高等学校招全国统一考试(湖南卷)数学(文史类)
2011年(全国卷II)(含答案)高考文科数学

2011年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题共 12 题, 共计 60 分)1、设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则(M∩N)=() A.{1,2} B.{2,3} C.{2,4} D.{1,4}2、函数y=2(x≥0)的反函数为()A.(x∈R) B.(x≥0)C.y=4x2(x∈R) D.y=4x2(x≥0)3、设向量a,b满足|a|=|b|=1,,则|a+2b|=()A.B.C.D.4、若变量x,y满足约束条件则z=2x+3y的最小值为() A.17 B.14 C.5 D.35、下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b-1 C.a2>b2 D.a3>b36、设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k =()A.8 B.7 C.6 D.57、设函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移个单位长度后,所得的图像与原图像重合,则ω的最小值等于()A. B.3 C.6 D.98、已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则CD=…()A.2 B.C.D.19、4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种10、(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-5/2)=()A.B.C.D.11、设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4 B.C.8 D.12、已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为() A.7πB.9πC.11πD.13π二、填空题( 本大题共 4 题, 共计20 分)13、(1-x)10的二项展开式中,x的系数与x9的系数之差为______.14、已知,tanα=2,则cosα=______.15、已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC 所成角的余弦值为______.16、已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=______.三、解答题( 本大题共 6 题, 共计70 分)17、设等比数列{a n}的前n项和为S n.已知a2=6,6a1+a3=30,求a n和S n.18、△ABC的内角A、B、C的对边分别为a、b、c,.(1)求B;(2)若A=75°,b=2,求a,c.19、根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.20、如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB =BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成的角的大小.21、已知函数f(x)=x3+3ax2+(3-6a)x+12a-4(a∈R).(1)证明:曲线y=f(x)在x=0处的切线过点(2,2);(2)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.22、已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F 且斜率为的直线l与C交于A,B两点,点P满足. (1)证明:点P在C上;(2)设点P关于点O的对称点为Q,证明:A,P,B,Q四点在同一圆上.—2011年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:一、选择题( 本大题共12 题, 共计60 分)1、(5分) DM∩N={1,2,3}∩{2,3,4}={2,3},又∵U={1,2,3,4},∴(M∩N)={1,4}.2、(5分) B由(x≥0)得(y≥0),∴,∴反函数为(x≥0).3、(5分) B由|a|=|b|=1,,得.4、(5分) C由x,y的约束条件画出可行域如图:设l0:,则过A点时,z的值最小.由得A(1,1),∴z min=2×1+3×1=5.5、(5分) AA项中a>b+1>b,所以充分性成立,但必要性不成立,所以“a>b +1”为“a>b”成立的充分不必要条件.6、(5分) D由S k+2-S k=24,∴a k+1+a k+2=24,∴a1+kd+a1+(k+1)d=24,∴2a1+(2k+1)d=24.又a1=1,d=2,∴k=5.7、(5分) C由题意得:为函数f(x)=cosωx的最小正周期的正整数倍,∴(k∈N*),∴ω=6k(k∈N*),∴ω的最小值为6.8、(5分) C如图,AB=2,AC=BD=1,连结BC,则△ABC为直角三角形,∴.又△BCD为直角三角形,∴.9、(5分) B先从4人中选2人选修甲课程,有种方法,剩余2人再选修剩下的2门课程,有22种方法,∴共有种方法.10、(5分) A∵f(x)是周期为2的奇函数,∴11、(5分) C由题意可设两圆的方程均为:(x-r)2+(y-r)2=r2.将(4,1)代入,可得:(4-r)2+(1-r)2=r2,∴r2-10r+17=0.∴此方程两根r1,r2分别为两圆半径,∴两圆心的距离12、(5分) D由题意可得截面图形.∵圆M的面积为4π,∴圆M的半径为2.∵α与β所成二面角为60°,∴∠BMC=60°.在△OMB中,∠OMB=90°,MB=2,OB=4,∴∠OBM=60°. ∴OB∥CD,.在△OMN中,∠OMN=30°,,∴.∴.∴圆N的面积为.二、填空题( 本大题共4 题, 共计20 分)13、(5分) 0解析:(1-x)10的通项公式.∴,,∴系数之差为.14、(5分)解析:∵α∈(π,),tanα=2,∴.又sin2α+cos2α=1,∴5cos2α=1,∴.15、(5分)解析:如图,连结DE.∵AD∥BC,∴AE与BC所成的角,即为AE与AD所成的角,即∠EAD. 设正方体棱长为a,∴,∴,∴.16、(5分) 6解析:F1(-6,0),F2(6,0),M(2,0),∴|F1M|=8,|MF2|=4.由内角平分线定理得:,又|AF1|-|AF2|=2a=2×3=6,∴2|AF2|-|AF2|=|AF2|=6.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 解:设{a n}的公比为q,由题设得解得或当a1=3,q=2时,a n=3×2n-1,S n=3×(2n-1);当a1=2,q=3时,a n=2×3n-1,S n=3n-1.18、(12分) 解:(1)由正弦定理得.由余弦定理得b2=a2+c2-2ac cos B.故,因此B=45°.(2)sin A=sin(30°+45°)=sin30°cos45°+cos30°sin45°=. 故,.19、(12分) 解:记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2),P(D)=1-P(C)=1-0.8=0.2,P(E)=×0.2×0.82=0.384.20、(12分)解法一:(1)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2.连结SE,则SE⊥AB,.又SD=1,故ED2=SE2+SD2,所以∠DSE为直角.由AB⊥DE,AB⊥SE,DE∩SE=E,得AB⊥平面SDE,所以AB⊥SD. SD与两条相交直线AB、SE都垂直.所以SD⊥平面SAB.(2)由AB⊥平面SDE知,平面ABCD⊥平面SDE.作SF⊥DE,垂足为F,则SF⊥平面ABCD,.作FG⊥BC,垂足为G,则FG=DC=1.连结SG,则SG⊥BC.又BC⊥FG,SG∩FG=G,故BC⊥平面SFG,平面SBC⊥平面SFG. 作FH⊥SG,H为垂足,则FH⊥平面SBC.,即F到平面SBC的距离为.由于ED∥BC,所以ED∥平面SBC,E到平面SBC的距离d也为.设AB与平面SBC所成的角为α,则,.解法二:以C为坐标原点,射线CD 为x轴正半轴,建立如图所示的空间直角坐标系Cxyz.设D(1,0,0),则A(2,2,0),B(0,2,0).又设S(x,y,z),则x>0,y>0,z>0,(1)=(x-2,y-2,z),=(x,y-2,z),=(x-1,y,z),由得,故x=1.由得y2+z2=1,又由得x2+(y-2)2+z2=4,即y2+z2-4y+1=0,故,.于是,,,,,.故DS⊥AS,DS⊥BS,又AS∩BS=S,所以SD⊥平面SAB.(2)设平面SBC的法向量a=(m,n,p),则,,,.又,,故取p=2得.又,.故AB与平面SBC所成的角为.21、(12分) 解:(1)f′(x)=3x2+6ax+3-6a.由f(0)=12a-4,f′(0)=3-6a,得曲线y=f(x)在x=0处的切线方程为y=(3-6a)x+12a-4,由此知曲线y=f(x)在x=0处的切线过点(2,2).(2)由f′(x)=0,得x2+2ax+1-2a=0.①当时,f(x)没有极小值;②当或时,由f′(x)=0,得,,故x0=x2.由题设知1<-a+<3.当时,不等式无解;当时,解不等式,得.综合①②得a的取值范围是(,).22、(12分) 解:(1)F(0,1),l的方程为,代入并化简得.设A(x1,y1),B(x2,y2),P(x3,y3),则,,,,由题意得,y3=-(y1+y2)=-1.所以点P的坐标为.经验证,点P的坐标)满足方程,故点P在椭圆C 上.(2)由P和题设知,Q,PQ的垂直平分线l1的方程为.①设AB的中点为M,则M,AB的垂直平分线l2的方程为.②由①②得l1、l2的交点为N,,,,,,故|NP|=|NA|.又|NP|=|NQ|,|NA|=|NB|,所以|NA|=|NP|=|NB|=|NQ|,由此知A,P,B,Q四点在以N为圆心,NA为半径的圆上.—。
2011年高考试题——数学文(全国卷)精校版

2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效.....。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=⋂ð(M N ) (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 满足|a|=|b|=1,则2a b +=(A(B(C(D(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a>b 成立的充分而不必要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B (C (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B) (C)8 (D)(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年全国高考卷数学(文)

2011年全国高考卷数学(文)(考试时间:90分钟,满分:100分)一、选择题(共7题,每题5分,满分35分)1. (5分)已知函数f(x)=x²2x+1,则f(x1)的值为?A. x²2xB. x²2x+1C. x²2x1D. x²3x+22. (5分)在等差数列{an}中,a1=1,a3=3,则a5的值为?A. 5B. 6C. 7D. 83. (5分)若复数z满足|z|=1,则z的共轭复数z的模为?A. 0B. 1C. 2D. 无法确定4. (5分)已知直线y=2x+1与圆(x1)²+(y2)²=4相交,则它们的交点坐标为?A. (0,1)和(2,5)B. (1,3)和(3,7)C. (1,1)和(1,3)D. (1,3)和(1,1)5. (5分)设平面直角坐标系中,点A(2,3)关于原点对称的点是?A. (2,3)B. (2,3)C. (2,3)D. (3,2)6. (5分)已知三角形ABC的三边长分别为3、4、5,则三角形ABC的面积S为?A. 6B. 8C. 10D. 127. (5分)函数y=2x在x=1处的导数值为?A. 2B. 4C. 6D. 8二、填空题(共3题,每题5分,满分15分)(题目及分值待补充)三、解答题(共3题,每题15分,满分45分)(题目及分值待补充)四、应用题(共1题,满分10分)(题目及分值待补充)五、证明题(共1题,满分15分)(题目及分值待补充)二、填空题(共3题,每题5分,满分15分)8. (5分)若函数f(x) = x² 4x + 3,则f(2)的值为______。
9. (5分)在直角坐标系中,点P(3, 4)关于x轴的对称点坐标为______。
10. (5分)已知等比数列的前三项分别为a, ar, ar²,若a=2,r=3,则第四项为______。
三、解答题(共3题,每题15分,满分45分)11. (15分)解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]12. (15分)已知函数g(x) = 3x 2,求g(g(x))。
2011高考试题——数学文(全国卷)解析版

2011高考试题——数学文(全国卷)解析版2011年高考题全国卷II 数学试题·文科全解析题目及解析(1)设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则U=⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【思路点拨】解决本题的关键是掌握集合交并补的计算方法,易求{2,3}M N =,进而求出其补集为{}1,4. 【精讲精析】选D.{2,3},(){1,4}U MN MN =∴=.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b ,而由a>b 推不出选项的选项.【精讲精析】选A .即寻找命题P 使P ,a b a b ⇒>>推不出P ,逐项验证可选A 。
(6)设nS 为等差数列{}n a 的前n 项和,若11a=,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【思路点拨】思路一:直接利用前n 项和公式建立关于k 的方程解之即可。
思路二: 利用221k k k k SS a a +++-=+直接利用通项公式即可求解,运算稍简。
【精讲精析】选D .22112(21)2(21)224 5.k k k k S S a a a k d k k +++-=+=++=++⨯=⇒=(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9 【思路点拨】此题理解好三角函数周期的概念至关重要,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍。
2011年高考试题——数学文(全国卷)

2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效.....。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=⋂(M N ) (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 满足|a|=|b|=1,则2a b +=(A 2 (B 3 (C 5 (D 7 (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a>b 成立的充分而不必要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13 (B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B )3 (C )2 (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)42 (C)8 (D)82(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
《2011年高考真题解析版—数学文(全国卷)解析版1》

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I (2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b +=(A(B(C(D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. (5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD =(A ) 2 (B (C (D )1 【答案】C【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5(2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)(C)8 (D)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=,∴12ON OM ==,故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年湖南卷理科数学高考试卷(原卷 答案)
绝密★启用前2011年普通高等学校招生全国统一考试(湖南卷)理科数学本试卷共22题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >,(2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
一、选择题(共8小题,每小题5分,满分40分)) ). .由算得,.5.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的值为()y=cosx)...7.(5分)(2011•湖南)设m>1,在约束条件下,目标函数Z=X+my的最大值小于2,则m 的取值范围,(M,N,则当|MN|达到最小时...9.(5分)(2011•湖南)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ﹣sinθ)+1=0,则C1与C2的交点个数为_________.10.(5分)(2011•湖南)设x,y∈R,且xy≠0,则的最小值为_________.11.(2011•湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交与点F,则AF的长为_________.12.(5分)(2011•湖南)设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S9=_________.13.(5分)(2011•湖南)若执行如图所示的框图,输入x1=1,,则输出的数等于_________.14.(5分)(2011•湖南)在边长为1的正三角形ABC中,设,则=_________.15.(5分)(2011•湖南)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该院内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=_________;(2)P(B|A)=_________.16.(5分)(2011•湖南)对于n∈N+,将n 表示n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+ak﹣1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,a1为0或1.记I(n)为上述表示中ai为0的个数(例如:1=1×20,4=1×22+0×21+0×20,故I (1)=0,I(4)=2),则(1)I(12)=_________;(2)=_________.三、解答题(共6小题,满分75分)17.(12分)(2011•湖南)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求sinA﹣cos (B+)的最大值,并求取得最大值时角A、B的大小.货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(Ⅰ)求当天商品不进货的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.19.(12分)(2011•湖南)如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B﹣PA﹣C的余弦值.20.(13分)(2011•湖南)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v﹣c|×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时.(Ⅰ)写出y的表达式(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.21.(13分)(2011•湖南)如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1,C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交与D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由.22.(13分)(2011•湖南)已知函数f(x)=x3,g (x)=x+.(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;(Ⅱ)设数列{ an}(n∈N*)满足a1=a(a>0),f(an+1)=g(an),证明:存在常数M,使得对于任意的n∈N*,都有an≤M.2011年普通高等学校招生全国统一考试(湖南卷)理科数学(参考答案)1.答案:D 2.答案:A解析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。
2011年全国普通高等学校招生统一考试文科数学
【详解】
(I)由正弦定理得
由余弦定理得 .
故 ,因此
(II)
故
.
【点睛】
本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.
19.记A表示事件:该地的1位车主购买甲种保险:
B表示事件:该地的1位车主购买乙种保险但不购买甲种保险.
14.已知 , ,则 .
15.已知正方体 中,E为 的中点,则异面直线AE与BC所成角的余弦值为.
16.已知 , 分别为双曲线 的左、右焦点,点 ,点 的坐标为 , 为 的角平分线,则 _______
三、解答题
17.(本小题满分l0分)(注意:在试题卷上作答无效)
设等比数列 的前n项和为 .已知 求 和 .
C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;
D表示事件:该地的1位车主甲、乙两种保险都不购买;
E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.
(I) , , ……………………………3分
……………………………6分
(II)D= ,P(D)="1-P(C)=1-0.8=0.2," ……………………………9分
在△RtADE中,由于DE=,AD=2,可得AE=3,∴cos∠DAE==.
16.6
【分析】
利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.
【详解】
不妨设A在双曲线的右支上,
∵ 为 的平分线,
∴ ,
又∵ ,解得 ,故答案为6.
考点:圆与圆的位置关系.
2011年高考试题数学文(全国2卷)以及答案
2011年一般高等学校招生全国一致考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水署名笔将自己的姓名、准考据号填写清楚,并贴好条形码。
请仔细批准条形码上的准考据号、姓名和科目。
2.每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动, 用橡皮擦洁净后,再选涂其余答案标号,在试题卷上.....作答无效....。
3.第Ⅰ卷共l2小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
一、选择题(1)设会合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U C =⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 知足|a|=|b|=1,则2a b +=(A 2 (B 3 (C 5 (D 7(4)若变量x ,y 知足拘束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下边四个条件中,使a>b 建立的充足而不用要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13 (B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,DAB =2,AC =BD =1,则CD =(A ) 2 (B )3 (C )2 (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不一样选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)42 (C)8 (D)82(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水署名笔将自己的姓名、准考 证号填写清楚,而后贴好条形码。
2011年全国统一高考数学试卷(文科)(新课标版)答案与解析
2011年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】交集及其运算.【专题】计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.2.(5分)(2011•新课标)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【考点】复数代数形式的混合运算.【专题】计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选C【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】常规题型.【分析】首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=﹣x2+1、y=2﹣|x|=的单调性易于选出正确答案.【解答】解:因为y=x3是奇函数,y=|x|+1、y=﹣x2+1、y=2﹣|x|均为偶函数,所以选项A错误;又因为y=﹣x2+1、y=2﹣|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以选项C、D错误,只有选项B正确.故选:B.【点评】本题考查基本函数的奇偶性及单调性.4.(5分)(2011•新课标)椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)(2011•新课标)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【考点】程序框图.【专题】图表型.【分析】通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.【解答】解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B【点评】本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.6.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;直线的图象特征与倾斜角、斜率的关系.【专题】计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)(2011•新课标)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【考点】直线与圆锥曲线的关系.【专题】数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6∴S△ABP=(DP•AB)=×6×12=36故选C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)(2011•新课标)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(﹣,0)B.(0,)C.(,)D.(,)【考点】函数零点的判定定理.【专题】计算题.【分析】分别计算出f(0)、f(1)、f()、f()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【解答】解:∵f(0)=e0﹣3=﹣2<0 f(1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A选项又∵∴根所在的区间x0∈(0,),排除D选项最后计算出,,得出选项C符合;故选C.【点评】e=2.71828…是一个无理数,本题计算中要用到等的值,对计算有一定的要求.11.(5分)(2011•新课标)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】正弦函数的对称性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)(2011•新课标)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】对数函数的图像与性质;函数的周期性.【专题】压轴题;数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=1.【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【考点】简单线性规划.【专题】计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)(2011•新课标)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】正弦定理的应用;余弦定理.【专题】解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)(2011•新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题;压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】等比数列的前n项和.【专题】综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】随机抽样和样本估计总体的实际应用;众数、中位数、平均数;离散型随机变量的期望与方差.【专题】计算题;综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)(2011•新课标)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】圆周角定理;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】简单曲线的极坐标方程;轨迹方程.【专题】计算题;压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】绝对值不等式的解法.【专题】计算题;压轴题;分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招全国统一考试(湖南卷)
数学(文史类)
本试题包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。
参考公式:
(1)柱体体积公式vsh,其中s为底面面积,h为高
(2)球的体积公式V=31πR3, 其中R为球的半径
一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩CuN=﹛2,4﹜,则N=
A.{1,2,3} B. {1,3,5}
C. {1,4,5} D. {2,3,4}
2.若,abR,i为虚数单位,且()aiibi则
A.1a,1b B. 1,1ab C. 1,1ab D. 1,1ab
3. “1x”是“1x” 的
A.充分不必要条件 B.必要不充分条件
C. 充分必要条件 D.既不充分又不必要条件
4.设图1是某几何体的三视图,则该几何体的体积为
A.942
B.3618
C.9122
D.9182
5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 女 总计
爱好 40 20 60
不爱好 20 30 50
总计 60 50 110
由22()()()()()nadbckadcdacbd 算得,22110(40302020)7.860506050k
附表:
2
()pkk
0.050 0.010 0.001
k 3.841 6.635 10.828
参照附表,得到的正确结论是
A. 有99%以上的把握认为“爱好该项运动与性别有关”
B. 有99%以上的把握认为“爱好该项运动与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别五关”
6.设双曲线2221(0)9xyaa的渐近线方程为320xy,则a的值为
A.4 B.3 C.2 D.1
7.曲线sin1sincos2xyxx在点M(,0)4处的切线的斜路为
A. 12 B. 12 C. 22 D. 22
8.已知函数2()1,()43xfxegxxx,若有()()fagb,则b的取值范围为
A. 22,22 B. 22,22
C. 1,3 D. 1,3
填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡
中对应号后的横线上。
(一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)
9.在直角坐标系xOy中,曲线C1的参数方程为2cos,3sinxy (为参数)在极坐标
系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴中,曲线
C2的方程为cossin10p,则C1与C2的交点个数为
10.已知某试验范围为【10,90】,若用分数法进行4次优选试验,则第二次试点可以是
(二)必做题(11~16题)
11.若执行如图2所示的框图,输入11x,2342,4,8xxx则输出的数等于
12. 已知f(x)为奇函数,g(x)=f(x)+9,g(-2)=3,则f(2)=_________.
13. 设向量a,b满足|a|=25,b=(2,1),且a与b的方向相反,则a的坐标为________.
y≥x
14. 设m>1,在约束条件 y≤mx ,下,目标函数z=x+5y的最大值为4,则m 的值
x+y≤1
为_________.
15. 已知圆C:x2+y2=12,直线l : 4x+3y=25.
(1)圆C的圆心到直线l的距离为________;
(2)圆C上任意一点A到直线l的距离小于2的概率为_______.
16. 给定kN,设函数:fNN满足:对于任意大于k的正整数n:()fnnk
(1) 设k=1,则其中一个函数f在n=1处的函数值为_________'
(2) 设k=4,且当n≤4时,2≤f(n)≤3,则不同的函数f的个数为________.
三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1) 求角C的大小;
(2) 求3sinA-cos (B+4)的最大值,并求取得最大值时角A、B的大小。
18.(本小题满分12分)
某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份
是我降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知
近20年X的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160,
220, 140, 160。
(Ⅰ)完成如下的频率分布表
近20年六月份降雨量频率分布表
降
雨量
70 110 140 160 200 220
频
率
120 420 2
20
(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为飞、
概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的
概率.
19.(本小题满分12分)
如图3,在圆锥PO中,已知PO=2,OD的直径2AB,点C在上,且030CAB,
D为AC
的中点.
(Ⅰ)证明:AC平面POD;
(Ⅱ)求直线 OC和平面PAC所成角的正弦值。
20.(本小题满分13分)
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.
从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的
价值为上年初的75%.
(Ⅰ)求第n年初M的价值na的表达式;
(Ⅱ)设12...nnaaaAn,若nA大于80万元,则M继续使用,否则须在第n年初对
M
更新.证明:须在第9年初对M更新.
21. (本小题满分13分)
已知平面内一动点P到点(1,0)F的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ),过点F左两条斜率存在且互相垂直的直线12,ll,设1l与轨迹C相交于点,AB,2l与
轨迹C相交于点,DE,求,ADEB的最小值。
22. (本小题满分13分)
设函数1()()fxxaInxaRx。
(Ⅰ)讨论函数()fx的单调性。
(Ⅱ)若()fx有两个极值点12,xx;记过点11(,()),Axfx22(,())Bxfx的直线斜率为k。问:
是否存在a,使得2ka?若存在,求出a的值;若不存在,请说明理由。