内蒙古呼伦贝尔市海拉尔区2020年普通高中第一次统考(高考一模)理科数学试题含答案

合集下载

2020年全国新高考Ⅰ卷数学试卷(含解析)

2020年全国新高考Ⅰ卷数学试卷(含解析)

2020年全国新高考Ⅰ卷数学试卷一、选择题1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}=()2.2−i1+2iA.1B.−1C.iD.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3买名,则不同的安排方法共有() A.120种 B.90种 C.60种 D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT ,有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →⋅AB →的取值范围是()A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8.若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9.已知曲线C :mx 2+ny 2=1.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则C 是圆,其半径为√nC.若mn <0,则C 是双曲线,其渐近线方程为y =±√−m n xD.若m =0, n >0,则C 是两条直线10.如图是函数y =sin (ωx +φ)的部分图像,则sin (ωx +φ)=()A.sin (x +π3)B.sin (π3−2x)C.cos (2x +π6)D.cos (5π6−2x)11.已知a >0,b >0,且a +b =1,则()A.a 2+b 2≥12B.2a−b >12C.log 2a +log 2b ≥−2D.√a +√b ≤212.信息熵是信息论中的一个重要概念,设随机变量X 所有可能的取值为1,2,⋯,n ,且P(X =i)=p i >0(i =1,2,⋯,n),∑p i n i=1=1,定义X 的信息熵H (X )=−∑p i n i=1log 2p i ,则()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p i 的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y )三、填空题13.斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14.将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=3,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,5圆孔半径为1,则图中阴影部分的面积为________cm2.16.已知直四棱柱ABCD−A1B1C1D1的棱长均为2,∠BAD=60∘,以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为________.四、解答题17.在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π,________?618.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100.19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?,附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20.如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD 与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21.已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.2020年全国新高考Ⅰ卷数学试卷一、选择题1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.2−i1+2i=()A.1B.−1C.iD.−i【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3买名,则不同的安排方法共有() A.120种 B.90种 C.60种 D.30种【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【解答】解:设喜欢足球为A,喜欢游泳为B,由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t ,e 0.38(t+x)=2⋅e 0.38t 得x =ln20.38≈1.8.故选B .7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →⋅AB →的取值范围是()A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6) 【解答】解:如图:设A(−1,√3),P (x,y ),B (−2,0),AP →=(x +1,y −√3),AB →=(−1,−√3),则:AP →⋅AB →=−x −√3y +2,令z =−x −√3y +2,由线性规则得,最优解为:C(−1,−√3)和F(1,√3),代入得z =6或z =−2.故AP →⋅AB →的取值范围是(−2,6).故选A .8.若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3] 【解答】解:根据题意,函数图象大致如图:①当x=0时,xf(x−1)=0成立;②当x>0时,要使xf(x−1)≥0,即f(x−1)≥0,可得0≤x−1≤2或x−1≤−2,解得1≤x≤3;③当x<0时,要使xf(x−1)≥0,即f(x−1)≤0,可得x−1≥2或−2≤x−1≤0,解得−1≤x<0.综上,x的取值范围为[−1,0]∪[1,3].故选D.二、多选题已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnx D.若m=0, n>0,则C是两条直线【解答】解:A,mx2+ny2=1,即x 21 m +y21n=1,∵m>n>0,∴1m <1n,∴此时C是椭圆,且其焦点在y轴上,A选项正确;B,m=n>0时,x2+y2=1n,∴r=√nn,B选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴y=±√1n,代表两条直线,D选项正确.故选ACD.如图是函数y=sin(ωx+φ)的部分图像,则sin(ωx+φ)=()A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴T=π,∴ω=2ππ=2,∴y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(2k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3)=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3 )=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3 )=−sin(2x+2π3),故D选项错误.故选BC.已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤2【解答】解:A,∵a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴1=a 2+b 2+2ab ≤2(a 2+b 2),可得a 2+b 2≥12,故A 正确; B ,∵a −b =a −(1−a)=2a −1>−1,∴2a−b >2−1=12,故B 正确;C ,∵ab ≤(a+b 2)2=14,当且仅当a =b 时取等号, ∴log 2a +log 2b =log 2(ab)≤log 214=−2,故C 错误;D ,∵a +b ≥2√ab ,当且仅当a =b 时取等号,∴(√a +√b)2=a +b +2√ab =1+2√ab ≤2,即√a +√b ≤√2,则√a +√b ≤2,故D 正确.故选ABD .信息熵是信息论中的一个重要概念,设随机变量X 所有可能的取值为1,2,⋯,n ,且P(X =i)=p i >0(i =1,2,⋯,n),∑p i n i=1=1,定义X 的信息熵H (X )=−∑p i n i=1log 2p i ,则()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p i 的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y )【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确;B ,若n =2,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)].设f (p )=−[plog 2p +(1−p )log 2(1−p )],则:f ′(p )=−[log 2p +p ⋅1p⋅ln2−log 2(1−p )+(1−p )−1(1−p )ln2]=−log 2p 1−p =log 21−p p , 当0<p <12时,f ′(p )>0;当12<p <1时,f ′(p )<0,∴f (p )在(0,12)上单调递增,在(12,1)上单调递减,p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知:P (Y =1)=p 1+p 2m ;P (Y =2)=p 2+p 2m−1;P (Y =3)=p 3+p 2m−2;⋯⋯P (Y =m )=p m +p m+1;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)],H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯+(p m log 2p m +p m+1log 2p m+1)],∵(p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0,⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0,所以H (X )>H (Y ),故D 错误.故选AC .三、填空题斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=________.【解答】解:设A(x1,y1),B(x2,y2),抛物线的焦点为(1,0),则直线方程为y=√3(x−1),代入抛物线方程得3x2−10x+3=0,∴x1+x2=10,3.根据抛物线方程得定义可知|AB|=x1+1+x2+1=163.故答案为:163将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.【解答】解:数列2n−1各项为:1,3,5,7,9,⋯数列3n−2各项为:1,4,7,10,13,⋯观察可知,{a n}是首项为1,公差为6的等差数列,数列{a n}的前n项和为3n2−2n.故答案为:3n2−2n.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与,直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=35 BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1,则图中阴影部分的面积为________cm2.【解答】解:由已知得A到DG的距离与A到FG的距离相等,均为5. 作AM⊥GF于M,设AN⊥DG于N.则∠NGA=45∘.∵BH//DG,∴∠BHA=45∘.∵∠OAH=90∘,∴∠AOH=45∘.由tan∠ODC=35,设O到DG的距离为3t,则O到DE的距离为5t,∴{OAcos45∘+5t=7,OAsin45∘+3t=5,解得{t=1, OA=2√2.半圆之外阴影部分面积为:S1=2√2×2√2×12−45∘×π×(2√2)2360∘=4−π,阴影部分面积为:S=12(π⋅(2√2)2−π⋅12)+S1=5π2+4.故答案为:5π2+4.已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________.【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线,即D 1(1,−√3,0), 设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5,化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题在①ac =√3,②csinA =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π6,________?【解答】解:选①:∵sinA=√3sinB,C=π6,ac=√3,∴sin(56π−B)=√3sinB,∴12cosB+√32sinB=√3sinB,∴sin(π6−B)=0,∴B=π6.又∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3解得a=√3, b=1,∴c=1,故满足条件存在△ABC;选②:sinA=√3sinB,C=π6,csinA=3. ∵csinA=3,∴asinC=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2abcosC=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故满足条件存在△ABC;选③:c=√3b,sinA=√3sinB,C=π6,由①可知,B=π6,故△ABC为等腰三角形c=b,又c=√3b,矛盾.故不存在△ABC满足条件.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,+a3q=20,可得a3q得2q2−5q+2=0,(2q−1)(q−2)=0.∵q>1,∴q=2,∵a1×q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?,附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,=0.64.且SO2浓度不超过150的概率的估计值为64100(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)2≈7.484,80×20×74×26由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【解答】(1)证明:因为四边形ABCD为正方形,故BC⊥CD.又因为PD⊥底面ABCD,故PD⊥BC,又由于PD∩DC=D,因此BC⊥平面PDC.因为在正方形ABCD中BC//AD,且AD⊂平面PAD,BC⊄平面PAD,故BC//平面PAD.又因为BC⊂平面PBC,且平面PAD与平面PBC的交线为l,故BC//l.因此l⊥平面PDC.(2)解:由已知条件,P−ABCD底面为正方形,PD⊥底面ABCD,以D为原点,DA为x轴,DC为y轴,DP为z轴,建立D−xyz空间直角坐标系,如图所示:因为PD =AD =1,Q 在直线l 上,设Q (a,0,1),其中a ∈R ,由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1),则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1),设平面QCD 法向量为n →=(x,y,z),则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0, 令z =−a ,则平面QCD 的一个法向量为:n →=(1,0,−a ),设PB 与平面QCD 成角为θ,则sinθ=|cos <n →,PB →>|=|1+a|√3×√1+a 2 =1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2,①若a =0,则sinθ=√33, ②若a ≠0,则sinθ=√33×√1+21a+a , a >0时, ∵1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$``="$成立,∴sinθ≤√33×√1+22=√63. 当a <0时,sinθ<√33, ∴当a =1时,sinθ=√63取到最大值.综上所述,PB与平面QCD成角的正弦值的最大值为√63.已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.【解答】解:(1)当a=e时,f(x)=e x−lnx+1,f′(x)=e x−1x,∴k=f′(1)=e−1,f(1)=e+1,∴y−(e+1)=(e−1)(x−1),即y=(e−1)x+2,∴在y轴上的截距为2,在x轴的截距为21−e,∴S=12×2×|21−e|=2e−1.(2)①当0<a<1时,f(1)=a+lna<1;②当a=1时,f(x)=e x−1−lnx,f′(x)=e x−1−1x,当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1;③当a>1时,f(x)=ae x−1−lnx+lna≥e x−1−lnx≥1. 综上,a的取值范围是[1,+∞).已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.【解答】(1)解:由题设得4a 2+1b 2=1, a 2−b 2a 2=12,解得a 2=6,b 2=3. ∴C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为 y =kx +m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0. 于是x 1+x 2=−4km 1+2k 2,x 1x 2=2m 2−61+2k 2.①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得 (k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0, 将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km 1+2k 2+(m −1)2+4=0,整理得(2k +3m +1)(2k +m −1)=0, 因为A(2,1)不在直线MN 上,所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1), 所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1). 由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0.又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23, 此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13). 若D 与P 不重合,则由题设知 AP 是Rt △ADP 的斜边,故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。

2020年内蒙古包头市高考数学一模试卷(理科) (含答案解析)

2020年内蒙古包头市高考数学一模试卷(理科) (含答案解析)

2020年内蒙古包头市高考数学一模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={x|3x−x2>0},B={x|−1<x<1},则A∩B=()A. {x|−1<x<3}B. {x|−1<x<0}C. {x|0<x<1}D. {x|1<x<3}+(1−i)2(i为虚数单位),则|z|=()2.已知复数z=21−iA. 1B. √2C. 2√2D. 23.已知等差数列{a n}中,前n项和为S n,若a1=2,a8+a10=28,则S9=()A. 36B. 72C. 144D. 2884.函数y=xe x在点(1,e)处的切线方程为()A. y=2e xB. y=x−1+eC. y=−2e x+3eD. y=2ex−e5.函数y=e x(x2+2x+1)的图象可能是()A. B.C. D.6.如图,已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当C运动时,点H运动的轨迹()A. 是圆B. 是椭圆C. 是抛物线D. 不是平面图形7. 甲、乙两人在同一天上午8时至10时随机到达养老院为老人服务,并且工作1小时后离开,则两人在养老院相遇的概率为( ) A. 34 B. 13 C. 78 D. 35 8. 已知AD 为△ABC 边BC 的中线,且AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =−16,|BC ⃗⃗⃗⃗⃗ |=10,则|AD⃗⃗⃗⃗⃗⃗ |=( ) A. 2 B. 3 C. 4 D. 69. 公元263年,数学家刘徽在《九章算术注》中首创“割圆术”,提出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.如图是利用“割圆术”思想求图形面积的一个程序框图,则其输出的n 的值为(参考数据:√3≈1.73,tan π12≈0.27,tan π24≈0.13) A. 6B. 12C. 24D. 4810. 设点F 1,F 2分别是双曲线C :x 2a 2−y 22=1(a >0)的左、右焦点,过点F 1且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若△ABF 2的面积为2√6,则该双曲线的渐近线方程为( )A. y =±√3xB. y =±√33xC. y =±√2xD. y =±√22x 11. 正方体ABCD −A 1B 1C 1D 1的棱长为1,点M 是棱CC 1的中点,点A ,B ,D ,M 都在球O 的球面上,则球O 的表面积为( )A. 32πB. 3πC. 94πD. 9π12. 函数f(x)=(x −2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f(2−x)>0的解集为( )A. {x|−2<x <2}B. {x|x >2或x <−2}C. {x|0<x <4}D. {x|x >4或x <0}二、填空题(本大题共4小题,共20.0分) 13. 若(√x +3x )n 的展开式中,各项系数的和与各项二项式系数的和之比为64,则展开式中常数项为______.14.抛物线y2=2px(p>0)的焦点为F,直线y=2与y轴的交点为M,与抛物线的交点为N,且4|NF|=5|MN|,则p的值为______.15.已知函数y=3sin (2x+π4),x∈[0,π2]的单调增区间为[0,m],则实数m的值为________.16.分形几何学是美籍法国数学家伯努瓦·曼德尔布罗(BenoitMandelbrot)在20世纪70年代创立的一门新学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照下图1的分形规律可得到如图2所示的一个树形图,那么第12行的实心圆点的个数是_____.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,角A,B,C的对边分别为a,b,c.已知△ABC的面积为3sin A,周长为4(√2+1),且sinB+sinC=√2sinA.(1)求a及cos A的值;(2)求cos(2A−π3)的值.18.如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.(1)求证:AC⊥平面BDEF;(2)求二面角A−FC−B的余弦值.(3)求AF与平面BFC所成角的正弦值.19.某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组[50,60)80.16第2组[60,70)a▓第3组[70,80)200.40第4组[80,90)▓0.08第5组[90,100]2b合计▓▓(1)写出a,b,x,y的值;(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,求所抽取的2名同学来自同一组的概率;(3)在(2)的条件下,设ξ表示所抽取的2名同学中来自第5组的人数,求ξ的分布列及其数学期望.20.已知椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点分别是F1,F2,离心率e=12,过点F1且垂直于x轴的直线被椭圆E截得的线段长为3.(1)求椭圆E的方程;(2)若直线l过椭圆E的右焦点F2,且与x轴不重合,交椭圆E于M,N两点,求|MN|的取值范围.21.已知函数f(x)=ax2+2ln(a−x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若l与直线x−2y+2=0垂直,求a的值.22. 已知直线l 的参数方程为{x =m −12t y =√32t(其中t 为参数,m 为常数),以原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sinθ,直线l 与曲线C 交于点A ,B 两点. (1)若|AB|=√152,求实数m 的值; (2)若m =1,点P 坐标为(1,0),求1|PA|+1|PB|的值.23. 设函数f(x)=|x +1|+|x −a|(a >0).(1)当a =2时,求不等式f(x)>8的解集;(2)若∃x ∈R ,使得f(x)≤32成立,求实数a 的取值范围.【答案与解析】1.答案:C解析:本题考查了描述法的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.可以求出集合A,然后进行交集的运算即可.解:∵A={x|0<x<3},B={x|−1<x<1},∴A∩B={x|0<x<1}.故选:C.2.答案:B解析:通过化简,计算即可.本题考查求复数的模,注意解题方法的积累,属于基础题.解:∵z=21−i +(1−i)2=2(1+i)(1−i)(1+i)−2i=2(1+i)1−i2−2i=1−i,∴|z|=√2.故选B.3.答案:B解析:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.根据{a n}是等差数列,a8+a10=28,得2a9=28,即a9=14,S9=a1+a92×9可得答案.解:由题意{a n}是等差数列且a8+a10=28,得2a9=28,即a9=14.∴S9=2+142×9=72,故选B.4.答案:D解析:本题考查切线方程的求法,考查计算能力.求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程.解:函数f(x)=xe x,可得:f′(x)=(1+x)e x,则f′(1)=2e,f(1)=e;曲线y=f(x)在点(1,f(1))处的切线方程为:y−e=2e(x−1),y=2ex−e.故选D.5.答案:A解析:本题考查了函数图象的识别,考查了函数值的变化趋势,属于基础题.解:y=e x(x2+2x+1)=e x(x+1)2≥0,故排除B,D,当x=−1时,y=0,故排除C,故选A.6.答案:A解析:本题主要考查立体几何中的垂直关系与动点轨迹的交汇,考查考生的数形结合能力、推理论证能力以及运算求解能力,考查的核心素养是直观想象、逻辑推理、数学运算,难度一般.由已知证得,,从而得出BH⊥AD,BH⊥HE,即可得出点H的运动轨迹.解:如图,过点B作圆的直径BD,连接CD,AD,再过点B作BE⊥AD于E,连接HE,因为AB⊥平面BCD,所以AB⊥CD.又由BD为圆的直径得BC⊥CD,且AB∩BC=B,所以CD⊥平面ABC,所以CD⊥BH.又BH⊥AC,且AC∩CD=C,所以BH⊥平面ACD,所以BH⊥AD,BH⊥HE.所以当点C运动时,点H运动的轨迹是以BE为直径的圆.故选A.7.答案:A解析:本题考查了几何概型的概率计算,作出图形是解题关键,属于中档题.作出表示两人到达养老院的时间的平面区域,根据面积比得出概率.解:以x,y表示甲,乙两人到达养老院的时间,若两人相遇,则需满足|x−y|≤1,作出平面区域如图所示:则.故选:A .8.答案:B解析:解:如图,BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ;∴BC⃗⃗⃗⃗⃗ 2=AC ⃗⃗⃗⃗⃗ 2−2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ 2; ∴100=AC ⃗⃗⃗⃗⃗ 2+32+AB ⃗⃗⃗⃗⃗ 2;∴AC ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ 2=68;又AD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ); ∴AD ⃗⃗⃗⃗⃗⃗ 2=14(AB ⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ 2)=14×(68−32)=9; ∴|AD⃗⃗⃗⃗⃗⃗ |=3. 故选B .可画出图形,对BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 的两边平方即可求出AC ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ 2=68,而对AD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )的两边平方,即可求出AD ⃗⃗⃗⃗⃗⃗ 2的值,从而求出|AD ⃗⃗⃗⃗⃗⃗ |的值. 考查向量减法的几何意义,向量加法的平行四边形法则,以及向量数量积的运算.解析:本题考查了程序框图和循环结构,属于基础题.模拟循环程序,进行模拟计算,列出循环过程中S和n的数值,若满足判断框的条件,即可结束循环.解:模拟执行程序,可得:当n=6时,,输出的S值为2√3≈3.46,不满足判断框条件S<3.2,继续执行循环体;当n=12时,,不满足判断框条件S<3.2,继续执行循环体;当n=24时,≈24×0.13=3.12,满足判断框条件S<3.2,退出循环.所以输出的n的值为24.故选C.10.答案:D解析:本题考查双曲线的渐近线方程的求法,考查双曲线的方程和应用,考查运算能力,属于中档题.设F1(−c,0),A(−c,y0),c2=a2+2,A点代入双曲线的方程,解得y0,由三角形的面积公式,可得a,c的关系,进而得到a,b的关系,可得渐近线方程.解:不妨设F1(−c,0),A(−c,y0),c2=a2+2,则c2a −y022=1,则y02=2⋅c2−a2a2=4a2,又S△ABF2=2√6,即为12⋅2c⋅|2y0|=4ca=2√6,即为ca =√62,则ba=√c2a2−1=√22,故该双曲线的渐近线方程为y=±√22x.故选:D.解析:本题考查三棱锥的外接球的半径与棱长的关系,及球的表面积公式,属于中档题,解题时要认真审题,注意空间思维能力的培养.由已知可得线段AM的中点E为球O的球心,在直角三角形ACM中,求得AM,即得球O的半径,利用球的表面积公式可求.解:∵正方体ABCD−A1B1C1D1的棱长为1,点M是棱CC1的中点,如图:∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC,BB1⊂平面BCC1B1,所以AB⊥平面BCC1B1,∵BM⊂平面BCC1B1,∴AB⊥BM,即△ABM为直角三角形,同理AD⊥DM,△ADM也为直角三角形,取AM的中点E,则EA=EB=EM=ED,所以点E为球O的球心,在直角三角形ACM中,AC=√AB2+BC2=√2,CM=12,∴AM=√AC2+CM2=√2+14=32,则球O的半径R=34,则球O的表面积为4πR2=4π×916=9π4.故选C.12.答案:D解析:函数f(x)=ax2+(b−2a)x−2b为偶函数,则b−2a=0,故f(x)=ax2−4a=a(x−2)(x+ 2),因为函数f(x)在(0,+∞)单调递增,所以a>0.根据二次函数的性质可知,不等式f(2−x)>0的解集为{x|2−x>2或2−x<−2}={x|x<0或x>4}.13.答案:135解析:解:(√x+3x)n的展开式中,令x=1,可得各项系数的和为4n,各项二项式系数的和为2n,各项系数的和与其各项二项式系数的和之比为4n2n=64,∴n=6,∴(√x+3x)6展开式的展开式的通项公式为:T r+1=C6r⋅3r⋅x3−3r2.令3−32r=0,求得r=2,可得展开式中的常数项等于C62⋅32=135.故答案为:135.根据各项系数的和与其各项二项式系数的和之比为64,求得n的值,再利用展开式的通项公式求出常数项.本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于基础题.14.答案:1解析:本题考查抛物线的方程、直线与抛物线的位置关系,属于中档题.设N(x0,2),代入抛物线方程,结合抛物线的定义,可得p=1.解:由题意知M(0,2),设N(x0,2),代入y2=2px(p>0)中得x0=2p,所以|MN|=2p,|NF|=2p+p2,因为4|NF|=5|MN|,所以4(p2+2p)=5×2p,解得p=−1(舍去)或p=1.故答案为1.15.答案:π8解析:本题主要考查了y=Asin(ωx+φ)的图象与性质,属于中档题目.求出y=3sin(2x+π4)的单调递增区间,即可得到x∈[0,π2]的单调增区间,从而得到m的值.解:由−π2+2kπ≤2x+π4≤π2+2kπ,k∈Z,得−3π8+kπ≤x≤π8+kπ,k∈Z.又0≤x≤π2,所以0≤x≤π8,即函数y=3sin(2x+π4),x∈[0,π2]的单调增区间为[0,π8].所以m=π8,故答案为π8.16.答案:89解析:本题主要考查了数列的应用,解题的关键构造这样一个数列{a n}表示空间圆点的个数变化规律,a n= a n−1+a n−2,属于中档题.解:观察可发现如下规律:每行空心圆点个数等于上一行的实心圆点个数;每行实心圆点个数等于上一行所有圆点个数.设a n为第n行所有圆点个数.∴第n行的空心圆点个数等于第n−1行的实心圆点个数,也即第n−2行的所有圆点个数a n−2,第n行的实心圆点个数等于第n−1行的所有圆点个数a n−1,所以a n=a n−1+a n−2,故各行中圆点的个数依次为1,1,2,3,5,8,13,21,34,55,89,......a11=89,即第12行中实心圆点的个数是89,故答案为89.17.答案:解:(1)∵△ABC的面积为3sinA=12bcsinA,∴可得:bc=6,∵sinB+sinC=√2sinA,可得:b+c=√2a,∴由周长为4(√2+1)=√2a+a,解得:a=4,∴cosA=b2+c2−a22bc =(b+c)2−2bc−a22bc=a2−1212=13,(2)∵cosA=13,∴sinA=√1−cos2A=2√23,∴sin2A=2sinAcosA=4√29,cos2A=2cos2A−1=−79,∴cos(2A−π3)=cos2Acosπ3+sin2Asinπ3=4√6−718.解析:(1)由已知及三角形面积公式可求bc=6,进而可求a,利用余弦定理即可得解cos A的值.(2)利用同角三角函数基本关系式可求sin A,利用二倍角公式可求sin2A,cos2A的值,进而利用两角差的余弦函数公式即可计算得解.本题主要考查了三角形面积公式,余弦定理,同角三角函数基本关系式,二倍角公式,两角差的余弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.答案:(1)证明:设AC与BD相交于点O,连结FO.因为四边形ABCD为菱形,所以AC⊥BD,且O为AC中点.又FA=FC,所以AC⊥FO.因为FO∩BD=O,FO,BD⊂平面BDEF,所以AC⊥平面BDEF.(2)解:因为四边形BDEF为菱形,且∠DBF=60°,所以△DBF为等边三角形.因为O为BD中点,所以FO⊥BD,又AC⊥平面BDEF,AC⊂平面ABCD,∴平面BDEF⊥平面ABCD,又平面BDEF∩平面ABCD=BD,FO⊂平面BDEF,故F O ⊥平面ABCD . 又AO,BO ⊂平面ABCD ,∴AO ⊥FO,BO ⊥FO ,又AO ⊥BO ,由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60°, 则BD =2,所以OB =1,OA =OF =√3. 所以O(0,0,0),A(√3,0,0),B(0,1,0), C(−√3,0,0),F(0,0,√3).所以 CF ⃗⃗⃗⃗⃗ =(√3,0,√3),CB ⃗⃗⃗⃗⃗ =(√3,1,0). 设平面BFC 的法向量为n⃗ =(x,y,z), 则有{n ⃗ ⋅CF ⃗⃗⃗⃗⃗ =0n ⃗ ⋅CB ⃗⃗⃗⃗⃗ =0,所以{√3x +√3z =0√3x +y =0,取x =1,得n ⃗ =(1,−√3,−1).因为OA ,OB ,OF 两两垂直,OA ,OF 是平面AFC 内两条相交直线,则OB ⊥平面AFC , 可知平面AFC 的法向量为v⃗ =(0,1,0). 由二面角A −FC −B 是锐二面角,得|cos <n ⃗ ,v ⃗ >|=|n ⃗⃗ ⋅v ⃗ ||n ⃗⃗ ||v ⃗ |=√155. 所以二面角A −FC −B 的余弦值为√155;(3)解:AF⃗⃗⃗⃗⃗ =(−√3,0,√3), 平面BFC 的法向量n ⃗ =(1,−√3,−1),所以cos <AF ⃗⃗⃗⃗⃗ ,n ⃗ >=AF ⃗⃗⃗⃗⃗⋅n ⃗⃗|AF ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=√3√6×√5=−√105. 设AF 与平面BFC 所成角为θ,则.故AF 与平面BFC 所成角的正弦值为√105.解析:本题考查了直线和平面垂直的判定,考查了利用空间向量求线面角和面面角,解答的关键是建立正确的空间直角坐标系,是中档题.(1)要证AC ⊥平面BDEF ,只要证AC 垂直于平面BDEF 内的两条相交直线即可,设AC 与BD 相交于点O ,连结FO ,由已知FA =FC 可得AC ⊥FO ,再由ABCD 为菱形得到AC ⊥BD ,则由线面垂直的判定定理得到答案;(2)由OA ,OB ,OF 两两垂直,建立空间直角坐标系O −xyz ,求出二面角A −FC −B 的两个面的法向量,由法向量所成角的余弦值求得答案;(3)求出向量AF ⃗⃗⃗⃗⃗ 的坐标,直接用向量AF ⃗⃗⃗⃗⃗ 与平面BFC 的法向量所成角的余弦值求得AF 与平面BFC 所成角的正弦值.19.答案:解:(1)由题意可知,样本容量=80.16=50,∴b =250=0.04,第四组的频数=50×0.08=4, ∴a =50−8−20−2−4=16. y =0.0410=0.004,x =1650×110=0.032.∴a =16,b =0.04,x =0.032,y =0.004.(2)由(1)可知,第4组有4人,第5组有2人,共6人.从竞赛成绩是80分)以上(含80分)的同学中随机抽取2名同学有C 62=15种情况.设事件A :随机抽取的2名同学来自同一组,则P(A)=C 42+C 22C 62=715.所以,随机抽取的2名同学来自同一组的概率是715. (3)由(2)可知,ξ的可能取值为0,1,2, 则P(ξ=0)=C 42C 62=615=25,P(ξ=1)=C 41C 21C 62=815,P(ξ=2)=C 22C 62=115. 所以,ξ的分布列为所以,Eξ=0×25+1×815+2×115=23.解析:(1)利用频率=频数样本容量×100%,及频率组距表示频率分布直方图的纵坐标即可求出a ,b ,x ,y ;(2)由(1)可知第四组的人数,已知第五组的人数是2,利用组合的计算公式即可求出从这6人中任选2人的种数,再分两类分别求出所选的两人来自同一组的情况,利用互斥事件的概率和古典概型的概率计算公式即可得出;(3)由(2)可知,ξ的可能取值为0,1,2,再利用组合的计算公式及古典概型的计算公式、数学期望的计算公式即可得出. 熟练掌握频率=频数样本容量×100%,及频率组距表示频率分布直方图的纵坐标、频率之和等于1、互斥事件的概率、组合的计算公式及古典概型的计算公式、数学期望的计算公式是解题的关键.20.答案:解:(1)由于c 2=a 2−b 2,将x =−c 代入椭圆方程x 2a 2+y 2b 2=1,即y =±b 2a ,由题意知2b 2a =3,即a =23b 2,又e =ca =12, 所以a =2,b =√3, 所以椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴不垂直时,设直线l 的方程y =k(x −1)(k ≠0),M(x 1,y 1),N(x 2,y 2). 由{y =k(x −1)x 24+y 23=1,得(4k 2+3)x 2−8k 2x +4k 2−12=0,Δ>0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2−124k 2+3,所以,所以|MN|∈(3,4);当直线l 与x 轴垂直时,|MN|=3. 综上所述,|MN|的取值范围为[3,4).解析:本题考查椭圆的标准方程及直线与椭圆的位置关系,属于中档题. (1) 由2b 2a=3,得a =23b 2,又e =c a =12,求出a ,b 即可.(2)当直线l 与x 轴不垂直时,设l 的方程y =k(x −1)(k ≠0),M(x 1,y 1),N(x 2,y 2),直线方程与椭圆方程联立,根据弦长公式求出|MN|,再与斜率不存在时比较即可.21.答案:解:由f(x)=ax 2+2ln(a −x)得f′(x)=2ax −2a−x ,所以f′(1)=2a −2a−1.由题设可得2a −2a−1=−2,从而a2=2,解得a =±√2, 检验可得a =√2符合题意, 所以a =√2.解析:本题主要考查了利用导数研究曲线上某点处的切线方程,以及两直线垂直的条件等基础题知识,考查运算求解能力,属于基础题,利用导数的几何意义求出x =1处的切线的斜率,再根据两直线垂直的条件:斜率之积为−1,建立方程,解之即可.22.答案:解:(1)曲线C 的极坐标方程为ρ=2sinθ,曲线C 的极坐标方程可化为ρ2=2ρsinθ, 转化为普通方程可得x 2+y 2=2y , 即x 2+(y −1)2=1.把{x =m −12ty =√32t代入x 2+(y −1)2=1, 并整理可得t 2−(m +√3)t +m 2=0①, 由条件可得△=(m +√3)2−4m 2>0, 解之得−√33<m <√3.设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=m +√3,t 1t 2=m 2≥0, |AB|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2, =√(m +√3)2−4m 2=√152, 解之得m =√32或√36;(2)当m =1时,①式变为:t 2−(1+√3)t +1=0, 所以:t 1+t 2=1+√3,t 1t 2=1,由点P 的坐标为(1,0)可得1|PA|+1|PB|=1|t 1|+1|t 2|=|t 1|+|t 2||t 1t 2|=|t 1+t 2||t 1t 2|=1+√3.解析:本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,点到直线距离公式的应用,主要考查学生的运算能力和转化能力,属于基础题型. (1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用(1)的关系式,根据一元二次方程根和系数的关系和点到直线的距离公式的应用求出结果.23.答案:解:(1)f(x)>8即|x +1|+|x −2|>8,当x ≥2时,x +1+x −2>8,解得x >92; 当−1<x <2时,x +1+2−x >8,解得x ∈⌀; 当x ≤−1时,−x −1+2−x >8,可得x <−72. 综上可得,原不等式的解集为{x|x >92或x <−72}; (2)若∃x ∈R ,使得f(x)≤32成立, 可得f(x)min ≤32,由f(x)=|x +1|+|x −a|(a >0) ≥|x +1−x +a|=|1+a|=a +1, 当−1≤x ≤a 时,f(x)取得最小值a +1, 由a +1≤32, 可得0<a ≤12, 即a 的范围是(0,12].解析:本题考查绝对值不等式的解法和性质的运用:求最值,考查分类讨论思想方法和转化思想,考查运算能力,属于中档题.(1)去绝对值,讨论x 的范围,解不等式求并集,即可得到所求解集;(2)由题意可得f(x)min≤3,运用绝对值不等式的性质可得f(x)的最小值,解不等式可得a的范围.2。

2020-2021学年高考数学理科一模测试题及答案解析一

2020-2021学年高考数学理科一模测试题及答案解析一

最新高考数学一模试卷(理科)(解析版)一、选择题(每小题5分,共60分)1.若z=,则z=()A.﹣+i B.+i C.D.2.已知集合A={x|﹣3<x<2},B={x|3x>1},则A∩(∁R B)=()A.(﹣3,1] B.(1,2)C.(﹣3,0] D.[1,2)3.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=14.现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是()A.90 B.115 C.210 D.3855.某工厂对新研发的一种产品进行试销,得到如下数据表:单价x(元)8 8.2 8.4 8.6 8.8 9销量y(件)90 84 83 80 75 68根据如表可得线性回归方程=x+.其中=﹣20,=﹣b,那么单价定为8.3元时,可预测销售的件数为()A.82 B.84 C.86 D.886.定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),若f(x)在区间[0,1]内单调递增,则f(﹣)、f(1)、f()的大小关系为()A.f(﹣)<f(1)<f() B.f(1)<f(﹣)<f() C.f(﹣)<f()<f (1)D.f()<f(1)<f(﹣)7.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a102=()A.1 B.10 C.32 D.1008.执行如图所示的程序框图,则输出结果a的值为()A.2 B.C.D.﹣19.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[,]内单调递增,则ω的最大值是()A.B.C.D.10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为()A.2(1++)B.2(1+2+)C.4+2D.4(1+)11.已知函数f(x)=e x(x≥0),当x<0时,f(﹣x)=4f(x).若函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,则a的取值范围是()A.(0,1)B.(,e)C.(,e)D.(,1)12.在公差不为0的等差数列{a n}中,a2+a4=a p+a q,记+的最小值为m,若数列{b n}满足b1=m,2b n+1﹣b n b n+1=1,则b1+++…+=()A.B.C.D.二、填空题(每小题5分,共20分)13.已知向量,夹角为120°,||=5,||=2,=+λ,若⊥,则λ= .14.若x,y满足约束条件,则z=x2+y2的最小值为.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为.16.已知直线y=x与椭圆C:+=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e= .三、解答题(共5小题,70分)17.(12分)(2016潮南区模拟)在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.(1)求C;(2)若△ABC的面积为2,a+b=6,求∠ACB的角平分线CD的长度.18.(12分)(2016邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(1)求证:DE∥平面PBC;(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P﹣BC﹣E的余弦值.19.(12分)(2016邯郸一模)某种机器在一个工作班的8小时内,需要工作人员操控累计2个小时才能正常运行,当机器需用操控而无人操控时,机器自动暂停运行.每台机器在某一时刻是否用人操控彼此之间相互独立.(1)若在一个工作班内有4台相同机器,求在同一时刻需用人操控的平均台数.(2)若要求一人操控的所有机器正常运行的概率控制在不低于0.9的水平,且该人待工而闲的槪率小于0.6.试探讨:一人操控1台、2台、3台机器这三种工作方案中,哪种方案符合要求,并说明理由.20.(12分)(2016邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.21.(12分)(2016邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f(1))处的切线方程为x+y﹣2=0(1)求y=f(x)的解析式;(2)证明:<1.选做题(请考生从22,23,24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选題号后的方框涂黑)22.(10分)(2016邯郸一模)如图,点A、B、D、E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=4,AD=8,求DF的长.【选项4-4:坐标系与参数方程】23.(2016邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.【选项4-5:不等式选讲】24.(2016邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.参考答案与试题解析一、选择题(每小题5分,共60分)1.若z=,则z=()A.﹣+i B.+i C.D.【分析】利用复数代数形式的乘除运算化简,求得z,再由求得答案.【解答】解:∵z==,∴z=|z|2==.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.2.已知集合A={x|﹣3<x<2},B={x|3x>1},则A∩(∁R B)=()A.(﹣3,1] B.(1,2)C.(﹣3,0] D.[1,2)【分析】求出B中不等式的解集确定出B,找出A与B补集的交集即可.【解答】解:由B中不等式变形得:3x>1=30,解得:x>0,即B=(0,+∞),∴∁R B=(﹣∞,0],∵A=(﹣3,2),∴A∩(∁R B)=(﹣3,0],故选:C.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.3.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=1【分析】求得椭圆的焦点和顶点坐标,设双曲线的方程为﹣=1(a,b>0),可得a,c,进而得到b的值,可得双曲线的方程.【解答】解:椭圆+y2=1的焦点为(±1,0)和顶点(±,0),设双曲线的方程为﹣=1(a,b>0),可得a=1,c=,b==1,可得x2﹣y2=1.故选:A.【点评】本题考查双曲线的方程的求法,注意运用椭圆的方程和性质,考查运算能力,属于基础题.4.现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是()A.90 B.115 C.210 D.385【分析】根据黑球的个数分为三类,根据根据分类计数原理可得.【解答】解:分三类,两个黑球,有C42C62=90种,三个黑球,有C43C61=24种,四个黑球,有C44=1种,根据分类计数原理可得,至少有两个黑球的取法种数是90+24+1=115,故选:B.【点评】本题考查了分类计数原理,关键是分类,属于基础题.5.某工厂对新研发的一种产品进行试销,得到如下数据表:单价x(元)8 8.2 8.4 8.6 8.8 9销量y(件)90 84 83 80 75 68根据如表可得线性回归方程=x+.其中=﹣20,=﹣b,那么单价定为8.3元时,可预测销售的件数为()A.82 B.84 C.86 D.88【分析】根据题意,计算、,利用线性回归方程过样本的中心点,求出线性回归方程,再计算x=8.3时的值,从而得出预测结果.【解答】解:根据题意,计算=×(8+8.2+8.4+8.6+8.8+9)=8.5,=×(90+84+83+80+75+68)=80,线性回归方程=x+中=﹣20,=﹣b=80﹣(﹣20)×8.5=250,所以线性回归方程=﹣20x+250,当x=8.3时,=﹣20×8.3+250=84,可预测单价定为8.3元时,销售件数为84.故选:B.【点评】本题考查了线性回归方程过样本中心点的应用问题,也考查了利用线性回归方程进行预测的应用问题,是基础题目.6.定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),若f(x)在区间[0,1]内单调递增,则f(﹣)、f(1)、f()的大小关系为()A.f(﹣)<f(1)<f() B.f(1)<f(﹣)<f() C.f(﹣)<f()<f (1)D.f()<f(1)<f(﹣)【分析】根据函数奇偶性和周期性的关系进行转化,结合函数单调性的性质进行比较即可得到结论.【解答】解:∵定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),∴由f(x+1)=f(x﹣1),得f(x+2)=f(x),则f(﹣)=f(﹣+2)=f(),f()=f(﹣2)=f(﹣)=f(),∵f(x)在区间[0,1]内单调递增,∴f(﹣)<f()<f(1),即f()<f()<f(1),故选:C.【点评】本题主要考查函数值的大小比较,根据函数奇偶性,周期性和单调性的关系进行转化是解决本题的关键.7.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a102=()A.1 B.10 C.32 D.100【分析】由题意列关于等比数列的首项和公比的方程组,求解方程组得答案.【解答】解:在等比数列{a n}中,公比q≠1,由a1+a2,a3+a4,a5+a6成等差数列,且a1+a2+a3=1,得,即:,解得.∴数列{}是常数列1,1,1,…,则a12+a22+…+a102=10.故选:B.【点评】本题考查等比数列的通项公式,考查方程组的解法,是基础题.8.执行如图所示的程序框图,则输出结果a的值为()A.2 B.C.D.﹣1【分析】模拟执行程序,依次写出每次循环得到的a,n的值,观察规律可得a的取值以3为周期,从而有当i=2017时,不满足条件n≤2016,退出循环,输出a的值为﹣1,从而得解.【解答】解:模拟执行程序,可得a=2,n=1,满足条件n≤2016,a=,n=3满足条件n≤2016,a=﹣1,n=4满足条件n≤2016,a=2,n=5…观察规律可知,a的取值以3为周期,由2016=672×3,从而有:满足条件n≤2016,a=,n=2016满足条件n≤2016,a=﹣1,n=2017不满足条件n≤2016,退出循环,输出a的值为﹣1.故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基本知识的考查.9.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[,]内单调递增,则ω的最大值是()A.B.C.D.【分析】由条件利用二倍角公式化简函数的解析式,再利用余弦函数的单调性求得ω的最大值.【解答】解:∵函数f(x)=2sin2(ωx+)=2=1﹣cos(2ωx+)(ω>0)在区间[,]内单调递增,故y=cos(2ωx+)在区间[,]内单调递减,∴2ω+≤π,∴ω≤,故选:C.【点评】本题主要考查二倍角公式的应用,余弦函数的单调性,属于基础题.10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为()A.2(1++)B.2(1+2+)C.4+2D.4(1+)【分析】根据三视图知几何体是三棱锥P﹣ABC是棱长为2的正方体一部分,由正方形的性质求棱长、判断位置关系,由三角形的面积公式求出该四面体的表面积.【解答】解:根据三视图知几何体是三棱锥P﹣ABC是棱长为2的正方体一部分,直观图如图所示:由正方体的性质可得,PC=PA=AC=2,PB=,∴BC⊥PC,AB⊥PA,∴该四面体的表面积:S=+=2(1+2+),故选:B.【点评】本题考查三视图求几何体的体积,由三视图冰借助于正方体复原几何体是解题的关键,考查空间想象能力.11.已知函数f(x)=e x(x≥0),当x<0时,f(﹣x)=4f(x).若函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,则a的取值范围是()A.(0,1)B.(,e)C.(,e)D.(,1)【分析】由题意得,y=f(x)与y=ax+a(a>0)有唯一交点.由f'(x)=e x(x≥0),得切线方程为y﹣e m=e m(x﹣m),由此能求出结果.【解答】解:由题意得,∵函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,∴y=f(x)与y=ax+a(a>0)有唯一交点.由图可得a1<a<a2,由题意得,,∵f'(x)=e x(x≥0),设切点横坐标为m,∴切线斜率k=f'(m)=e m=a2,切线方程为y﹣e m=e m(x﹣m),且过点(﹣1,0)解得m=0,∴,∴.故选:D.【点评】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质和数形结合思想的合理运用.12.在公差不为0的等差数列{a n}中,a2+a4=a p+a q,记+的最小值为m,若数列{b n}满足b1=m,2b n+1﹣b n b n+1=1,则b1+++…+=()A.B.C.D.【分析】根据题意,求出+的最小值m,从而求出b1与通项公式b n,再求出以及b1+++…+的值.【解答】解:在等差数列{a n}中,由a2+a4=a p+a q得,p+q=6,因为+=(+)(p+q)=(1+9++)=+(+)≥+2=,当且仅当q=3p时取得最小值,此时p=,q=(不合题意,舍去);应取p=2,q=4,此时+取得最小值是,所以m=,b1=;又由2b n+1﹣b n b n+1=1,可归纳出b n=,所以=;所以b1+++…+=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:C.【点评】本题考查了等差数列与数列求和的应用问题,也考查了逻辑推理与运算能力,是综合性题目.二、填空题(每小题5分,共20分)13.已知向量,夹角为120°,||=5,||=2,=+λ,若⊥,则λ= .【分析】根据向量数量积的公式,结合向量垂直的关系即可得到结论.【解答】解:∵向量,夹角为120°,||=5,||=2,∴=||||cos120°=5×2×(﹣)=﹣5,∵=+λ,⊥,∴(+λ)=(+λ)(﹣)=0,即﹣+λ﹣λ=0,∴﹣5﹣25+4λ+5λ=0解得λ=,故答案为:.【点评】本题主要考查平面向量的基本运算,利用向量垂直和数量积之间的关系是解决本题的关键.14.若x,y满足约束条件,则z=x2+y2的最小值为 5 .【分析】画出满足条件的平面区域,求出角点的坐标,结合z=x2+y2的几何意义求出其最小值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(2,1),z=x2+y2的几何意义表示平面区域内的点到原点的距离的平方,故z=z=x2+y2=4+1=5,故答案为:5.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为12π.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC的三个侧面的面积之和最大,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:由题意三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC 的三个侧面的面积之和最大,三棱锥P﹣ABC的外接球就是它扩展为正方体的外接球,求出正方体的对角线的长:2所以球的直径是2,半径为,球的表面积:4π×=12π.故答案为:12π.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.16.已知直线y=x与椭圆C:+=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e= .【分析】联立直线y=x和椭圆方程,求得A,B的坐标,以及|OA|2,将直线OP方程为,代入椭圆方程,求得P的坐标及|OP|2,再由|OP|2=3|OA|2,结合离心率公式,可得e.【解答】解:因为,所以;由题设直线OP方程为,所以,所以,所以.故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的对称性和等边三角形的性质,考查化简整理的运算能力,属于中档题.三、解答题(共5小题,70分)17.(12分)(2016潮南区模拟)在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.(1)求C;(2)若△ABC的面积为2,a+b=6,求∠ACB的角平分线CD的长度.【分析】(I)根据正弦定理将边化角,化简得出cosC;(II)根据三角形的面积公式列方程解出CD.【解答】解:(Ⅰ)∵acosB+bcosA=2ccosC,∴sinAcosB+sinBcosA=2sinCcosC,即sinC=2sinCcosC,因为0<C<π,所以,故;(Ⅱ)在△ABC中,∵CD平分∠ACB,∴.∵S△ABC=S△ACD+S△BCD,∴2=a+=(a+b)CDsin.解得.【点评】本题考查了正弦定理在解三角形中的应用,属于中档题.18.(12分)(2016邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(1)求证:DE∥平面PBC;(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P﹣BC﹣E的余弦值.【分析】(1)取AB中点F,连接EF、DF,则EF∥PB,由∠CBD=∠FDB=30°,得DF∥BC,从而平面DEF∥平面PBC,由此能证明DE∥平面PBC.(2)连接DF,分别取FB,FD,FP所在直线为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角P﹣BC﹣E的余弦值.【解答】证明:(1)取AB中点F,连接EF、DF,…(1分)∵E为棱PA的中点,∴EF∥PB,∵∠CBD=∠FDB=30°∴DF∥BC∵EF、DF⊂平面DEF,PB、BC⊂平面PBC∴平面DEF∥平面PBC,…(4分)∵DE⊂平面DEF,∴DE∥平面PBC.…(6分)解:(2)∵PA=PB=2,∴PF⊥AB,∵平面PAB⊥平面ABCD,交线为AB,∴PF⊥平面ABCD,且PF=1,连接DF,分别取FB,FD,FP所在直线为x,y,z轴建立空间直角坐标系,如图所示.…(7分)则点,B(,0,0),,D(0,3,0),P(0,0,1),E(﹣,0,),…(8分)设平面BCP的法向量为则,∴,即,∴y=0,x=1,即…(10分)设平面BCE的法向量为,,则,∴,∴…(11分)∴cos<>==,∴二面角P﹣BC﹣E的余弦值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.19.(12分)(2016邯郸一模)某种机器在一个工作班的8小时内,需要工作人员操控累计2个小时才能正常运行,当机器需用操控而无人操控时,机器自动暂停运行.每台机器在某一时刻是否用人操控彼此之间相互独立.(1)若在一个工作班内有4台相同机器,求在同一时刻需用人操控的平均台数.(2)若要求一人操控的所有机器正常运行的概率控制在不低于0.9的水平,且该人待工而闲的槪率小于0.6.试探讨:一人操控1台、2台、3台机器这三种工作方案中,哪种方案符合要求,并说明理由.【分析】(Ⅰ)用X表示四台机器在同一时刻需用人操控的台数,则X服从二项分布B(4,),由此能求出在同一时刻需用人操控的平均台数.(Ⅱ)设X表示n台机器在同一时刻需用人操控的台数,当n=1时,X服从两点分布;当n=2时,P(X)=,k=0,1,2;当n=3时,,k=0,1,2,3.由此得到一个工作人员操控2台机器符合要求.【解答】解:(Ⅰ)用X表示四台机器在同一时刻需用人操控的台数,则X服从二项分布:,k=0,1,2,3,4,∴在同一时刻需用人操控的平均台数EX==1.….(4分)(Ⅱ)设X表示n台机器在同一时刻需用人操控的台数.①当n=1时,X服从两点分布:X 0 1P此时,一人操控1台机器,工作人员能够及时操控机器,不会出现机器等待操控的情形,但工作人员待工而闲的概率为>0.60.…(6分)②当n=2时,P(X)=,k=0,1,2.P(X=0)==,P(X=1)==,P(X=2)=()2=,即X的分布列为:X 0 1 2P此时,一人操控2台机器,在同一时刻需要操控2台机器的概率为,故一人操控的2台机器正常运行的概率为.工作人员待工而闲的概率为()2=0.526<0.60.….(8分)③当n=3时,,k=0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()3=,即X的分布列为:X 0 1 2 3P此时,一人操控3台机器,出现机器等待工作人员操控而不能正常运行的概率为:3×()2×+()3=,故一人操控的3台机器正常运行的概率为.工作人员待工而闲的概率为()3==0.421875<0.60.…(10分)综上所述,一个工作人员操控2台机器符合要求.….(12分)【点评】本题考查离散型随机变量的分布列及数学期望的求法及应用,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.20.(12分)(2016邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.【分析】(1)利用梯形的中位线定理和抛物线的性质列出方程解出p即可;(2)设l斜率为k,联立方程组解出AB的中点即M的坐标,根据切线的性质列方程解出k 即可得出l的方程和圆的圆心与半径.【解答】解:(1)设A(x1,y1),B(x2,y2),则|AB|=y1+y2+p,又∵以AB为直径的圆M与直线y=﹣1相切,∴|AB|=y1+y2+2,故p=2,∴抛物线C的方程为x2=4y.(2)设直线l的方程为y=kx+1,代入x2=4y中,化简整理得x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4,∴,∴圆心的坐标为M(2k,2k2+1),∵圆M与直线相切于点Q,∴|MQ|=|MN|,∴,解得,此时直线l的方程为,即x﹣2y+2=0,圆心,半径,∴圆M的方程为.【点评】本题考查了抛物线的性质,直线与圆锥曲线的位置关系,切线的性质,属于中档题.21.(12分)(2016邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f(1))处的切线方程为x+y﹣2=0(1)求y=f(x)的解析式;(2)证明:<1.【分析】(1)求函数的导数,根据导数的几何意义建立方程关系即可求y=f(x)的解析式;(2)将不等式进行转化,构造函数,求函数的导数,利用导数研究函数的单调性和极值即可证明:<1.【解答】解:(1)因为,所以f′(1)=1+a=﹣1,所以a=﹣2又点(1,f(1))在切线x+y﹣2=0上,所以1+b﹣2=0,所以b=1所以y=f(x)的解析式为f(x)=(x﹣2)lnx+1.….(4分)(2)令g(x)=x﹣e x,(x>0)因为g′(x)=1﹣e x所以当x>0时,g′(x)<0所以g(x)在区间(0,+∞)内单调递减,所以g(x)<g(0)=﹣1<0所以等价于f(x)﹣1>g(x).….(6分)我们如果能够证明f(x)﹣1>﹣1,即f(x)>0即可证明目标成立.下面证明:对任意x∈(0,+∞),f(x)>0.由(1)知,令则,所以h(x)在(0,+∞)内单调递增,又h(1)=﹣1<0,h(2)=ln2>0,所以存在x0∈(1,2)使得h(x0)=0.当0<x<x0时,h(x)<0即f′(x)<0,此时f(x)单调递减;当x>x0时,h(x)>0即f′(x)>0,此时f(x)单调递增;所以f(x)≥f(x0)=(x0﹣2)lnx0+1.由f′(x0)=0得所以f(x)≥f(x0)=(x0﹣2)lnx0+1=(x0﹣2)(﹣1)+1=5﹣(x0+).令,则r′(x)=1﹣=<0所以r(x)在区间(1,2)内单调递减,所以r(x)<r(1)=5所以f(x)>5﹣(x+)>5﹣5=0.综上,对任意x∈(0,+∞),.….(12分)【点评】本题主要考查导数的综合应用,利用导数的几何意义以及构造函数是解决本题的关键.综合性较强,难度较大.选做题(请考生从22,23,24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选題号后的方框涂黑)22.(10分)(2016邯郸一模)如图,点A、B、D、E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=4,AD=8,求DF的长.【分析】(1)证明∠BAD=∠EAD,即可证明:=;(2)证明△EAD∽△FED,利用比例关系求DF的长.【解答】(1)证明:∵EB=BC∴∠C=∠BEC∵∠BED=∠BAD∴∠C=∠BED=∠BAD…(2分)∵∠EBA=∠C+∠BEC=2∠C,AE=EB∴∠EAB=∠EBA=2∠C,又∠C=∠BAD∴∠EAD=∠C∴∠BAD=∠EAD…(4分)∴.…(5分)(2)解:由(1)知∠EAD=∠C=∠FED,又∠EDA=∠EDA∴△EAD∽△FED…(8分)∴又∵DE=4,AD=8,∴DF=2.…(10分)【点评】本题考查相似三角形的判定与性质,考查等角对等弧,考查学生分析解决问题的能力,属于中档题.【选项4-4:坐标系与参数方程】23.(2016邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.【分析】(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,把,代入即可得出直角坐标方程.根据(t为参数),消去t得普通方程.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.由参数的几何意义,可知:|PM|2+|PN|2==﹣4t1t2即可得出.【解答】解:(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,∵,∴y2=2x;根据(t为参数),消去t得,x﹣y﹣3=0,故曲线C的直角坐标方程和直线l的普通方程分别是y2=2x,x﹣y﹣3=0.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.设t1,t2是该方程的两根,则,由参数的几何意义,可知.【点评】本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.【选项4-5:不等式选讲】24.(2016邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.【分析】(1)问题转化为解关于x的不等式组,求出不等式的解集即可;(2)根据x的范围,去掉绝对值号,从而求出a的范围即可.【解答】解:(1)当a=2时,由f(x)≥﹣3,可得|x﹣2|﹣|2x﹣1|≥﹣3,①或②或③,解①得;解②得;解③得x=2,综上所述,不等式的解集为{x|﹣4≤x≤2};(2)若当x∈[1,3]时,f(x)≤3成立,即|x﹣a|≤3+|2x﹣1|=2x+2,故﹣2x﹣2≤x﹣a≤2x+2,即:﹣3x﹣2≤﹣a≤x+2,∴﹣x﹣2≤a≤3x+2对x∈[1,3]时成立,∴a∈[﹣3,5].【点评】本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.。

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答案+全解全析纯word版(2020.6.15)

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答案+全解全析纯word版(2020.6.15)

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学本卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|||2}P x x =>,2{|230}Q x x x =--≤,则P Q =I A .(2,)+∞B .(1,)+∞C .(2,3]D .[1,2)-2.已知i 为虚数单位,(2i)67i z -=+,则复平面内与z 对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限3.若26cos 2cos21αα+=-,则tan α= A .2±B .3±C .2D .3-4.已知实数,,a b c 满足lg 222,log ,sin a b a c b ===,则,,a b c 的大小关系是 A .a b c >>B .b c a >>C .a c b >>D .b a c >>5.已知函数()sin 3cos f x x x ωω=-(0ω>)的图象与x 轴的交点中,两个相邻交点的距离为π,把函数()f x 的图象上每一点的横坐标缩小到原来的一半,再沿x 轴向左平移3π个单位长度,然后纵坐标扩大到原来的2倍得到函数()g x 的图象,则下列命题中正确的是 A .()g x 是奇函数B .()g x 的图象关于直线6x π=对称 C .()g x 在[,]312π-π上是增函数D .当[,]66x π-π∈时,()g x 的值域是[0,2]6.函数2()cos sin(1)31x f x x =⋅-+的图象大致为7.在ABC △中,已知1()2AD AB AC =+u u u r u u u r u u u r ,13AE AD =u u u r u u u r ,若以,AD BE u u u r u u u r 为基底,则DC u u u r可表示为A .2133AD BE +u u ur u u u rB .23AD BE +u u ur u u u rC .13AD BE +u u u r u u u rD .1233AD BE +u u ur u u u r8.记不等式组21312y x x y y y kx ≤-⎧⎪+≤⎪⎨≥-⎪⎪≥-⎩表示的平面区域为D ,若平面区域D 为四边形,则实数k 的取值范围是A .11144k << B .11144k <≤ C .11133k <<D .11133k ≤≤9.1872年,戴德金出版了著作《连续性与无理数》,在这部著作中以有理数为基础,用崭新的方法定义了无理数,建立起了完整的实数理论.我们借助划分数轴的思想划分有理数,可以把数轴上的点划分为两类,使得一类的点在另一类点的左边.同样的道理把有理数集划分为两个没有共同元素的集合A 和B ,使得集合A 中的任意元素都小于集合B 中的任意元素,称这样的划分为分割,记为A /B .以下对有理数集的分割不会出现的类型为 A .A 中有最大值,B 中无最小值 B .A 中无最大值,B 中有最小值 C .A 中无最大值,B 中无最小值D .A 中有最大值,B 中有最小值10.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,A 为OM 的中点,若C 的渐近线与以AM 为直径的圆相切,则双曲线C 的离心率等于 A 32 B 23C 3D 211.已知函数()|2|2f x x =-+,()ln g x ax x =-,若0(0,e)x ∀∈,12,(0,e)x x ∃∈满足0()f x = 12()()g x g x =,其中12x x ≠,则实数a 的取值范围是 A .5[,e)eB .1(,e)eC .1[1,e)e+D .15[1,]e e+12.如图,已知平面四边形P'CAB 中,AC BC ⊥,且6AC =,27BC =,214P'C P'B ==BC 将P'BC △折起到PBC △的位置,构成一个四面体,当四面体PABC 的体积最大时,四面体PABC 的外接球的体积等于 A .5003πB .2563πC .50πD .96π二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学全国卷1(附答案与解析)

2020年高考理科数学全国卷1(附答案与解析)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学本试卷共6页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码黏贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷,草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷,草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1i z =+,则22z z -=( )A .0B .1C .2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =( )A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+D .512+4.已知A 为抛物线()2:20C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()()1220i i x y i =,,,…,得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数()432f x x x =-的图像在点()()11f ,处的切线方程为( )A .21y x =--B .21y x =-+毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无------------------效----------------C .23y x =-D .21y x =+7.设函数()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭在[]ππ-,的图像大致如下图,则()f x 的最小正周期为( )A .10π9B .7π6 C .4π3 D .3π28.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中33x y 的系数为( )A .5B .10C .15D .20 9.已知()0πα∈,,且3cos28cos 5αα-=,则sin α= ( )A .53B .23C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.已知⊙22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 12.若242log 42log aba b +=+则( )A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件2201010x y x y y +-⎧⎪--⎨⎪+⎩≤,≥,≥,则7z x y =+的最大值为 .14.设a ,b 为单位向量,且1+=a b ,则-=a b .15.已知F 为双曲线()2222:100x y C a b a b-=>,>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 .16.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=,则cos FCB ∠= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA PBC ⊥平面; (2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知A ,B 分别为椭圆E :()22211x y a a+=>的左、右顶点,G 为E 上顶点,8AG GB ⋅=.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x +≥,求a 的取值范围.(二)选考题:共10分,请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为()cos sin kkx t t y t⎧=⎪⎨=⎪⎩,为参数,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4—5:不等式选讲](10分) 已知函数()3121f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()()1f x f x +>的解集.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答------------------题------------------无------------------效----------------2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学答案解析一、选择题 1.【答案】D【解析】由题意首先求得22z z -的值,然后计算其模即可.由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D .【考点】复数的运算法则,复数的模的求解 2.【答案】B【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的 值.求解二次不等式240x -≤可得:{}22A x x =-≤≤,求解一次不等式20x a +≤可得:2a B x x ⎧⎫=-⎨⎬⎩⎭≤.由于{}21AB x x =-≤≤,故:12a-=,解得:2a =-.故选:B .【考点】交集的运算,不等式的解法 3.【答案】C【解析】设CD a =,PE b =,利用212PO CD PE =⋅得到关于a ,b 的方程,解方程即可得到答案.如图,设CD a =,PE b =,则PO ==212PO ab =,即22142a b ab -=,化简得24210b b a a ⎛⎫-⋅-= ⎪⎝⎭,解得14b a +=(负值舍去). 故选:C .【考点】正四棱锥的概念及其有关计算 4.【答案】C【解析】利用抛物线的定义建立方程即可得到答案. 设抛物线的焦点为F ,由抛物线的定义知122A p AF x =+=,即1292p=+,解得6p =. 故选:C .【考点】利用抛物线的定义计算焦半径 5.【答案】D【解析】根据散点图的分布可选择合适的函数模型.由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D .【考点】函数模型的选择,散点图的分布6.【答案】B【解析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简 即可.()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .【考点】利用导数求解函图象的切线方程7.【答案】C【解析】由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即 可得解.由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭. 又409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=.所以函数()f x 的最小正周期为224332T πππω===. 故选:C .【考点】三角函数的性质及转化,三角函数周期公式 8.【答案】C【解析】求得()5x y +展开式的通项公式为515r r rr T C x y -+=(r ∈N 且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与()5x y + 展开式的乘积为65rrrC xy -或425r rr C xy-+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.()5x y + 展开式的通项公式为515rrrr T C xy -+=(r ∈N 且5r ≤).所以2y x x ⎛⎫+ ⎪⎝⎭与()5x y +展开式的乘积可表示为:56155rrrr rrr xT xC x y C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项 中33x y 的系数为5.所以33x y 的系数为10515+=. 故选:C【考点】二项式定理及其展开式的通项公式,赋值法 9.【答案】A【解析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0)απ∈,,sin α∴==. 故选:A .【考点】三角恒等变换,同角间的三角函数关系求值 10.【答案】A【解析】由已知可得等边ABC △的外接圆半径,进而求出其边长,得出1OO 的值,根据球截面性质,求出 球的半径,即可得出结论.设圆1O 半径为r ,球的半径为R ,依题意,得24r ππ=,2r ∴=,由正弦定理可得2sin 6023AB r ==,1OO AB ∴==,根据圆截面性质1OO ABC ⊥平面,11OO O A ∴⊥,4R OA =,∴球O 的表面积2464S R ππ==.故选:A .【考点】球的表面积,应用球的截面性质11.【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点A ,P ,B ,M 共圆,且AB MP ⊥,根据22PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==,所以直线l 与圆相离.依圆的知识可知,四点A ,P ,B ,M 四点共圆,且AB MP ⊥, 所以12222PAMPM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =,当直线MP l ⊥时,min MP =min 1PA =,此时PM AB ⋅最小.()1:112MP y x ∴-=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【考点】直线与圆,圆与圆的位置关系的应用,圆的几何性质的应用 12.【答案】B【解析】设()22log x f x x =+,利用作差法结合()f x 的单调性即可得到答案. 设()22log xf x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <.()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b-=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >.当2b =时,()()210f a f b -=-<,此时()()2f a f b <,有2a b <,所以C 、D 错误. 故选:B .【考点】函数与方程的综合应用,构造函数,利用函数的单调性比较大小二、填空题 13.【答案】1【解析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 绘制不等式组表示的平面区域,如图所示,目标函数7z x y =+即:1177y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点 A 的坐标为:()10A ,,据此可知目标函数的最大值为:max 1701z =+⨯=.故答案为:1. 14.【解析】整理已知可得:()2a b a b +=+,再利用a ,b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.因为a ,b 为单位向量,所以1a b ==,所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=.解得:21a b ⋅=-. 所以()22223a b a b a a b b -=-=-⋅+=.【考点】向量模的计算公式及转化 15.【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.依题可得,3BF AF =,而2bBF a =,AF c a =-,即23ba c a=-,变形得22233c a ac a -=-,化简可得, 2320e e -+=,解得2e =或1e =(舍去).故答案为:2. 【考点】双曲线的离心率的求法,双曲线的几何性质的应用 16.【答案】14-【解析】在ACE △中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.AB AC ⊥,AB 1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF△中,2BC =,BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【考点】利用余弦定理解三角形 三、解答题17.【答案】(1)2-(2)()()11329nn n S -+-=【解析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论.设{}n a 的公比为q ,1a 为2a ,3a 的等差中项,1232a a a =+,10a ≠,220q q ∴+-=,1q ≠,2q ∴=-.(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.设{}n na 的前n 项和为n S ,11a =,()12n n a -=-,()()()211122322n n S n -=⨯+⨯-+⨯-++-,①()()()()()()2312122232122n nn S n n --=⨯-+⨯-+⨯-+--+-,②-①②得,()()()()()()()()()211211323122222123nnn nnn n S n n ----+-=+-+-++---=--=--,()()11329nn n S -+-∴=.【考点】等比数列通项公式基本量的计算,等差中项的性质,错位相减法求和 18.【答案】(1)证明:由题设,知DAE △为等边三角形,设1AE =,则DO =,112CO BO AE ===,所以PO =,PC =,PB ==又ABC △为等边三角形,则2sin60BA OA=,所以BA =22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PAPC ⊥,又PC PB P =,所以PA PBC ⊥平面.(2)5【解析】(1)要证明PA PBC ⊥平面,只需证明PA PB ⊥,PA PC ⊥即可. 由题设,知DAE △为等边三角形, 设1AE =,则DO =,1122CO BO AE ===,所以PO=,4PC ==, 4PB ==,又ABC △为等边三角形,则2sin60BA OA =,所以2BA =,22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PA PC ⊥,又PCPB P =,所以PA PBC ⊥平面. (2)以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的法向量为n ,平面PCE 的法向量为m ,利用公式cos m <,||||n mn n m ⋅=>计算即可得到答案.过O 作ON BC ∥交AB 于点N ,因为PO ABC ⊥平面,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则1002E ⎛⎫- ⎪⎝⎭,,,004P ⎛⎫ ⎪⎪⎝⎭,,,104B ⎛⎫- ⎪⎪⎝⎭,104C ⎛⎫- ⎪⎪⎝⎭,,14PC ⎛=- ⎝⎭,,14PB ⎛=-⎝⎭,102PE ⎛=- ⎝⎭,,,设平面PCB 的一个法向量为()111n x y z =,,,由0n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得1111110x x ⎧--=⎪⎨-+-=⎪⎩,令1x =得11z =-,10y =,所以()201n =-,,,设平面PCE 的一个法向量为()222m x y z =,,由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得2z =2y=,所以 313m ⎛= ⎝,故cos m <,2||||3n m n n m ⋅==⋅⨯,设二面角22143x y +=的大小为θ,则cos θ. 【考点】线面垂直的证明,利用向量求二面角的大小 19.【答案】(1)116(2)34(3)716【解析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率.记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭.(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=.(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=.【考点】独立事件概率的计算20.【答案】(1)2219x y +=(2)证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,.∴直线CD 的方程为: 0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得: ()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭.整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭.故直线CD 过定点302⎛⎫⎪⎝⎭,. 【解析】(1)由已知可得:()0A a -,,()0B a ,,()01G ,,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.依据题意作出如下图象:由椭圆方程()222:11x E y a a +=>可得:()0A a -,,()0B a ,,()01G ,.∴()1AG a =,,()1GB a =-,.∴218AG GB a ⋅=-=,∴29a =.∴椭圆方程为:2219x y +=.(2)设()06P y ,,可得直线AP 的方程为:()039yy x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,,同理可得点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,,即可表示出直线CD 的方程, 整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证. 证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810yx y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,. ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭. 故直线CD 过定点302⎛⎫ ⎪⎝⎭,. 【考点】椭圆的简单性质,方程思想21.【答案】(1)当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)274e ⎡⎫-+∞⎪⎢⎣⎭, 【解析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)首先讨论0x =的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确 定实数a 的取值范围.由()3112f x x +≥得,23112x e ax x x +-+,其中0x ≥,①当0x =时,不等式为:11≥,显然成立,符合题意;②当0x >时,分离参数a 得,32112x e x x a x----, 记()32112x e x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-,令()()21102x e x x h x x ---=≥,则()'1x h x e x =--,()''10x h x e =-≥,故()'h x 单调递增,()()''00h x h =≥,故函数()h x 单调递增,()()00h x h =≥,由()0h x ≥可得:21102x e x x ---恒成立,故当()02x ∈,时,()'0g x >,()g x 单调递增; 当()2x ∈+∞,时,()'0g x <,()g x 单调递减;因此,()()2max724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是274e ⎡⎫-+∞⎪⎢⎣⎭,. 【考点】导数的几何意义,解析几何,微积分,用导数求函数的单调区间,判断单调性,已知单调性求参数,利用导数求函数的最值(极值),数形结合思想的应用 22.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆(2)1144⎛⎫⎪⎝⎭,【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论.当1k =时,曲线1C 的参数方程为cos sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,0x ≥,0y ≥,曲线1C 的参数方程化为22cos sin tt(t 为参数),两式相加消去参数t ,得1C 普通方程,由cos x ρθ=,sin y ρθ=,将曲线2C 化为直角坐标方程,联立1C ,2C 方程,即可求解.当4k =时,曲线1C 的参数方程为44cos sin x ty t⎧=⎨=⎩(t 为参数),所以数学试卷 第21页(共22页) 数学试卷 第22页(共22页)0x ≥,0y ≥,曲线1C的参数方程化为22cos sin tt(t 为参数),两式相加得曲线1C11,平方得1y x =-,01x ≤≤,01y ≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立1C ,2C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136(舍去),14x ∴=,14y =,1C ∴,2C 公共点的直角坐标为1144⎛⎫⎪⎝⎭,.【考点】参数方程与普通方程互化,极坐标方程与直角坐标方程互化23.【答案】(1)因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)76⎛⎫-∞- ⎪⎝⎭, 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象.因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)作出函数()1f x +的图象,根据图象即可解出.将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式的解集为76⎛⎫-∞- ⎪⎝⎭,. 【考点】分段函数的图象,利用图象解不等式。

2020年全国普通高等学校招生统一考试数学试卷 全国新高考Ⅰ卷 (含答案)

2020年全国普通高等学校招生统一考试数学试卷 全国新高考Ⅰ卷 (含答案)

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}2.2i 12i -= +A.1 B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

内蒙古呼伦贝尔市海拉尔区高考模拟统一考试(一)数学(文)试题(解析版)

内蒙古呼伦贝尔市海拉尔区高考模拟统一考试(一)数学(文)试题一、单选题1.已知集合{}2log 1A x x =>,{}1B x x =≥,则A B =U ()A .(]1,2B .()1,+∞C .()1,2D .[)1,+∞ 【答案】D【解析】解出对数不等式可得集合A ,根据并集的运算即可得结果.【详解】 由{}{}2log 12A x x x x =>=>,{}1B x x =≥,则[)1,A B ∞=+U , 故选D.【点睛】本题主要考查了对数不等式的解法,并集的概念,属于基础题.2.复数z 满足()11z i -=,则复数z 等于()A .1i -B .1i +C .2D .-2 【答案】B【解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数z 满足()112z i -==, ∴()()()2121111i z i i i i +===+--+, 故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题.3.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为() A .18B .24C .36D .72【答案】C【解析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a a S ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =, ∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题. 4.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v()A .4B .6C .23D .43 【答案】B【解析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=,∴23BD =30BDC ∠=︒,∴|||3 302|326BD CD BD CD cos =⨯⨯︒==⋅u u u r u u u r u u u r u u u r , 故选B .【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..5.定义在R 上的函数()f x 满足()()2log 10()50x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()2019f =() A .-1B .0C .1D .2【答案】C【解析】推导出()()()()220194035441log 2f f f f =⨯+==-=,由此能求出()2019f 的值.【详解】∵定义在R 上的函数()f x 满足()()2log 10()50x x f x f x x ⎧-≤⎪=⎨->⎪⎩, ∴()()()()22019403544211log f f f f =⨯+=-===,故选C .【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.6.已知双曲线C :()222210,0x y a b a b-=>>的焦距为2c ,焦点到双曲线C 的渐近线,则双曲线的渐近线方程为()A .y =B .y =C .y x =±D .2y x =± 【答案】A【解析】利用双曲线C :()222210,0x y a b a b -=>>,求出a ,b 的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C :()222210,0x y a b a b-=>>的焦点(),0c 到渐近线0bx ay +=的距离为,可得:=,可得b c =,b a =C 的渐近线方程为y =. 故选A .【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.7.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .43【答案】A 【解析】根据抛物线的性质求出点P 坐标和焦点F 坐标,进而求出点M 的坐标,代入斜率公式即可求解.【详解】设点P 的坐标为()000,,0x y y >,由题意知,焦点()1,0F ,准线方程:1l x =-, 所以015PM x =+=,解得04x =,把点P ()04,y 代入抛物线方程可得,04y =±,因为00y >,所以04y =,所以点M 坐标为()1,4-, 代入斜率公式可得,40211MF k -==---. 故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.8.将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后,所得图象关于y 轴对称,则ϕ的最小正值是( )A .8πB .34πC .2πD .4π 【答案】D【解析】由函数()sin y A ωx φ=+的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于ϕ的方程,对k 赋值即可求解.【详解】由题意知,函数()sin(2)f x x ϕ=-的最小正周期为22T ππ==,即88T π=, 由函数()sin y A ωx φ=+的图象平移变换公式可得,将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后的解析式为 ()sin 2sin 284g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=--=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为函数()g x 的图象关于y 轴对称, 所以,42k k z ππϕπ--=+∈,即3,4k k z πϕπ=-+∈, 所以当1k =时,ϕ有最小正值为4π. 故选:D【点睛】 本题考查函数()sin y A ωx φ=+的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.9.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )A .22B .23C .4D .26【答案】B 【解析】由三视图可知,该三棱锥如图, 其中底面ABC 是等腰直角三角形,PC ⊥平面ABC ,结合三视图求出每个面的面积即可.【详解】由三视图可知,该三棱锥如图所示:其中底面ABC 是等腰直角三角形,PC ⊥平面ABC ,由三视图知,2,22,PC AB ==因为,PC BC PC AC ⊥⊥,,AC BC AC CB =⊥,所以2,22AC BC PA PB AB =====,所以12222PAC PCB ACB S S S ∆∆∆===⨯⨯=, 因为PAB ∆为等边三角形, 所以()2233222344PABS AB ∆==⨯=,所以该三棱锥的四个面中,最大面积为23.故选:B【点睛】本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.10.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .134B .866C .300D .500【答案】A 【解析】分析:设三角形的直角边分别为13,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为13,则弦为2,故而大正方形的面积为4,小正方形的面积为)231423=-∴图钉落在黄色图形内的概率为4232342--=. ∴落在黄色图形内的图钉数大约为231000134-⨯≈. 故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.11.函数f (x )=21x x e-的图象大致为() A . B .C .D .【答案】D【解析】根据函数为非偶函数可排除两个选项,再根据特殊值(2)f 可区分剩余两个选项.【详解】因为f (-x )=21x x e--≠f (x )知f (x )的图象不关于y 轴对称,排除选项B ,C. 又f (2)=214e -=-23e<0.排除A ,故选D. 【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为( )A .3B .6C .3D .33 【答案】C【解析】将正四面体的展开图还原为空间几何体,,,A D F 三点重合,记作D ,取DC 中点H ,连接,,EG EH GH ,EGH ∠即为EG 与直线BC 所成的角,表示出三角形EGH 的三条边长,用余弦定理即可求得cos EGH ∠.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中,,A D F 三点重合,记作D :则G 为BD 中点,取DC 中点H ,连接,,EG EH GH ,设正四面体的棱长均为a , 由中位线定理可得//GH BC 且1122GH BC a ==, 所以EGH ∠即为EG 与直线BC 所成的角,22132EG EH a a ⎛⎫==-= ⎪⎝⎭,由余弦定理可得222 cos2EG GH EH EGHEG GH+-∠=⋅222313a a a+-==,所以直线EG与直线BC故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.二、填空题13.已知函数3()sinf x x x=-+,若()f a M=,则()f a-=___________.【答案】M-【解析】根据题意,利用函数奇偶性的定义判断函数()f x的奇偶性,利用函数奇偶性的性质求解即可.【详解】因为函数3()sinf x x x=-+,其定义域为R,所以其定义域关于原点对称,又()()()()()33sin sinf x x x x x f x-=--+-=-+=-,所以函数()f x为奇函数,因为()f a M=,所以()f a M-=-.故答案为:M-【点睛】本题考查函数奇偶性的判断及其性质;考查运算求解能力;熟练掌握函数奇偶性的判断方法是求解本题的关键;属于中档题、常考题型.14.若满足32xx yy x≤⎧⎪+≥⎨⎪≤⎩,则目标函数2z y x=-的最大值为______.【答案】-1【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件32x x y y x ≤⎧⎪+≥⎨⎪≤⎩作出可行域如图,化目标函数2z y x =-为2y x z =+,由图可得,当直线2y x z =+过点B 时,直线在y 轴上的截距最大,由2x y x y +=⎧⎨=⎩得11x y =⎧⎨=⎩即()11B ,,则z 有最大值121z =-=-, 故答案为1-.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15.在各项均为正数的等比数列{}n a 中,12a =,且132a a ,,23a 成等差数列,则n a =___________.【答案】2n【解析】利用等差中项的性质和等比数列通项公式得到关于q 的方程,解方程求出q 代入等比数列通项公式即可.【详解】因为132a a ,,23a 成等差数列, 所以312223a a a =+, 由等比数列通项公式得,2231212,2a a q q a a q q ====,所以222226q q ⨯=⨯+, 解得2q =或12q =-, 因为0n a >,所以2q =, 所以等比数列{}n a 的通项公式为111222n n n n a a q --==⨯=.故答案为:2n 【点睛】本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识 综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题.16.学校艺术节对同一类的A ,B ,C ,D 四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”; 丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”. 若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______. 【答案】B【解析】首先根据“学校艺术节对A B C D 、、、四件参赛作品只评一件一等奖”,故假设A B C D 、、、分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果. 【详解】若A 为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B 为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意; 若C 为一等奖,则甲、丙、丁的说法均正确,不满足题意; 若D 为一等奖,则乙、丙、丁的说法均错误,不满足题意; 综上所述,故B 获得一等奖. 【点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设A B C D 、、、为一等奖并通过是否满足题目条件来判断其是否正确.三、解答题17.如图:在ABC ∆中,10a =,4c =,5cos C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长. 【答案】(1)4A π=;(22【解析】(1)通过cos C 求出sin C 的值,利用正弦定理求出sin A 即可得角A ;(2)根据()sin sin B A C =+求出sin B 的值,由正弦定理求出边b ,最后在ACD ∆中由余弦定理即可得结果. 【详解】 (1)∵5cos 5C =-,∴2125sin 1cos 155C C =-=-=. 由正弦定理sin sin a c A C=,即10sin 25A =. 得2sin A =,∵5cos 0C =<,∴C 为钝角,A 为锐角, 故4A π=.(2)∵()B A C π=-+,∴()sin sin sin cos cos sin B A C A C A C=+=+2522510⎛== ⎝⎭由正弦定理得sin sin b a B A=,即10102=得2b =. 在ACD ∆中由余弦定理得:2222cos CD AD AC AD AC A =+-⋅⋅22422222=+-⨯⨯⨯=,∴2CD =. 【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.18.如图,在直三棱柱中111ABC A B C -,D E F G 、、、分别是1111BC B C AA CC ,,,中点,且22AB AC ==,14BC AA ==.()1求证:BC ⊥平面ADE ; ()2求点D 到平面EFG 的距离.【答案】(1)详见解析;(243. 【解析】(1)利用线面垂直的判定定理和性质定理即可证明;(2)取DE 中点为H ,则FH AD ∥,证得FH ⊥平面11BCC B ,利用等体积法D EFG F DEG V V --=求解即可.【详解】(1)因为22AB AC ==4BC =,AB AC ∴⊥,D Q 是BC 的中点,AD BC ∴⊥,111ABC A B C -Q 为直三棱柱,所以1AA ⊥平面ABC ,因为D E ,为11BC B C ,中点,所以1//DE AADE ∴⊥平面ABC ,DE BC ∴⊥,又AD DE D ⋂=,BC ∴⊥平面ADE(2)22,4AB AC BC ===Q , 又,,E F G 分别是111BC AA CC ,,中点,22EF FG EG ∴===.由(1)知AD BC ⊥,1BB AD ⊥, 又1BB BC B =I AD ∴⊥平面11BCC B ,取DE 中点为H ,连接DG 如图, 则FH AD ∥,FH ∴⊥平面11BCC B , 设点D 到平面EFG 的距离为h ,由D EFG F DEG V V --=,得1133EFG DEG h S FH S ⋅⋅=⋅⋅△,即(2131122222223432h ⋅⨯=⨯⨯⨯33h =, ∴点D 到平面EFG 的距离为33.【点睛】本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求解本题的关键;属于中档题.19.诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)若定义水站诚信度高于90%的为“高诚信度”,90%以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率; (Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由. 【答案】(Ⅰ)91%;(Ⅱ)23;(Ⅲ)两次活动效果均好,理由详见解析. 【解析】(Ⅰ)结合表中的数据,代入平均数公式求解即可;(Ⅱ)设抽到“高诚信度”的事件为i A ,则抽到“一般信度”的事件为B ,则随机抽取两周,则有两周为“高诚信度”事件为C ,利用列举法列出所有的基本事件和事件C 所包含的基本事件,利用古典概型概率计算公式求解即可; (Ⅲ)结合表中的数据判断即可. 【详解】(Ⅰ)表中十二周“水站诚信度”的平均数959892889494838085929596191%12100x +++++++++++=⨯=.(Ⅱ)设抽到“高诚信度”的事件为i A ,则抽到“一般信度”的事件为B ,则随机抽取两周均为“高诚信度”事件为C ,总的基本事件为1213141523242534354512453,A A A A A A A A A A A A A A A A A A A A A A B A B A B A B B、、、、、、、、、、、、、、共15种,事件C 所包含的基本事件为12131415232425343545 A A A A A A A A A A A A A A A A A A A A 、、、、、、、、、共10种,由古典概型概率计算公式可得,102()153P C ==. (Ⅲ)两次活动效果均好.理由:活动举办后,“水站诚信度'由88%94%→和80%→85%看出,后继一周都有提升. 【点睛】本题考查平均数公式和古典概型概率计算公式;考查运算求解能力;利用列举法正确列举出所有的基本事件是求古典概型概率的关键;属于中档题、常考题型.20.已知椭圆2222:1(0)x y C a b a b +=>>1,2P ⎛- ⎝⎭在椭圆上. (Ⅰ)求椭圆的标准方程;(Ⅱ)设直线y kx m =+交椭圆C 于,A B 两点,线段AB 的中点M 在直线1x =上,求证:线段AB 的中垂线恒过定点.【答案】(Ⅰ)2214x y +=;(Ⅱ)详见解析. 【解析】(Ⅰ)把点P 代入椭圆方程,结合离心率得到关于,a b 的方程,解方程即可; (Ⅱ)联立直线与椭圆方程得到关于x 的一元二次方程,利用韦达定理和中垂线的定义求出线段AB 的中垂线方程即可证明. 【详解】(Ⅰ)由已知椭圆过点P ⎛- ⎝⎭得,221314a b +=,又c e a ===,得224a b =,所以224,1a b ==,即椭圆方程为2214x y +=.(Ⅱ)证明: 由2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得()222148440k x kmx m +++-=,由()()22222264414441664160k m k m m k =-+-=-++>△,得2214m k <+,由韦达定理可得,122814kmx x k +=-+,设AB 的中点M 为()00,x y ,得024114kmx k=-=+,即2144k km +=-, 0021144m y kx m k k∴=+==-+,AB ∴的中垂线方程为11(1)4y x k k +=--,即134y x k ⎛⎫=-- ⎪⎝⎭, 故AB 得中垂线恒过点3,04N ⎛⎫ ⎪⎝⎭. 【点睛】本题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系及椭圆中的定值问题;考查运算求解能力和知识的综合运用能力;正确求出椭圆方程和利用中垂线的定义正确表示出中垂线方程是求解本题的关键;属于中档题.21.已知函数()ln f x x x =+(a 为常数) (Ⅰ)当5a =-时,求()f x 的单调区间; (Ⅱ)若()f x 为增函数,求实数a 的取值范围.【答案】(Ⅰ)单调递增区间为10,4⎛⎫ ⎪⎝⎭,()4,+∞;单调递减区间为1,44⎛⎫⎪⎝⎭;(Ⅱ)[)4,-+∞. 【解析】(Ⅰ)对函数()f x 进行求导,利用导数判断函数()f x 的单调性即可; (Ⅱ)对函数()f x 进行求导,由题意知,()f x 为增函数等价于()'0fx ≥在区间()0,∞+恒成立,利用分离参数法和基本不等式求最值即可求出实数a 的取值范围.【详解】(Ⅰ)由题意知,函数()y f x =的定义域为()0,∞+,当5a =-时,()f x '==令()0f x '=,得14x =,或4x =, 所以()'fx ,()f x 随x 的变化情况如下表:()f x∴的单调递增区间为10,4⎛⎫⎪⎝⎭,()4,+∞,单调递减区间为1,44⎛⎫⎪⎝⎭.(Ⅱ)由题意得()'122102xf xx x+=+=≥在区间()0,∞+恒成立,即2a-≤在区间()0,∞+恒成立.2+≥=Q=,即1x=时等号成立.所以min24a-≤=,所以a的取值范围是[)4,-+∞.【点睛】本题考查利用导数求函数的单调区间、利用分离参数法和基本不等式求最值求参数的取值范围;考查运算求解能力和逻辑推理能力;利用导数把函数单调性问题转化为不等式恒成立问题是求解本题的关键;属于中档题、常考题型.22.在直角坐标系中,圆C的参数方程为:12cos2sinxyαα=+⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆C的极坐标方程;(2)若直线l:costsinx tyϕϕ=⎧⎨=⎩(t为参数)被圆C截得的弦长为l的倾斜角.【答案】(1)4cos3πρθ⎛⎫=-⎪⎝⎭;(2)6π或2π【解析】(1)消去参数α可得圆C的直角坐标方程,再根据222x yρ=+,cosxρθ=,sinyρθ=即可得极坐标方程;(2)写出直线l的极坐标方程为θϕ=,代入圆C的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆C:12cos 2sin x y αα=+⎧⎪⎨=⎪⎩,消去参数α得:()(2214x y -+=,即:2220x y x +--=,∵222x y ρ=+,cos x ρθ=,sin y ρθ=.∴22cos sin 0ρρθθ--=,4cos 3πρθ⎛⎫=-⎪⎝⎭. (2)∵直线l :cos sin x t y t ϕϕ=⎧⎨=⎩的极坐标方程为θϕ=,当θϕ=时4cos 3πρϕ⎛⎫=-= ⎪⎝⎭即:cos 3πϕ⎛⎫-= ⎪⎝⎭∴36ππϕ-=或36ππϕ-=-. ∴2ϕπ=或6π=ϕ,∴直线l 的倾斜角为6π或2π. 【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.23.已知()()0f x a x b a =-->,且()0f x ≥的解集为{}37x x -≤≤. (1)求实数a ,b 的值;(2)若()f x 的图像与直线0x =及()3y m m =<围成的四边形的面积不小于14,求实数m 取值范围.【答案】(1)5a =,2b =;(2)(],1-∞【解析】(1)解绝对值不等式得b a x b a -≤≤+,根据不等式的解集为{}37x x -≤≤列出方程组,解出即可;(2)求出()f x 的图像与直线0x =及()3y m m =<交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可. 【详解】(1)由()0f x ≥得:x b a -≤,b a x b a -≤≤+,即37b a b a -=-⎧⎨+=⎩,解得5a =,2b =.(2)()7,2523,2x x f x x x x -≥⎧=--=⎨+<⎩的图像与直线0x =及y m =围成的四边形ABCD ,()2,5A ,()0,3B ,()0,C m ,()7,D m m -.过A 点向y m =引垂线,垂足为()2,E m ,则()()211352522ABCD ABCE AED S S S m m m =+=-+-⨯+-14≥. 化简得:214130m m -+≥,13m ≥(舍)或1m £. 故m 的取值范围为(],1-∞. 【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.。

2020年高考全国1卷数学(理科)模拟试卷(含答案)-2020理科国一卷

2020年高考全国1卷数学(理科)模拟试卷考试时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、以下判断正确的个数是( )①相关系数r r ,值越小,变量之间的相关性越强;②命题“存在01,2<-+∈x x R x ”的否定是“不存在01,2≥-+∈x x R x ”; ③“q p ∨”为真是“p ”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是08.023.1ˆ+=x y. A .4 B .2 C.3 D .12、已知集合{}|12A x x =-<,12|log 1B x x ⎧⎫=>-⎨⎬⎩⎭,则A B =IA .{}|04x x <<B .{}|22x x -<<C .{}|02x x <<D .{}|13x x << 3、设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4、 已知正三角形ABC 的顶点()()3,1,1,1B A ,顶点C 在第一象限,若点()y x ,在ABC ∆的内部,则y x z +-=的取值范围是 A.()2,31- B.()2,0 C.()2,13- D.()31,0+5、在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是A .sin xB .cos xC .sin x -D .cos x - 6、使函数)2cos()2sin(3)(θθ+++=x x x f 是偶函数,且在]4,0[π上是减函数的θ的一个值是 A .6π B .3π C .34π D .67π7、已知数列{}n a 的前n 项和为n S ,且满足121a a ==,21n n S a +=-,则下列命题错误的是( ) A.21n n n a a a ++=+B.13599100a a a a a ++++=…C.2469899a a a a a ++++=…D.12398100100S S S S S ++++=-…8、如图阴影部分1C 是曲线x y =与x y =所围成的封闭图形,A是两曲线在第一象限的交点,以原点O 为圆心,OA 为半径作圆,取圆的第一象限的扇形OCAB 部分图形为2C ,在2C 内随机选取m 个点,落在1C 内的点有n 个,则运用随机模拟的方法得到的π的近似值 A 、m n 23 B 、n m 3 C 、m n 3 D 、nm329、某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形,③ 3所有正确的说法 A 、①B 、①②C 、②③D 、①③10、已知双曲线)0,(12222>b a by a x =-的左、右顶点分别为B A ,,右焦点为F ,过点F 且垂直于x 轴的直线l 交双曲线于N M ,两点,P 为直线l 上的一点,当APB ∆的外接圆面积达到最小值时,点P 恰好在M (或N )处,则双曲线的离心率为 A.2 B.3 C.2 D.511、将边长为5的菱形ABCD 沿对角线AC 折起,顶点B 移动至B 处,在以点B ',A ,C ,为顶点的四面体AB 'CD 中,棱AC 、B 'D 的中点分别为E 、F ,若AC =6,且四面体AB 'CD 的外接球球心落在四面体内部,则线段EF 长度的取值范围为( )A .14232⎛ ⎝ B .144⎫⎪⎪⎝⎭C .3,23D .)3,412、已知函数()21ln (1)(0)2x ax a f a x x a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( )A. (]0,1B. ()1,+∞C. 40,3⎛⎤ ⎥⎝⎦D. 4,3⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。

2020届内蒙古呼伦贝尔市海拉尔区高三第一次统考数学(文)试题解析


B. y ex ex
C. y lg x
答案:C
D. y x2
试题分析:A 中,函数为偶函数,但 y 1,不满足条件;B 中,函数为奇函数,不满足
条件;C 中,函数为偶函数且 y R ,满足条件;D 中,函数为偶函数,但 y 0 ,不满
足条件,故选 C.
【考点】1、函数的奇偶性;2、函数的值域.
由已知可得 sin ,根据二倍角公式即可求解.
解:
角 的顶点与原点重合,始边与 x 轴的正半轴重合,
D. 4 5
终边经过点 P1, 2 ,则| OP | 5,sin 2 ,
5 cos 2 1 2sin2 3 .
5
故选:A. 点评: 本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题. 6.对某两名高三学生在连续 9 次数学测试中的成绩(单位:分)进行统计得到折线图, 下面是关于这两位同学的数学成绩分析.
11, d
a3
a2
4,
an
4n
1, S10
10 (3 39) 2
210
.
故选:B.
点评:
本题考查等差数列的基本量计算以及前 n 项和,属于基础题.
5.已知角 的顶点与原点重合,始边与 x 轴的正半轴重合,终边经过点 P 1, 2 ,则
cos 2 ( )
A. 3 5
B. 4 5
答案:A
C. 3 5
A. 1 3
答案:A
B. 1 3
C. 1 2
D. 1 2
先根据 BD DC, AP 2PD 得到 P 为 ABC 的重心,从而 AP 1 AB 1 AC ,故可 33

AP
1 3
AB
1 3

2020年普通高等学校招生全国统一考试(新课标Ⅰ卷)联考 理科数学+答案+全解全析


D. 2 2
13. (x + 2 y −1)5 的展开式中 x2 y2 的系数为___________.
14.若
sin(α
+
π )
6
=

1 3

∈ (0, π)
,则
sin(2α
+
π )
3
=
___________.
15.已知双曲线 E

x2 a2

y2
= 1(a
>
0)
的左、右焦点分别为 F1, F2
a,b
=
A. 2 5 5
B. − 2 5 5
C. − 5 5
D. 5 5
9.已知[x] 表示不超过
x
的最大整数,数列{an} 满足
an
=
[
(−1)
n −1 ] 2
n
2
,则数列{an} 的前
6030
C. 3660
理科数学 第 2 页(共 13 页)
D. −3660
10.将函数 f (x) =
如图所示,正方形 ABCD 所在平面与梯形 ABMN 所在平面垂直,MB∥AN, NA = AB = 2 , BM = 4 ,
CN = 2 3 .
(1)证明:平面 DMN ⊥ 平面 BCN ; (2)求二面角 C − MN − D 的余弦值.
19.(本小题满分 12 分)
已知椭圆
x2 C: a2
+
y2 b2
不迟到的概率的范围; (2)在这 10 天中任取 2 天,记该学生早上从家出发到教室所花时间的差的绝对值为 Y ,求 Y 的分布列 和数学期望. 附:若随机变量 X 服从正态分布 N (µ,σ 2 ) ,则 P(µ − σ < X < µ + σ ) = 0.6826 ,P(µ − 2σ < X < µ + 2σ ) = 0.9544 , P(µ − 3σ < X < µ + 3σ ) = 0.9974 . 21.(本小题满分 12 分) 已知函数 f (x) = cos(x −1) + x(1 − ln x) . (1)设 g(x) = f ′(x) ,求证: g(x) < 1 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年呼伦贝尔市普通高中第一次统考理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若{}{}0,1,2,|2,a A B x x a A ===∈,则A B =U A .{0,1,2}B. {0,1,23},C. {0,1,24},D. {1,24},2.复数=-+ii221 A. i B.i +1 C.i -D. i -13.在△ABC 中AC AB BP PD AP DC BD μλ+===,2,, 则μλ+= A .31B .31-C .21- D .214.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有 A .60种B .70种C .75种D .150种5. 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF|=3,则直线AB 的斜率为A.2±B. 2-C. 2 2 D .22±6.等比数列{}n a 的前n 项和为n S ,若0n a >,公比1q >,352620,64,a a a a +==则5S =A.31B.36C. 42D.487.函数1)(3+=x e x x f 的图象大致是8.在天文学中,天体明暗的程度可以用星等或亮度来描述。

两颗星的星等与亮度满足,lg 252112E E m m =- 其中星等为k m 的星的亮度为)2,1(=k E k .已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度比值为A.1.1010B.1.10C.1.10lgD.1.1010- 9.把函数)6sin(y π+=x 图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一个对称中心为 A .(3π,0) B .(4π,0) C .(12π,0)D .(0,0)10.在棱长均相等的正三棱柱ABC-A 1B 1C 1中,D 为BB 1的中点,F 在AC 1上,且DF ⊥AC 1,则下述结论:①AC 1⊥BC ;②AF =FC 1;③平面DAC 1⊥平面ACC 1A 1; ④异面直线AC 1与CD 所成角为60°.其中正确命题的个数为A .1B .2C .3D .411.已知双曲线C :,)0,0(12222>>=-b a by a x 以点),0(b P 为圆心a 为半径作圆,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若∠MPN =90°,则双曲线C 的离心率为A.27 B. 25C. 2D. 312.已知⎪⎪⎩⎪⎪⎨⎧<≤<<--+=10,201,1)1(1)(x x x x f x f ,若方程()21f x ax a -=-有唯一解,则实数a 的取值范围是 A .{}),1(8+∞⋃-B .{}),2(]1,21(16+∞⋃⋃- C .{}),2(]1,21[8+∞⋃⋃-D .{}),4(]2,1[32+∞⋃⋃-二、填空题:本题共4小题,每小题5分,共20分. 13.5)2)((y x y x -+的展开式中33y x 的系数为______.14.设实数x 、y 满足约束条件⎪⎩⎪⎨⎧≥≤-≤+4210x y x y x ,则y x z 32+=的最小值为_______.15.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标A )5,0,0(,B )0,0,3(,C )0,1,0(D )5,1,3(,则该四面体的外接球的体积为_______. 16. 数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T , 满足21=a ,),()(3R m N n a m n S n n ∈∈+=*,且1+=n b a n n . 若任意n n T T N n -≤∈2*,λ成立,则实数λ的取值范围为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分).21cos 32c 2-===∆C a c b a C B A ABC ,,,已知、、的对应边分别为、、中,角在(1)求A ;(2)设M 为BC 中点,求AM 的长.18.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为 “冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全22⨯列联表;并判断能否有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望.附表及公式:()()()()()2n ad bc K a b c d a c b d -=++++,d c b a n +++=19.(12分)在如图所示的四棱锥F-ABCD 中,四边形ABCD 是等腰梯形,AB ∥CD ,ABC ∠=60°,FC ⊥平面ABCD ,AC ⊥BF ,CB =CD =1,(1)求证:AC ⊥平面BCF ;(2)已知二面角F -BD -C 的余弦值为55, 求直线AF 与平面DFB 所成角的正弦值. 20.(12分)已知点),(00y x M 为椭圆12:22=+y x C 上任意一点,直线22:00=+y y x x l 与圆6)1(22=+-y x 交于B A , 两点,点F 为椭圆C 的左焦点.(1)求证:直线l 与椭圆C 相切;(2)判断AFB ∠是否为定值,并说明理由. 21.(12分)已知函数)1)(2(4ln )(--+-=x axxx f (1)当1=a 时B①求函数)(x f 在))2(,2(f 处的切线方程; ②定义)14()2()1(nn f n f n f S n -+++=Λ其中*n ∈N ,求2020S ; (2)当2≠a 时,设(),4ln )()(2x x x f x t --=1()xg x xe-=(e 为自然对数的底数), 若对任意给定的(](]00,,0,(1,2)i x e e x i ∈=在上总存在两个不同的,使得)()(0x g x t i =成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.22.[选修4-4:极坐标系与参数方程](10分) 在直角坐标系x O y 中,曲线C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数,πϕ<<0).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)直线l 的极坐标方程是2sin()3πρθ+=OM :3πθ=与曲线C 的交点为P ,与直线l 的交点为Q ,求线段PQ 的长.23.[选修4-5:不等式选讲](10分) 已知函数f (x )=|x -1|.(1)解不等式8)4()(≥++x f x f(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f (b a). 2020年呼伦贝尔市普通高中第一次统考理科数学(答案)二、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.三、填空题:本题共4小题,每小题5分,共20分. 13.40 14.14 15.29π 16.21≤λ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.77)21(12241cos 2230120,3023012021sin ,120sin 3sin 2sin a sin c ,1200,21cos 1222=∴=-⨯⨯⨯-+=⋅⋅-+=∆∴==∴︒=∴︒=︒=︒=∴∴︒==∴︒==︒=∴<<-=AM CCM AC CM AC AM AMC a b B C A A A C A A AA C C C 中,由余弦定理得在)(锐角,,由正弦定理,且)(ΘΘΘπ18.解(1)由题意得下表:······ 3分2k 的观测值为706.292540604060)400800(1002>=⨯⨯⨯-. ·······6分 所以有90%的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,·····7分 所以的可能取值为0,1,2.且()2426C C 620155P ξ====,()114226C C C 8115P ξ===,()2226C C 1215P ξ===, ···10分 所以的分布列为()28110201251515153E ξ=⨯+⨯+⨯==. ········· 12分19.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠ABC =60°,所以∠ADC =∠BCD =120°.又AD =CD ,所以∠A CD =30°,因此∠ACB =90°,AC ⊥BC , ········· 3分又AC ⊥BF ,且BC ∩BF =B ,BC ,BF ⊂平面BCF ,(没有BC ∩BF =B 扣1分) 所以AC ⊥平面BCF . ·········5分 (2)取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD ,又FC ⊥平面ABCD ,BD ⊂平面ABCD ,所以FC ⊥BD . 由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG ,故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角.在等腰三角形BCD 中,由于∠BCD =120°, 因此CG =12,又CB =CF=1,因为cos ∠FGC =55,所以2tan =∠FGC ,所以FC=1 ·········8 分以CA 为x 轴、CB 为y 轴、CF 为z 轴建立空间直角坐标系,则D )0,21,23(-,F (0,0,1),B (0,1,0)则平面DBF 的法向量)1,1,3(=,)1,0,3(-=AF ,设直线AF 与平面BDF 所成角为θ,则sin =θ=55······· 12分 20.(12分)解:(1)当00y =时直线l方程为x =x =l 与椭圆C 相切.当00y ≠时,由22001,222x y x x y y ⎧+=⎪⎨⎪+=⎩得22220000(2)4440y x x x x y +-+-=, 由题知,220012x y +=,即220022x y +=, 所以 22220000(4)4(2)(44)x y x y ∆=-+-220016[2(1)]x y =--=220016(22)0x y +-=. 故直线l 与椭圆C 相切.…………………………………6分(2)设11(,)A x y ,22(,)B x y ,当00y =时,12x x =,12y y =-,1x =2211(1)FA FB x y ⋅=+-u u u r u u u r 2211(1)6(1)x x =+-+-21240x =-=,所以FA FB ⊥u u u r u u u r ,即90AFB ∠=o.当00y ≠时,由2200(1)6,22x y x x y y ⎧-+=⎪⎨+=⎪⎩得22220000(1)2(2)2100y x y x x y +-++-=, 则2001222(2)1y x x x y ++=+,21222101y x x y -=+,2001212122220001()42x x y y x x x x y y y =-++200254422x x y --+=+.因为1122(1,)(1,)FA FB x y x y ⋅=+⋅+u u u r u u u r1212121x x x x y y =++++2222000000220042084225442222y y x y x x y y -++++--+=+++220025(2)10022x y y -++==+.所以FA FB ⊥u u u r u u u r ,即90AFB ∠=o .故AFB ∠为定值90o. ………………………………12分21.(1)①1=a Θ)40(,1ln )4ln()(<<-+--=∴x x x x x f1141)(+--='∴x x x f ,1)2(='∴f 1)2(=f Θ所以切线方程为1-=x y . ········· 3分 ②)40(,2)4()(<<=-+x x f x f Θ.令i x n =,则2)4()(=-+nif n i f Θ,)14,,2,1(-=n i Λ. 因为)14()24()2()1(n f n f n f n f S n -+-+++=Λ①,所以)1()2()24()14(nf n f n f n f S n +++-+-=Λ②,由①+②得)14(22-=n S n ,所以)(,14*N n n S n ∈-=.所以80792020=S . ········· 7分(2)111()(1),xx x g x exe x e ---'=-=-当(0,1)x ∈时,()0,g x '>函数()g x 单调递增;当(]1,x e ∈时,()0g x '<,函数()g x 单调递减0)(,1)1(,0)0(2>===-ee e g g g Θ所以,函数(](]()0,0,1.g x e 在上的值域为因为2a ≠,],0(,)22)(2(22)(e x xa x a xa x t ∈---=--='故220,22e a a e<<<-- ① 此时,当x 变化时)(x t '、)(x t 的变化情况如下:2)1)(2()(,22ln 2)22(,)(,0---=--=-+∞→→e a e t aa a t x h x Θ ∴,对任意给定的(]00,e ∈x ,在区间(]0,e 上总存在两个不同的(1,2),i x i =使得)()(0x g x t i =成立,当且仅当a 满足下列条件,1)(0)22(⎪⎩⎪⎨⎧≥≤-e t a t ⎪⎩⎪⎨⎧≥---≤--12)1)(2(022ln 2e a aa 即 令22()2ln,(,2),2h a a a a e=-∈-∞-- 2()12[ln 2ln(2)]1,22ah a a a a ''=---=-=--当(,0)a ∈-∞时,()0,h a '>函数()h a 单调递增,当2(0,2)a e∈-时,()0,h a '<函数()h a 单调递减所以,对任意2(,2),a e ∈-∞-有()(0)0,h a h ≤=即②对任意2(,2)a e∈-∞-恒成立。

相关文档
最新文档