液晶空间光调制器教材
透射式液晶空间光调制器结构

透射式液晶空间光调制器结构透射式液晶空间光调制器是一种利用液晶材料的光学特性来调制光波的装置。
它主要由液晶层、透明电极、对位层和玻璃基板等部分组成。
本文将从结构、工作原理、应用等方面对透射式液晶空间光调制器进行详细介绍。
一、结构透射式液晶空间光调制器的结构相对简单,主要包括液晶层、透明电极、对位层和玻璃基板。
其中,液晶层是关键组成部分,它由液晶分子组成,可分为向列型和扭曲型两种。
透明电极用于施加电场,对位层则用于控制液晶分子的取向。
玻璃基板则提供了装置的机械支撑和保护。
二、工作原理透射式液晶空间光调制器的工作原理是利用液晶分子对电场的响应来调制光波。
当施加电场时,液晶分子会发生取向变化,从而改变光的传播状态。
液晶分子的取向可以通过对位层来控制,通过改变电场的强弱和方向,可以实现对光波的调制。
具体来说,液晶分子在电场作用下会发生取向的变化,从而改变其对光的折射率。
通过控制电场的强弱,可以实现对光波的相位调制。
当电场为零时,液晶分子的取向保持不变,光波可以正常通过。
而当施加电场时,液晶分子会发生取向变化,光波的传播状态会发生改变,从而实现对光波的调制。
三、应用透射式液晶空间光调制器具有广泛的应用前景,主要应用于光通信、光显示和光计算等领域。
在光通信中,透射式液晶空间光调制器可以实现光信号的调制和解调,用于传输和接收光信号。
在光显示中,透射式液晶空间光调制器可以实现图像的显示和切换,广泛应用于液晶显示器等设备。
在光计算中,透射式液晶空间光调制器可以实现光的逻辑运算和信息处理,用于光计算和光信息处理。
总结:透射式液晶空间光调制器是一种利用液晶材料的光学特性来调制光波的装置。
它通过对液晶分子的取向进行控制,实现对光波的调制。
透射式液晶空间光调制器具有结构简单、工作可靠、应用广泛等特点,主要应用于光通信、光显示和光计算等领域。
随着科技的不断发展和进步,透射式液晶空间光调制器将会在更多领域发挥重要作用,为人们的生活带来更多便利和创新。
液晶空间光调制器光电特性研究报告心得体会

液晶空间光调制器光电特性研究报告心得体会液晶空间光调制器(LCD-SLM)是一种利用液晶材料的光电特性来调制和控制光信号的设备。
通过控制液晶材料中液晶分子的排列状态,可以实现对光的相位、振幅和偏振等特性的调制。
在这次光电特性研究中,我们对LCD-SLM的调制特性进行了详细的实验研究,并对实验结果进行了分析和总结。
首先,我们对LCD-SLM的高频响应特性进行了测试。
通过改变输入信号的频率,并测量输出信号的相位和幅值,我们可以得到LCD-SLM的频率响应曲线。
实验结果表明,LCD-SLM的响应频率范围较宽,且输出信号的相位和幅值能够随着输入信号频率的变化而变化。
这说明LCD-SLM可以实现对光信号的高频调制,具有良好的动态性能。
其次,我们对LCD-SLM的偏振特性进行了测试。
通过调节LCD-SLM的驱动电压和极化方向,我们可以改变液晶材料对光的偏振状态,从而实现对光信号偏振的调制。
实验结果表明,LCD-SLM能够实现对光信号的线性偏振和圆偏振的调制,并且在不同偏振状态下输出信号的相位和幅值也有所变化。
这说明LCD-SLM对光的偏振调制具有较好的性能和灵活性。
此外,我们还对LCD-SLM的工作温度特性进行了测试。
实验结果表明,在一定温度范围内,LCD-SLM的调制性能基本稳定。
然而,在超过一定温度范围后,液晶材料的分子排列状态会发生变化,导致LCD-SLM的调制性能下降。
因此,在实际应用中,需要控制好LCD-SLM的工作温度,以确保其性能的稳定和可靠。
通过这次光电特性研究,我对LCD-SLM的原理和特性有了更深入的了解。
LCD-SLM作为一种光电器件,在光通信、光计算和光存储等领域具有广泛的应用前景。
在未来的研究中,我希望能够进一步探索LCD-SLM的非线性特性,以及其在光学信号处理和光学成像等方面的应用潜力。
光电测试技术4-6光调制精品PPT课件

2.布拉格(Bragg)衍射 (1)各向同性介质中的正常布拉格衍射。
当声波频率较高,声光作用长度L较大,
而且光束与声波波面间以一定的角度斜入射
时,光波在介质中要穿过多个声波面,故介质具有“体光栅”的 性质。当入射光与声波面间夹角满足一定条件时,介质内各级衍 射光会相互干涉,各高级次衍射光将互相抵消,只出现0级和+l级 (或-1级)(视入射光的方向而定)衍射光,即产生布拉格衍射(类似 于闪耀光栅),如图1. 3-5所示。因此,若能合理选择参数,超声 场足够强,可使入射光能量几乎全部转移到+1级(或-1级)衍射极 值上。因而光束能量可以得到充分利用,因此,利用布拉格衍射 效应制成的声光器件可以获得较高的效率。
Laser in
(2)电—声换能器(又称超声发生器)
(3)吸声(或反射)装置(放置在超声源的对面)。
Laser out
吸声装置
(4)驱动电源 它用以产生调制电信号施 加于电—声换能器的两端电极上,驱动 声光调制器(换能器)工作。
图 1.3-11 声光调制器结构
三、磁致双折射 科顿—穆顿效应: 某些透明液体在磁场H作用下变为各向异性 性质类似于单轴晶体 光轴平行磁场
一类光学介质受到外电场作用时, 它的折射率将随着外电场变化, 介电系数和折射率都和方向有关, 在光学性质上变为各向异性。
电光效应(Induced optical effects)
外界作用 外界作用
1. 机械感应---光弹效应(Photoelasticity) 各向同性或异性材料在外力作用下可产生各向异性的变化,
Laser
Laser
in
out
吸声装置
声波是一种弹性波(纵向应力波),在介质中传播时, 它使介质产生相应的弹性形变,从而激起介质中各质点 沿声波的传播方向振动,引起介质的密度呈疏密相间的 交替变化,因此,介质的折射率也随着发生相应的周期 性变化。超声场作用的这部分如同一个光学的“相位光 栅”,该光栅间距(光栅常数)等于声波波长s。当光波 通过此介质时,就会产生光的衍射。其衍射光的强度、 频率、方向等都随着超声场的变化而变化。
使用液晶空间光调制器实现激光束整形

使用液晶空间光调制器实现激光束整形
其中:耻∽肫川揣+(1唰1+硼驰川),(训Ⅲ(4.14)【钆(1一口∥)E(x,y),(x,y)正s
铲矗^=氍
吼为目标能量集中度,叩。
为本次迭代的能量集中度。
这样就可以随着每次迭代过程中能量集中度的改变,对信号区和噪声区的能量进行自适应调整。
由于77一总小于玩,所以口。
是一个大于1的数,既是小于1的数,因此(4.14)式与(4.10)式相比,增加了信号区的能量,减小了噪声区的能量,进而提高了整形光束的能量集中度。
用自适应正则化改进算法进行激光束整形时,入射光束仍为图4.1所示的高斯光束,取松弛参数∥=1,经计算,当口=O.5、目标能量集中度砀=0.95时,输出光束如图4.3所示。
图4.3AR改进算法输出光束
Fig.4.3Outputbe锄usingimprovedARalgorithm
利用公式(3.37)~(3-39)分别计算AR改进算法输出光束的均方误差P、能量集中度77及均匀度占,得到P=0.49%,刁=94.89%,万=96.79%。
作为比较,用GS算法进行激光束整形时,输出光束如图4.4所示。
《液晶空间光调制器在涡旋光束和矢量光束合成中的应用研究》范文

《液晶空间光调制器在涡旋光束和矢量光束合成中的应用研究》篇一一、引言近年来,随着光子技术的发展和需求的提升,光学合成技术在各种科学领域,尤其是物理和工程领域得到了广泛的关注和应用。
其中,液晶空间光调制器(LCOS)作为一种灵活且高效的光学器件,在光束合成中扮演着重要的角色。
本文将重点探讨液晶空间光调制器在涡旋光束和矢量光束合成中的应用研究。
二、液晶空间光调制器概述液晶空间光调制器(LCOS)是一种利用液晶技术进行空间光调制的光学器件。
其工作原理是通过改变液晶分子的取向来调制通过其的光波的振幅、相位和偏振态。
因此,LCOS能对输入光束进行复杂的光场处理和调制。
三、涡旋光束与矢量光束涡旋光束是一种具有螺旋相位波前的特殊光束,其具有轨道角动量的特性,在量子信息处理、微粒操控等领域有广泛应用。
而矢量光束则具有空间变化的偏振态,常用于实现特殊的偏振调控和偏振场操控。
四、液晶空间光调制器在涡旋光束合成中的应用由于液晶空间光调制器具有高精度的相位和振幅调制能力,因此它被广泛应用于涡旋光束的合成。
通过精确控制LCOS的像素单元,可以生成具有特定螺旋相位波前的涡旋光束。
此外,LCOS还可以通过调整不同涡旋光束的相对相位和振幅,实现多个涡旋光束的合成,从而生成更复杂的光场结构。
五、液晶空间光调制器在矢量光束合成中的应用液晶空间光调制器还可以用于矢量光束的合成。
通过调整LCOS的像素单元对不同区域的光波的偏振态进行独立控制,可以生成具有特定偏振分布的矢量光束。
此外,通过结合多个不同偏振态的矢量光束,LCOS可以实现更复杂的偏振场操控,从而在光学微操作、三维显示等领域展现出巨大潜力。
六、研究进展与展望随着光学器件技术的发展和需求推动,液晶空间光调制器在涡旋光束和矢量光束合成中的应用已经取得了显著的进展。
未来,随着LCOS技术的进一步发展和完善,其在更复杂的光场处理和合成中将发挥更大的作用。
此外,随着对光学系统集成度和能效的需求增加,研究者们将继续探索更高效的LCOS器件及其在多种光束合成中的应用。
空间光调制器的工作原理及其在信息光学中的应用

空间光调制器的工作原理及其在信息光学中的应用空间光调制器(Spatial Light Modulator,简称SLM)是信息光学领域中重要的一种设备,具有广泛的应用。
本文将介绍空间光调制器的工作原理,并阐述其在信息光学中的应用。
一、空间光调制器的工作原理空间光调制器是一种能够调整光波相位、振幅或偏振等参数的光电器件。
其基本构成包括光电转换器件和控制电路。
常见的空间光调制器有液晶空间光调制器(LC-SLM)和远红外空间光调制器(IR-SLM)等。
液晶空间光调制器利用液晶分子的旋转改变光波的偏振态,从而实现对光波的调制。
其结构包括透明电极、透明基底、液晶层等。
透明电极通过外加电压改变电场,从而改变液晶分子的旋转程度,进而改变波片的相位差。
远红外空间光调制器则是利用半导体材料的特性,通过改变电压来控制光波的相位、振幅等参数。
它在远红外波段(10μm-100μm)具有较好的响应特性,并被广泛应用于红外成像、光谱分析等领域。
二、空间光调制器在信息光学中的应用1. 相位调制空间光调制器可以通过改变光波的相位差来实现相位调制。
相位调制可用于全息成像、光学信息处理等领域。
例如,在数字全息术中,利用空间光调制器可以将三维物体信息编码到二维的全息图中,实现对物体的三维重建。
2. 模拟光学系统空间光调制器可用于模拟光学系统的构建。
通过控制空间光调制器的参数,如相位、振幅等,可以模拟各种光学元件的功能。
这对于系统性能分析、光学设计和优化等方面有着重要作用。
3. 光波前校正在自适应光学系统中,空间光调制器可以用于补偿光束的像差,提高图像的清晰度和分辨率。
通过改变光波的相位和振幅分布,空间光调制器可以实现对光场的调整,从而实现补偿效果。
4. 光通信与信息传输空间光调制器在光通信与信息传输中有广泛应用。
利用空间光调制器可以实现光信号的调制、解调和编码等功能。
同时,空间光调制器也可用于光纤通信中的信号调整、波前整形等。
5. 光学陷阱与操控空间光调制器还可用于构建光学陷阱。
《液晶空间光调制器在涡旋光束和矢量光束合成中的应用研究》范文
《液晶空间光调制器在涡旋光束和矢量光束合成中的应用研究》篇一一、引言随着现代光学技术的飞速发展,光束的合成与控制成为了科研领域的重要课题。
液晶空间光调制器(LCOS)作为一种先进的调制技术,以其高精度、高效率的特性在光束合成和控制中发挥着重要作用。
本文将重点探讨液晶空间光调制器在涡旋光束和矢量光束合成中的应用研究,分析其工作原理、实验方法及结果,并对其应用前景进行展望。
二、液晶空间光调制器的基本原理液晶空间光调制器(LCOS)是一种基于液晶的空间光调制技术。
它通过改变液晶分子的取向来控制光的相位、振幅和偏振状态,从而实现光束的精确调制。
LCOS具有高分辨率、高响应速度和低功耗等优点,使其在光束合成和控制中具有广泛的应用前景。
三、涡旋光束的合成与应用涡旋光束是一种具有螺旋相位波前的光束,具有独特的轨道角动量特性。
在通信、显微镜、粒子操控等领域具有广泛的应用。
通过LCOS对涡旋光束的合成,可以实现多束涡旋光束的精确叠加和调控。
本文将介绍利用LCOS合成涡旋光束的方法和实验结果,分析其在提高光束质量、增加轨道角动量密度等方面的优势。
四、矢量光束的合成与应用矢量光束是一种具有特定偏振态的光束,在光学捕获、光信息处理等领域具有广泛的应用。
LCOS通过改变液晶分子的偏振状态,可以实现对矢量光束的精确合成和调控。
本文将介绍利用LCOS合成矢量光束的方法和实验结果,分析其在增强光场控制能力、提高信息处理速度等方面的优势。
五、涡旋光束与矢量光束的合成研究将涡旋光束与矢量光束进行合成,可以得到一种具有复杂结构的新型光束。
这种新型光束既具有涡旋光束的轨道角动量特性,又具有矢量光束的偏振态控制能力。
通过LCOS,可以实现这两种光束的精确叠加和调控,从而为新型光学器件的设计提供新的思路。
本文将详细介绍这种新型光束的合成方法、实验结果及其潜在应用前景。
六、实验结果与分析本部分将详细介绍利用LCOS进行涡旋光束和矢量光束合成的实验方法和结果。
GCS-SLM空间光调制器参数测量与创新应用实验讲义
空间光调制器参数测量与创新应用实验实验讲义前言空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。
这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。
由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。
空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。
空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。
最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。
可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。
本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。
本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性,可作为相关专业学生的研究型实验。
实验一SLM 液晶取向测量实验一、 实验目的1. 了解空间光调制器的基础知识。
2. 理解空间光调制器的透光原理。
3. 测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。
二、 实验原理根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。
其中扭曲向列液晶 (Twisted Nematic Liquld Crystal ,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。
TNLC 分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。
空间光调制器原理
空间光调制器原理空间光调制器(Spatial Light Modulator,SLM)是一种能够控制光波相位和振幅的光学器件,广泛应用于光学通信、光学成像、光学信息处理等领域。
它的原理基于光的干涉、衍射和折射等光学现象,通过控制光波的相位和振幅,实现对光信号的调制和控制。
本文将介绍空间光调制器的原理及其在光学领域的应用。
空间光调制器的原理主要基于两种调制方式,即相位调制和振幅调制。
相位调制是通过改变光波的相位来实现光信号的调制,而振幅调制则是通过改变光波的振幅来实现光信号的调制。
这两种调制方式可以单独使用,也可以结合使用,根据具体的应用需求进行选择。
相位调制是空间光调制器最常见的调制方式之一。
它利用液晶、光栅、电光晶体等材料的光学特性,通过外加电场或其他外界条件来改变光波的相位。
这种方式可以实现对光波的相位进行微调,从而实现光信号的相位调制。
相位调制可以用于光学通信中的相位调制调制、光学成像中的相位调制成像等领域。
振幅调制是另一种常见的调制方式。
它通过改变光波的振幅来实现光信号的调制,通常利用光电二极管、光电探测器等器件来实现。
振幅调制可以实现对光信号的强度调制,常用于光学通信中的振幅调制、光学成像中的对比度调制等领域。
除了相位调制和振幅调制,空间光调制器还可以实现空间光调制。
空间光调制是指通过控制光波的空间相位分布来实现光信号的调制,通常利用液晶空间光调制器、光学相位阵列等器件来实现。
空间光调制可以实现对光信号的空间分布调制,常用于光学信息处理、光学成像中的空间滤波等领域。
空间光调制器在光学领域有着广泛的应用。
在光学通信中,空间光调制器可以实现光信号的调制和解调,提高光通信系统的传输速率和容量。
在光学成像中,空间光调制器可以实现对光信号的调制和控制,提高成像质量和分辨率。
在光学信息处理中,空间光调制器可以实现对光信号的处理和分析,实现光学信息的存储和处理。
总之,空间光调制器是一种能够控制光波相位和振幅的光学器件,通过相位调制、振幅调制和空间光调制等方式,实现对光信号的调制和控制。
空间光调制器原理
空间光调制器原理空间光调制器(Spatial Light Modulator,SLM)是一种能够调制光波相位和振幅的光学器件,它在光学通信、光学信息处理、光学成像等领域有着广泛的应用。
空间光调制器的原理是基于光的干涉和衍射效应,通过对光场进行调制,实现对光波的控制和调整。
本文将从空间光调制器的基本原理、工作原理和应用等方面进行介绍。
空间光调制器的基本原理是利用光的干涉和衍射效应来实现对光波的调制。
在空间光调制器中,通常采用液晶、光栅、声光晶体等材料制成的光学器件,通过外加电场、声场或光场等外部激励,使得器件中的折射率、透过率或相位发生改变,从而实现对光波的调制。
这种调制方式可以实现对光波的相位、振幅、偏振等参数的调控,具有灵活性高、响应速度快等优点。
空间光调制器的工作原理是通过对光波进行局部调制,实现对光场的控制和调整。
在空间光调制器中,通过对入射光场进行空间分解,然后对分解后的光场进行局部调制,最后再将调制后的光场进行空间叠加,从而实现对整个光场的调制。
这种工作原理可以实现对光波的复杂调制,如光波的相位编码、振幅调制、空间滤波等功能。
空间光调制器在光学通信、光学信息处理、光学成像等领域有着广泛的应用。
在光学通信中,空间光调制器可以实现光波的调制和解调,提高光通信系统的传输速率和容量;在光学信息处理中,空间光调制器可以实现光波的编码、解码和处理,实现光学信息的存储和处理;在光学成像中,空间光调制器可以实现光场的调制和调整,提高成像系统的分辨率和对比度。
总之,空间光调制器是一种能够实现对光波相位和振幅调制的光学器件,它的原理是基于光的干涉和衍射效应,通过对光场进行局部调制,实现对光波的控制和调整。
空间光调制器在光学通信、光学信息处理、光学成像等领域有着广泛的应用,具有重要的科学研究和工程应用价值。
希望本文的介绍能够对空间光调制器的原理有所了解,并为相关领域的研究和应用提供一定的参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 处理和运算功能器件 放大器 乘法器与算数运算功能
三、液晶材料简介
液晶材料:最为广泛的一种电光效应材料。介于固态和液 态之间的一种物态,它具备液体的流动性,又具备固态晶 体的排列性质。液晶状态可以向结晶态和液态相变。变为 结晶态时,不仅具有分子取向的有序性,而且分子重心具 有周期平移性;变为液态时,失去分子重心周期平移性, 也失去了分子取向的有序性,成为完全无序状态。 液晶以凝集构造的不同可分成三种:
由于液晶分子具有液体的流动性,亦即是说其没有固定的排列, 可以自由移动,且液晶分子具有介电各向异性和电导各向异性 的电学特性,故而在外电场的作用下,液晶分子的排列状态也将 随之发生变化。又因为液晶分子的光学特性也是各向异性的,从 而使得整个液晶盒的光学效应随之改变,这就是液晶盒电场影响 其光学特性的原理。另外由于液晶分子的双折射特性,使得液晶 盒显现出光散射、光干涉和旋光等特殊的光学性质 液晶的电光效应主要包括:电控双折射效应、扭曲效应、宾主 效应、动态散射效应、热光学效应等。
二、空间光调制器原理
空间光调制器(Spatial Light Modulator---SLM)是一 种对光波的空间分布进行调制的器件。一般地说,空间光调 制器由许多独立单元组成,它们在空间上排列成一维或二维 阵列,每个单元都可以独立地接受光学信号或电学信号的控 制,并按此信 号改变自身的光学性质,从而对照明在其上的 光波进行调制。
1971年美国休斯公司J.D.Margerum等人提出了第一 个光导型透射式液晶光调制器,这种器件工作在动态 散射模式,用ZnS作为光导层,直流驱动比较容易引起 液晶与电极间的电化学反应从而降低器件的寿命
1972年,T.D.Bemd等人研制成CdS作光导层,交流电 压驱动的反射读出型液晶光阀,为实用化器件的发展 奠定了基础 1975年,J.Grinbery等人报道了用CdS作光导层,CdTe 作光隔离层的交流反射式液晶光阀,是液晶工作在混 合场效应(向列相液晶的扭曲效应和双折射效应)模式
液晶的基本性质
液晶的取向效应
• 液晶具有光学各向异性,沿分子长轴方向上的折射 率不同于沿短轴方向上的折射率。 • 如果沿分子长轴方向上的折射率大于沿短轴方向上 的折射率,称为正性液晶,反之称为负性液晶。 • 对基片表面处理,可使液晶分子平行于基片且容易 排成同一方向。如:摩擦定向方法。
液晶的电光效应
液晶空间光调制器
张望平
2012.04.03
主要内容
一、空间光调制器的发展历史 二、空间光调制器的原理 三、液晶材料简介 四、液晶空间光调制器的主要参数 五、扭曲向列液晶的调制原理 六、液晶屏的光调制特性测量与分析 七、液晶空间光调制器的应用
一 、发展历史
1888年奥地利植物学家莱尼采尔(F.Reinitezer)发现了液晶 20世纪初,液晶的研究进入高峰期,主要成就是发现了液晶的 一些物理性质 1961年美国无线电公司(RCA)普林斯顿研究所的海麦尔 (GH.Heilmeier)从微波固体元件研究方向转入有机半导体方向 1963年RCA的威廉斯发现了电场影响液晶的分子排列 1964年他们发现了液晶的动态散射效应(dynamieseattering),为 液晶在显示领域的应用打开了大门,因此海麦尔成为液晶显示的 先驱
4 两种写入方式
①电写入的SLM:代表待输入系统的信息的电信号直接驱动一个 器件(空间光调制器),方式是控制其吸收或相移的空间分布。
光写入的SLM:信息一开始是以光学图像的形式,而不是以电子 的形式输入到SLM,在这种情况下,SLM的功能是将非相干的光图 像转化为相干的光图像,接着用相干光学系统做下一步的处理。
5 寻址(adressing)的概念
写入光或写入信号应含有控制调制器各个像素的信息。把这些信 息分别传送到相应像素位置上去的过程称为寻址。如果采用写入 光实现,称为光寻址,采用写入电信号,称为电寻址。
电寻址方式是光-电混合处理系统。有以下缺点 :
电信号是时间串行信号,所以电寻址是串行寻址。 电寻址通过条状电极来传递信息,电极尺寸的减小有一个限度 ,所以像素尺寸也有限度。 电极本身不透明,所以像素的有效通光面积与像素总面积之比 ——开口率较低,光能利用率比较低。
●近晶型(smectic)液晶
具有二维空间的层状规则性排列,各层间则有一维的顺向排列。 一般而言,此类分子的黏度大,印加电场的应答速度慢,比较 少应用于显示器上,多用于光记忆材料的发展上。
●胆甾型(cholesteric)液晶
此类型液晶是由多层向列型液晶堆积所形 成,为向列型液晶的一种,也可以称为旋 光性的向列型液晶,因分子具有非对称碳中 心,所以分子的排列呈螺旋平面状的排列, 面与面之间为互相平行,而分子在各个平 面上为向列型,液晶的排列方式,由于各 个面上的分子长轴方向不同,即两个平面 上的分子长轴方向夹着一定角度;当两个 平面上的分子长轴方向相同时,这两个平 面之间的距离称为一个pitch(螺距)。 cholesteric液晶pitch的长度会随着温度的 不同而改变,因此会产生不同波长的选择 性反射,产生不同的颜色变化,故常用于 温度感测器。
●向列型(nematic)液晶
●近晶型(smectic)液晶 ●胆甾醇型(cholesteric)液晶
●向列型(nematic)液晶 液晶分子大致以长轴方向平行配的,因此具有一维空间 的规则性排列。此类型液晶的粘度小,应答速度快,是最早 被应用的液晶,普遍的使用于液晶电视、笔记本电脑以及各 类型显示元件上。
1 概念:
2 SLM分类
按照写入方式的不同:
电写入的 SLM ESLM 光写入的 SLM OSLM
相位调制 按照调制方式的不同: 强度调制
按照读出方式的不同:
反射式 透射式
3 SLM中的三光
写入光/信号:控制像素的光或者信号 读出光:照明整个器件并被调制的光波 输出光:被像素单元调制后的输出光波