数学第八册期末复习与命题指导
小学数学考试命题应注意的几个问题

小学数学考试命题应注意的几个问题第一篇:小学数学考试命题应注意的几个问题小学数学考试命题应注意的几个问题众所周知,考试是一把尺子,担负着检验、评价或选拔的任务,具有严肃性和导向性。
考试对于学校和教师来说,是检验教学效果和调整改进教学的依据之一:对于学生来说,不仅是接受评价或选拔的过程,也是一个自我检验学习效果和再学习再实践的重要过程。
考试能否成功,很大程度上取决于考试命题质量的高低,因此,考试命题是一件十分严肃认真的事情。
在小学数学教育教学活动中,笔者了解到考试命题存在着一些值得我们注意的问题。
一、主观臆造,缺失逻辑性考题1(判断题)0既不是质数,也不是合数;同时既不是正数,也不是负数。
()命题者设计此题的意图,显然是为了考查学生对“质数与合数”、“正数与负数”的数学概念的理解和掌握情况。
然而,整个考题违反了形式逻辑的基本规律——同一律,混淆和偷换了概念。
“0既不是质数,也不是合数”中所指的“数”。
与“0既不是正数,也不是负数”中所指的“数”,不是同一概念。
前者指的是非零自然数,而后者指的是所有自然数。
况且,“0既不是质数,也不是合数”的说法也不科学。
因为我们都知道,无论什么版的教科书,在编写关于“质数与合数”的内容时,都特别强调:为了方便,在研究因数和倍数的时候,我们所说的数一般指不是零的自然数。
也就是说0不在研究质数与合数的范围之内,判断“0既不是质数,也不是合数”的说法是否正确,依据的不是质数与合数的概念,而是0是否在研究范围之内。
如果要考查学生对质数与合数概念的掌握情况,那么试题不应该涉及0。
笔者认为,由于命题者思考的欠缺,使考题不仅是不科学的,而且是没有价值的,对学生的正常思维也是一种干扰和扭曲。
因此,考试命题时,我们应该自觉遵守形式逻辑的基本规律,谨慎对待,使专题既科学而又不失逻辑性,为学生创设一个再学习再巩固的良好思维环境。
二、交代不明,缺失确定性考题2(选择题)一个三角形的两条边分别为8cm、5cm,另一条边最短应为()。
最新 公开课课件 湘教版数学八年级上册2.2《命题与证明》复习课件

1.下列句子中,哪些是命题?若是命题,并判断 它是真命题还是假命题? (1)猴子是动物的一种; (2)美丽的天空; (3)等角的余角相等; (4)同位角相等; (5)负数都小于零; (6)若xy=0,则x=0; (7)你的作业做完了吗?(8)所有质数都是奇数; (9)三个角对应相等的两个三角形一定全等. (10)过直线a外一点作直线a的平行线. (11)两条直线相交,只有一个交点. (12)如果一个数是偶数,那么这个数是4的倍数; 2.命题“a,b是实数,若……,则a2>b2.”命题 的结论保持不变,改变命题的条件,有下列四种改法: ① a,b是实数,若a>b>0,则a2>b2; ② a,b是实数,若a>b,且a+b>0,则a2>b2; ③ a,b是实数,若a<b<0,则a2>b2; ④ a,b是实数,若a<b,则a+b<0,则a2>b2. 以上哪几个是真命题?请说明理由.
B
A
B
A
D
C
例1:在ΔABC中,AB=2AC,∠1=∠2,DA=DB 求证:DC⊥AC 证明(一):取AB的中点E,连结DE ∵DA=DB, AE=BE ∴DE⊥AB(等腰三角形三线合一) ∵AB=2AC, E为AB的中点 ∴AE=AC 截短法 在ΔAED和ΔACD中, AE=AC,∠1=∠2, AD=AD ∴ΔAED≌ΔACD(SAS) A 0 ∴∠AED=∠ACD=90 即AC⊥DC 1 2 · E 证明(二):延长AC至F使CF=AC,连结DF B ∵AB=2AC,AC=C ∴AB=AF C ∵∠1=∠2,AD=AD ∴ΔADB≌ΔADF(SAS) D F ∴DB=BF ∵DA=DB ∴DA=DF 延长法 ∵AC=CF ∴DC⊥AF(等腰三角形三线合一) 即DC⊥AC 通常作底边的中线或高或顶角平分线,
【解析版】初中数学八年级下期末经典复习题(课后培优)(3)

一、选择题1.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.(0分)[ID :10223]下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 4.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形5.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,246.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.18.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.729.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.8210.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.的自变量取值范围是( )11.(0分)[ID:10175]函数y=√x+3A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10171]()23-)A.﹣3B.3或﹣3C.9D.313.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .614.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.815.(0分)[ID :10152]正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10319]在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.19.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.20.(0分)[ID :10295]一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.21.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.22.(0分)[ID :10260]在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10251]A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.25.(0分)[ID :10246]一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.三、解答题26.(0分)[ID :10421]如图,菱形ABCD 中,对角线AC 、BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.27.(0分)[ID:10412]如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC 的中点,若DE=3,求B C的长.28.(0分)[ID:10365]如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC 上的点,AE=CF,并且∠AED=∠CF D.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.29.(0分)[ID:10359]已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF=.求证:四边形AECF是菱形.30.(0分)[ID:10337]将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.A4.C5.A6.B7.C8.D9.B10.C11.B12.D13.C14.D15.B二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB边的高即可得到答案【详解】如图作出AB边上的高CD∵AC=BC=13AB=10∴△ABC是等腰三角形∴AD=BD=5根据勾股定理C23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a千米/小时乙车的速度为b千米/小时解得∴AB两地的距离为:80×9=7225.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,AC =BD ,∴EF ⊥FG ,FE =FG ,∴四边形EFGH 是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.5.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.6.B解析:B【解析】【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.8.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.9.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.11.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.12.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩.【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.13.C解析:C【解析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C14.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.15.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+2解析:y=3x+2.【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,可得y=3x﹣1+3=3x+2.故答案为y=3x+2.17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键解析:x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+404033【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+3=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x=4033+.40403+/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.三、解答题26.(1)证明见解析;(2)2165. 【解析】【分析】(1)由DE ∥AC ,CE ∥BD 可得四边形OCED 为平行四边形,又AC ⊥BD 从而得四边形OCED 为矩形;(2)过点O 作OH ⊥BC ,垂足为H ,由已知可得三角形OBC 、OCD 的面积,BC 的长,由面积法可得OH 的长,从而可得三角形OCF 的面积,三角形OCD 与三角形OCF 的和即为所求.【详解】(1)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.又∵四边形ABCD 是菱形,∴AC ⊥BD .∴∠DOC=90°.∴四边形OCED 为矩形.(2)∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =12BD =6,OA =OC =12AC =8,∴CF=CO=8,S △BOC =S △DOC =12OD OC ⋅=24,在Rt △OBC 中,BC =10,.作OH ⊥BC 于点H ,则有12BC·OH=24,∴OH=245,∴S △COF =12CF·OH=965.∴S 四边形OFCD =S △DOC +S △OCF =2165.【点睛】本题考查菱形的性质,矩形的判定与性质,勾股定理,三角形面积的计算方法等知识点,熟练掌握基础知识点,计算出OH 的长度是解题关键.27.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC 的长即可.【详解】∵ D 、E 是AB 、BC 的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.28.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.29.见解析【解析】【分析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.30.(1)见解析,223x-<<;(2)21b--【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:x-101112y x =+ 121 12 y =|x|1 0 1 描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ⎧=+⎪⎨⎪⎩= ∴2x=-32=-y 3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩ ∴两个函数的交点坐标为A 2233⎛⎫- ⎪⎝⎭,,B(2,2), ∴观察图象可知:223x -<<时,112x +比||x 大; (2)如图,观察图象可知满足条件的b 的值为21b --,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.。
浙教版八年级数学下册第四章命题与证明复习题及答案

E D C BH第四章 命题与证明测试卷一、选择题:(每题3分,共24分)1、下列语句不是命题的是( )A 、两点之间线段最短;B 、不平行的两条直线有一个交点;C 、x 与y 的和等于0吗?D 、对顶角不相等。
2、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
其中假命题有( )A 、1个B 、2个C 、3个D 、4个 3、如图,△ABC 中,︒=∠90ACB ,BE 平分∠ABC ,AB DE ⊥,垂足为D ,如果cm AC 3=,那么DE AE +的值为( )A 、2㎝B 、3㎝C 、5㎝D 、4㎝4、下列各组所述几何图形中,一定全等的是( ) A 、一个角是45°的两个等腰三角形;B 、两个等边三角形;C 、腰长相等的两个等腰直角三角形;D 、各有一个角是40°,腰长都为5㎝的两个等腰三角形5、等腰三角形的一个外角是80°,则其底角是( ) A 、40° B 、100°或40° C 、100° D 、806、如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H , EF ⊥AB 于F ,则下列结论中不正确的是( )A 、∠ACD=∠B B 、CH=CE=EFC 、AC=AFD 、CH=HD7、在同一平面内,两条直线可能的位置关系是( )A 、 平行B 、相交C 、平行或相交D 、 平行、相交或垂直8、如图,已知AB =AC ,BE =CE ,延长AE 交BC 于D ,则图中全等三角形 共有( )A 、1对B 、2对C 、3对D 、4对 二、填空题:(每空2分,共34分)9、把命题:三角形的内角和等于180° 改写如果 ,那么 ;并找出结论 。
10、命题的定义是: 。
11、判断角相等的定理(写出2个) , 。
12、判断线段相等的定理(写出2个) , 。
北师大版数学八年级上册《定义与命题》期末试题分类选编(含答案)

7.2 定义与命题1.(2022·四川成都·八年级期末)下列命题是真命题的是( )A .如果两个角是内错角,那么它们一定相等B .如果两个角是同位角,那么它们一定相等C .如果两个角是同旁内角,那么它们一定互补D .如果两个角是对顶角,那么它们一定相等2.(2022·四川省成都市七中育才学校八年级期末)下列命题中,是真命题的是( )A .两直线平行,同旁内角相等B .内错角相等,两直线平行C .直角三角形的两锐角互补D .三角形的一个外角大于任何一个内角3.(2022·四川省遂宁市第二中学校八年级期末)用反证法证明“若a c ⊥,b c ⊥,则a b ∥”时,应假设( )A .a 不垂直于cB .a ,b 都不垂直于cC .a b ⊥D .a 与b 相交4.(2022·四川巴中·八年级期末)用反证法证明“在ABC 中,,A B ∠∠对边是,a b ,若A B ∠>∠,则a b >.”第一步应假设( )A .a b <B .a b =C .a bD .a b5.(2022·四川眉山·八年级期末)已知ABC ∆中,AB AC =,求证:90B ∠<︒,运用反证法证明这个结论,第一步应先假设( )成立A .90B ∠≥︒ B .90B ∠>︒C .90A ∠>︒D .90A ∠≥︒6.(2022·四川遂宁·八年级期末)下列命题中,真命题的个数是 ( )①对顶角相等;①两点之间,线段最短;①在同一平面内,过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行.A .1个B .2个C .3个D .4个7.(2022·四川省遂宁市第二中学校八年级期末)下列命题是真命题的是( ) A .如果a =1,那么a=1;B .三个内角分别对应相等的两个三角形全等;C .如果a 是有理数,那么a 是实数 ;D .两边一角对应相等的两个三角形全等.8.(2022·四川眉山·八年级期末)下列命题是真命题的是( )A .两个单项式的和一定是多项式B.等腰三角形的中线、高线、角平分线重合C.有两边及一角对应相等的两三角形全等D.全等三角形的对应高相等9.(2022·四川成都·八年级期末)下列命题中,假命题的是()A.等角的余角相等B.若两个数的绝对值相等,则这两个数也相等C.三角形的任意两边之和大于第三边D.两直线平行,同位角相等10.(2022·四川宜宾·八年级期末)用反证法证明“在①ABC中,AB=c,BC=a,CA=b,①C>①B>①A且①C≠90°,那么a2+b2≠c2.”应先假设()A.a2+b2=c2B.a2+b2>c2C.a2+b2<c2D.a2+b2>c2或a2+b2<c2 11.(2022·四川资阳·八年级期末)在下列语句中:①若①A+①B=180°,则①A与①B互为邻补角;①120°的角和60°的角互为补角;①由两条射线组成的图形叫角;①连接AB,并延长到点C;①同角的余角相等.其中真命题有()A.1个B.2个C.3个D.4个12.(2022·四川成都·八年级期末)下列句子中是命题的是()A.美丽的天空B.对顶角相等C.你的作业做完了吗?D.作线段AB=CD13.(2022·四川凉山·八年级期末)下列命题是真命题的是()A.等底等高的两个三角形全等B.周长相等的直角三角形都全等C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等14.(2022·四川省遂宁市第二中学校八年级期末)命题“相等的角是对顶角”是_________命题.(填“真”或“假”).15.(2022·四川眉山·八年级期末)把“同角的余角相等”改成“如果…,那么…”:_________________________________.16.(2022·四川巴中·八年级期末)把命题“不能被2整除的数是奇数”改写成“如果…那么…”的形式__________.17.(2022·四川乐山·八年级期末)命题:“对顶角相等”的逆命题是_____________________________.18.(2022·四川乐山·八年级期末)命题“实数a、b,若a b=,则22=”的逆命题是a b_________________________,请你举出一个反例_________________________________,说明逆命题是假命题.19.(2022·四川眉山·八年级期末)用反证法证明“已知,a①b,c①b.求证:a①c”.第一步应先假设______.参考答案:1.D【解析】根据命题的真假判断即可;解:A、两直线平行,如果两个角是内错角,那么它们一定相等,原命题是假命题;B、两直线平行,如果两个角是同位角,那么它们一定相等,原命题是假命题;C、两直线平行,如果两个角是同旁内角,那么它们一定互补,原命题是假命题;D、如果两个角是对顶角,那么它们一定相等,是真命题;故选:D.本题主要考查了命题的真假判断,准确分析判断是解题的关键.2.B【解析】利用三角形的性质、平行线的性质和判定进行判断即可.解:两直线平行,同旁内角互补,故A是假命题;内错角相等,两直线平行,故B是真命题;直角三角形的两锐角互余,故C是假命题;三角形的一个外角大于任何一个和它不相邻的内角,故D是假命题;故答案为B.本题考查的是命题的真假判断,熟练准确掌握基础知识是解答本题的关键.3.D【解析】根据反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.解:用反证法证明“在同一平面内,若a①c,b①c,则a①b”,应假设:a不平行b或a与b相交.故选D.本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.C【解析】熟记反证法的步骤,直接选择即可.解:根据反证法的步骤,得第一步应假设a>b不成立,即a≤b.故选:C.此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.5.A【解析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断. 解:90B ∠<︒的反面为90B ∠≥︒故选A .此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.6.C【解析】根据对顶角的定义、点与直线的关系及平行线直接进行排除即可.①对顶角相等,故正确;①两点之间,线段最短,故正确;①在同一平面内,过一点有且只有一条直线与已知直线垂直,故正确;①在同一平面内,过一点有且只有一条直线与已知直线平行,故错误;所以正确的有①①①;故选C .本题主要考查命题,熟练掌握各个概念是解题的关键.7.CA 选项:如果|a|=1,那么a=1,是假命题,应为:如果|a|=1,那么a=±1,故本选项错误;B 选项:三个内角分别对应相等的两个三角形全等,是假命题,故本选项错误;C 选项:如果a 是有理数,那么a 是实数,是真命题,故本选项正确;D 选项:两边一角对应相等的两个三角形全等,是假命题,故本选项错误.故选C .8.D【解析】利用多项式的定义、等腰三角形的性质、全等三角形的判定方法及全等三角形的性质分别判断后即可确定正确的选项.A 、两个单项式的和不一定是多项式,故原命题错误,是假命题,不符合题意;B 、等腰三角形底边的中线、底边的高线及顶角的平分线互相重合,故原命题错误,是假命题,不符合题意;C 、有两边及其夹角对应相等的两三角形全等,故原命题错误,是假命题,不符合题意;D 、全等三角形的对应高相等,正确,是真命题,符合题意,故选:D .本题考查了命题与定理的知识,解题的关键是了解多项式的定义、等腰三角形的性质、全等三角形的判定方法及全等三角形的性质.9.B【解析】根据余角的性质,绝对值的性质,三角形三边关系和平行线的性质逐项判断即可.A. 等角的余角相等,正确,为真命题;B. 若两个数的绝对值相等,则这两个数可能相等,也可能互为相反数,故错误,为假命题;C. 三角形的任意两边之和大于第三边,正确,为真命题;D. 两直线平行,同位角相等,正确,为真命题.故选B.本题考查判断命题真假,掌握余角的性质,绝对值的性质,三角形三边关系和平行线的性质是解题关键.10.A【解析】根据反证法的第一步是假设结论的反面成立,即可求解.解:根据题意得:应先假设a2+b2=c2.故选:A.本题主要考查了反证法,熟练掌握反证法的第一步是假设结论的反面成立是解题的关键.11.B【解析】根据邻补角的概念、补角的概念、角的概念、命题的概念、余角的概念判断即可.解:①若①A+①B=180°,则①A与①B互为补角,不一定是邻补角,原命题是假命题;①120°的角和60°的角互为补角,原命题是真命题;①由两条具有公共端点的射线组成的图形叫角,原命题是假命题;①连接AB,并延长到点C,不是命题;①同角的余角相等,原命题是真命题;故选:B.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.B【解析】根据命题的定义分别进行判断.解:A、美丽的天空是描述性语句,不是命题;B、对顶角相等,对问题作出了判断,是命题;C、你的作业做完了吗?,是疑问句,不是命题;D、作线段AB=CD是描述性语句,不是命题;故选:B.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.D【解析】根据全等三角形的判定方法对各选项分析判断利用排除法求解.解:A、等底等高的两个三角形全等,是假命题,故本选项错误;B、周长相等的直角三角形都全等,是假命题,故本选项错误;C、有两边和一角对应相等的两个三角形全等,是假命题,因为一角没有说明是两边的夹角,故本选项错误;D、有一边对应相等的两个等边三角形全等是真命题,故本选项正确.故选:D.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.假对顶角相等,但相等的角不一定是对顶角,例如两个直角相等,但有时两个直角不是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假.考点:命题与定理.15.如果两个角是同一个角的余角,那么这两个角相等根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”故答案为:如果两个角是同一个角的余角,那么这两个角相等.本题考查了命题的特点,解题的关键是“如果”后面接题设,“那么”后面接结论.16.如果一个数不能被2整除,那么这个数是奇数【解析】先分清命题“不能被2整除的数是奇数”的题设与结论,然后写成“如果…那么…”的形式.解:如果一个数不能被2整除,那么这个数是奇数.故答案为:如果一个数不能被2整除,那么这个数是奇数.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.如果两个角相等,那么这两个角是对顶角【解析】交换原命题的题设与结论即可得到其逆命题.解:命题“对顶角相等”的逆命题是“如果两个角相等,那么这两个角是对顶角”.故答案为:如果两个角相等,那么这两个角是对顶角.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.18.若a2=b2,则a=b当a=2,b=﹣2,则a2=b2,而a≠b(答案不唯一)【解析】根据真假命题的定义进行判断,再举出反例即可.解:命题“实数a、b,若a=b,则a2=b2”的逆命题是:若a2=b2,则a=b,逆命题是假命题,举反例:如,当a=2,b=﹣2,则a2=b2,而a≠b,故答案为:若a2=b2,则a=b;当a=2,b=﹣2,则a2=b2,而a≠b,(答案不唯一)本题考查的是命题与定理,用到的知识点是真假命题的定义,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉相关的性质定理.19.a和c相交【解析】假设结论不成立即可.解:原命题的结论是求证a①c,那么利用反证法时应该假设a和c相交,故答案为a和c相交.本题考查反证法,解决问题的关键是掌握反证法的步骤:①假设结论不成立,①从假设出发推出矛盾,①假设不成立,得到结论成立.。
人教版八年级数学上名校课堂练习期末复习(二)(含答案)

A.3 B.4 C.6 D.5 4.如图, C 是∠ AOB 角平分线上的一点, CA ⊥ OA , CB ⊥ OB(A , B 为垂足 ), D 是 OC 上
期末复习 (二 ) 全等三角形
各个击破 命题点 1 全等三角形的性质与判定 【例 1】 (大连中考 )如图,点 A 、 B、 C、 D 在一条直线上, AB = CD,AE ∥ BF,CE ∥DF. 求证: AE =BF.
【方法归纳】 要证明两条线段或两个角相等, 关键就是证明这两条线段或这两个角所在的 三角形全等. 1. (北京中考 )如图,点 B 在线段 AD 上, BC ∥ DE, AB = ED ,BC = DB. 求证:∠ A =∠ E.
【思路点拨】 根据角平分线的性质得出 再根据全等三角形的性质即可证明.
DE= DF ,再根据“ HL ”判定两个三角形全等,
【方法归纳】 如果题目中有角平分线上的点, 且含有过该点向角的两边作的垂线段 (即“垂 直”的条件 ),就能得到线段相等.即使没有垂线段,也可以ቤተ መጻሕፍቲ ባይዱ角平分线上的点向角的两边 作垂线段,从而证得线段相等.
2.如图,公园有一条“ Z ”字形道路,其中 AB ∥ CD ,在 E, M , F 处各有一个小石凳,且 BE =CF, M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
命题点 2 角平分线的性质与判定 【例 2】 如图, AD 是∠ BAC 的平分线, DE ⊥ AB ,垂足为 E, DF⊥AC ,垂足为 F,且 BD = CD. 求证: BE = CF.
初三数学期末考试复习计划
初三数学期末考试复习计划2022年初三数学期末考试复习计划(通用6篇)怎样制定详细的复习计划,学生需要好好把握做好复习计划,复习要稳扎稳打,不要盲目的去复习,每次练习后及时进行反思总结。
那么你有了解过复习计划吗?下面是店铺为大家收集的2022年初三数学期末考试复习计划(通用6篇),仅供参考,希望能够帮助到大家。
初三数学期末考试复习计划1(一)复习目标(1)第21章“一元二次方程”主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,特别是“一元二次方程”的三个重要题型:①一元二次方程的定义:②一元二次方程的解法;③一元二次方程的应用。
在课堂上要逐一对这些题型归纳讲解,多强调解题方法的针对性。
最后针对平时练习中存在的问题,查漏补缺。
(2)第22章是“二次函数”这个内容非常重要,要作重点复习,强化训练;(3)第23章是几何部分。
这章的重点是旋转的性质及其生活中的应用。
所以记住性质是关键,学会应用是重点。
要学会生活中的旋转是随时都可以转化成数学问题,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。
对常见的旋转题要多练多总结。
(4)第24章主要是“圆”的教学,对这章的考试题型中实际问题背景学生可能不一定熟悉,所以要以与课本同步的题型为主,要熟记圆的垂径定理,让学生积极动手操作直角三角形与垂径定理之间的联系,并得出结论,课堂上教师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出圆与多种几何图形结合的实际应用问题的方法。
(5)第25章“概率初步”,重点放在列举方法上。
(6)第26章“反比例函数”重点放在函数的性质和应用上。
(二)复习方法(1)强化训练这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。
特别是二次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。
还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。
浙教版2023-2024学年八年级上册数学期末总复习(含答案)
浙教版初中数学八年级上册数学期末总复习一、单选题1.篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是轴对称图形的为( )A.B.C.D.2.如图,有一块三角形的玻璃,不小心掉在地上打成三块,现要到玻璃店重新划一块与原来形状、大小一样的玻璃,只需带到玻璃店( )A.①B.②C.③D.①、②、③其中任一块3.已知一点,则点关于轴的对称点是( )A.B.C.D.4.如图、等腰三角形中,,中线与角平分线交于点F,则的度数为( )A.B.C.D.5.直线与在同一平面直角坐标系内,其位置可能是( )A.B.C.D.6.如图,已知,以点B为圆心,适当长为半径作弧,分别交于D,P;作一条射线,以点F圆心,长为半径作弧l,交于点H;以H为圆心,长为半径作弧,交弧于点Q;作射线.这样可得,其依据是( )A.B.C.D.7.下列命题错误的是( )A.若,,则B.若,则C.若,则D.若,则8.早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.两车离开各自出发地的路程(千米)与时间(小时)的函数关系如图所示,下列描述中不正确的是( )A.两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达地D.甲车与乙车在早上10点相遇9.如图,在中,平分交AC于点D,且,F在BC上,E为AF的中点,连接DE,若,,,则AB的长为( )A.B.C.D.910.如图,在中,,,点是边的中点,射线,是射线上的一个动点,将点绕着点顺时针旋转90°得到点,则线段长度的最小值为( )A.B.1.5C.2D.1二、填空题11.若二次根式有意义,则x的取值范围是 .12.若一个正比例函数的图象经过点,则这个正比例函数的表达式为 .13.命题:直角三角形两条直角边的平方和等于斜边的平方,其逆命题是 .14.如图,的三条中线AD,BE,CF交于点O,若的面积为20,那么阴影部分的面积之和为 .15.一副三角尺,按如图所示叠放在一起,则图中的度数为 .16.如图,有一张直角三角形的纸片,.现将三角形折叠,使得边与重合,折痕为.则长为 .三、解答题17.解不等式组18.已知:如图,点B,F,C,E在一条直线上,,,且.求证:.19.如图,在网格中,每个小正方形的边长为1,要求只用一把无刻度的直尺作图.(1)在图1中作一个以为腰的等腰三角形,其顶点都在格点上.(2)在图2中作所有以为一边的直角三角形,其顶点都在格点上.20.如图,在中,,,是的平分线,且,于点,交于点.(1)求证:是等腰三角形;(2)求线段的长.21.在平面直角坐标系中,一次函数的图象经过和.(1)求这个一次函数的表达式.(2)当时,对于x的每一个值,函数的值都小于的值,直接写出m的取值范围.22.如图,在中,,垂足为D,,延长至E.使得,连接AE.(1)求证:.(2)若,,①求的面积.②求的周长,23.小嘉骑自行车从家出发沿公路匀速前往新华书店,小嘉妈妈骑电瓶车从新华书店出发沿同一条路回家。
人教版八年级数学上名校课堂练习期末复习(二)(含答案)
期末复习(二) 全等三角形各个击破命题点1全等三角形的性质与判定【例1】(大连中考)如图,点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.【方法归纳】要证明两条线段或两个角相等,关键就是证明这两条线段或这两个角所在的三角形全等.1.(北京中考)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.2.如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.命题点2角平分线的性质与判定【例2】如图,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,且BD=CD.求证:BE=CF.【思路点拨】根据角平分线的性质得出DE=DF,再根据“HL”判定两个三角形全等,再根据全等三角形的性质即可证明.【方法归纳】如果题目中有角平分线上的点,且含有过该点向角的两边作的垂线段(即“垂直”的条件),就能得到线段相等.即使没有垂线段,也可以过角平分线上的点向角的两边作垂线段,从而证得线段相等.3.(遂宁中考)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE =2,AB=4,则AC长是( )A.3B.4C.6D.54.如图,C是∠AOB角平分线上的一点,CA⊥OA,CB⊥OB(A,B为垂足),D是OC上任意一点,求证:AD=BD.整合集训一、选择题(每小题3分,共30分)1.下列说法中正确的个数有( )①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等形;③全等三角形的面积相等;④若△ABC≌△DEF,△DEF≌△MNP,则△ABC≌△MNP.A.0个B.1个C.2个D.3个2.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23 cm,BC=4 cm,则△DEF的各边长只可能为( )A.4 cm B.9.5 cmC.4 cm或9.5 cm D.13.5 cm3.满足下列条件,能判定△ABC与△DEF全等的是( )A.∠A=∠E,AB=EF,∠B=∠DB.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠ED.∠A=∠D,AB=DE,∠B=∠E4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSS B.SAS C.AAS D.ASA5.如图,从下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.1个B.2个C.3个D.4个6.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=( ) A.60°B.55°C.50°D.无法计算7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=28,DE=4,AC =6,则AB的长是( )A.8 B.10 C.12 D.不能确定8.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A.50B.62C.65D.689.(淄博中考)已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是( )A.两条边长分别为4,5,它们的夹角为βB.两个角是β,它们的夹边为4C.三条边长分别是4,5,5D.两条边长是5,一个角是β10.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=ABB.∠AOB=90°C.与∠CBO互余的角有两个D.点O是CD的中点二、填空题(每小题3分,共18分)11.(绥化中考)如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是________________(填出一个即可).12.如图,∠AOB=70°,QC⊥OA于点C,QD⊥OB于点D,若QC=QD,则∠AOQ=________.13.如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.14.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,则∠D=________.15.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中成立的有________(填写正确的序号).①PA=PB;②AB垂直平分OP;③OA=OB;④PO平分∠APB.16.如图,在平面直角坐标系中,A(3,0),B(0,4),连接AB,在平面直角坐标系中找一点C,使△AOC与△AOB全等,则C点的坐标为________________.三、解答题(共52分)17.(12分)如图,已知点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的四个条件(请从其中选择一个):①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE;④∠A=∠D.18.(14分)(菏泽中考)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;19.(14分)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.20.(14分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:(1)CF=EB.(2)AB=AF+2EB.参考答案【例1】 证明:∵AE ∥BF , ∴∠A =∠FBD.∵CE ∥DF , ∴∠D =∠ACE.∵AB =CD , ∴AB +BC =CD +BC ,即AC =BD. 在△ACE 和△BDF 中,⎩⎪⎨⎪⎧∠A =∠FBD ,AC =BD ,∠ACE =∠D ,∴△ACE ≌△BDF(ASA). ∴AE =BF.【例2】 证明:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF.在Rt △DBE 和Rt △DCF 中,⎩⎪⎨⎪⎧BD =CD ,DE =DF.∴Rt △DBE ≌Rt △DCF(HL). ∴BE =CF. 题组训练1.证明:∵BC ∥DE ,∴∠ABC =∠BDE.在△ABC 与△EDB 中,⎩⎪⎨⎪⎧AB =ED ,∠ABC =∠EDB ,BC =DB ,∴△ABC ≌△EDB(SAS). ∴∠A =∠E.2.三个小石凳在一条直线上.理由:连接EM ,MF.∵M 为BC 的中点, ∴BM =MC. 又∵AB ∥CD , ∴∠EBM =∠FCM.在△BEM 和△CFM 中,⎩⎪⎨⎪⎧BE =CF ,∠EBM =∠FCM ,BM =CM ,∴△BEM ≌△CFM(SAS).∴∠BME =∠CMF.又∠BMF +∠CMF =180°,∴∠BMF +∠BME =180°.∴点E ,M ,F 在一条直线上.3.A4.证明:∵C 是∠AOB 角平分线上的一点,CA ⊥OA ,CB ⊥OB ,∴AC =BC.在Rt △AOC 和Rt △BOC 中,⎩⎪⎨⎪⎧AC =BC ,OC =OC , ∴Rt △AOC ≌Rt △BOC(HL).∴∠OCA =∠OCB.在△ACD 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ,∠DCA =∠DCB ,CD =CD ,∴△ACD ≌△BCD(SAS).∴AD =BD.整合集训1.C 2.C 3.D 4.D 5.B 6.B 7.A 8.A 9.D 10.C 11.答案不唯一,如:AB =CD 12.35° 13.6 14.30° 15.①③④16.(3,4)或(3,-4)或(0,-4)17.不能.选择条件①AB =ED.证明:∵FB =CE ,∴FB +FC =CE +FC ,即BC =EF.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC ≌△DEF(SSS).∴∠B =∠E ,∴AB ∥ED.18.(1)证明:∵∠ABC =90°,∴∠ABE =∠CBD =90°.在△ABE 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD ,EB =DB ,∴△ABE ≌△CBD(SAS).(2)∵AB =CB ,∠ABC =90°,∴△ABC 是等腰直角三角形.∴∠ECA =45°.∵∠CAE =30°,∴∠BEA =∠ECA +∠EAC =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠BEA.∴∠BDC =75°. 19.(1)△ADC ≌△ABE ,△CDF ≌△EBF.(2)证明:连接AF.∵Rt △ABC ≌Rt △ADE ,∴AB =AD ,BC =DE ,∠ABC =∠ADE =90°.又∵AF =AF ,∴Rt △ABF ≌Rt △ADF.∴BF =DF.又∵BC =DE ,∴BC -BF =DE -DF ,即CF =EF.20.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC.∵在Rt △CDF 和Rt △EDB 中,⎩⎪⎨⎪⎧DF =DB ,DC =DE , ∴Rt △CDF ≌Rt △EDB(HL).∴CF =EB.(2)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴CD =DE.在Rt △ADC 和Rt △ADE 中,⎩⎪⎨⎪⎧CD =ED ,AD =AD , ∴△ADC ≌△ADE(HL).∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB.。
人教版八年级数学下册课件勾股定理复习课(课2)
c
(1)如果∠A和∠B是邻补角,那么∠A+∠B=180〫.
重难点3:勾股定理逆定理的应用
Ca B
知识梳理
3. 勾股定理逆定理的应用
② 实质:由“数”到“形”的转化; ③ 应用:判定一个三角形是否为直角三角形.
知识梳理
4. 勾股数
勾股数
正整数
判断一组数是不是勾股数的步骤: 看、找、算、判.
重点解析
反走私艇 B 离走私艇 C 12 海里,若走私艇 C
从边的方面判断:如果已知条件与边有关系,则可以通过勾股定理的逆定理进行判断.
两个角都是40〫
重点解析
1.有些命题在不容易确定题设和结论的情况下,可 以先改写成“如果……那么……”的形式,然后确 定题设和结论. 2.判断一个命题是假命题只需要举出一个反例即可.
重点解析
重难点2:勾股定理的逆定理
判断满足下列条件的三角形是不是直角三角形.如果是, 请指出哪个角是直角. (1)在△ABC中,∠A=25〫、∠B=65〫; 解:(1)在△ABC中,因为∠A=25〫、∠B=65〫,所以 ∠C=180〫-∠A-∠B=90〫,所以这个三角形是直角三角形. ∠C是直角.
重点解析
重难点4:勾股数
判断下列各组数是不是勾股数:
深化练习
1.在△ABC中,∠A、 ∠B 、 ∠C的对边分别是a、b、c,下列判断 错误的是( B ).
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形.
深化练习
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形. 解析:因为∠C- ∠B=∠A,所以 ∠C=∠B+∠A. 因为∠C+∠B+∠A=180〫,所以 ∠C+∠C=180〫. 解得:∠C=90〫,所以△ABC是直角三角形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据总复习内容的编排意图,本册教材可分为四大知识板块进行复习,即整数、小数、
量,四则运算的意 义、运算定律和混合运算,三角形、平行四边形和梯形,应用题。下面分
别就这四大知识板块的复习提几点建 议。 一、整数、小数、量 “整数、小数、量”这部
分的教学内容,包括整数、小数的读写法则,小数的意义和性质,小数点位置的 移动引起小
数大小的变化规律等。复习时,要注意以下几点: 1.梳理沟通找联系。正确、迅速地读写
多位数,是本册教材中有关数位、位数、计数单位、数的分级等知 识的综合运用。其中整数、
小数的读写法可作为复习的重点,注意区分整数与小数读数方法的不同点。复习时 ,可以从
整数、小数的数位顺序表入手,先让学生思考:整数部分数级的方法,每个数级各包括的数
位是什么 ?小数部分各个数位的名称是什么?整数、小数各个数位的计数单位是什么?每相
邻的两个计数单位之间的进 率又是什么?再让学生比较质疑:整数的读写法与小数的读写法
有什么联系和区别?然后让学生完成练习:如 (1) 3400503278读作____;一千零十亿零
三万写作_____;5006.006读作___。(2 )一个小数,百位与百分 位上的数都是9,万分位
上是5,其余各位都是0,这个数写作_____。 本册教材中,“小数的性质”这一知识,与小
数四则计算关系密切。复习时,不但要引导从意义上去理解 ,而且要从小数计数单位去分析,
进一步沟通这些知识的内在联系,真正弄清形变质不变的道理。如0.3=0.3 0=0.300。同
时,还要精选题目让学生进行性质应用的练习。如(1)不改变数的大小,把4.5改写成以
0.01为 单位的数是____。 (2)3.6与3.60这两个数所表示的意义不同,大小_____。(3)
0.600的末尾去掉两个0后, 它的计数单位是_____。(4)把25.8 的小数点向左移动两位后,
再在未尾添上两个0,原数的大小____。 长度、面积、重量和时间单位的改写在第三单元
作过整理复习,学生仍容易出错。要通过范例,让学生在 理解的基础上找出小数表示的单名
数和复名数相互改写的方法与高、低级名数的改写方法的共同规律,如3米6 厘米=____米,
5.08吨=____吨____千克,4小时6分=____分,并适当增加题目进行练习。 2.比较辨析
防混淆。根据小学生的年龄特点和认知规律,对易混淆的概念,要加强对比,注重辨析,突
出 概念的本质属性,使学生获得正确、清晰的认识,进而能熟练地运用。 如“数位”、“位
数”、“计数单位”是三个不同的概念,它们是构成整数、小数的概念的三要素,比较 抽象,
学生容易产生混淆而出差错。复习时,可充分利用数位顺序表,对这些概念进行观察、比较。
此外把一个多位数改写成以“万”或“亿”作单位的数与把一个多位数用四舍五入法省略尾
数求出它们的 近似值,可用实例列表进行整理、对比和辨析,防止混淆。 相同点 不同点 数
的改写 原数的计数单位变 结果是精确值 例 650358209 了.写上改变计数 使用"=". =
65035.82万 单位后的数的最低 省略尾数 位的计数单位. 例60358200 结果是近似值, ≈
65036万 使用"≈". 二、运算意义、定律、混合运算 这部分内容在本册教材中占有相当
的份量,是小学数学教材中最基础的知识,是本册的重点内容,也是今 后学习小数或分数计
算的重要基础。 1.深化理解重基础。复习整数四则运算的意义,不仅要让学生说出它们的
结语,更主要的是要让学生理解 它们的实际含义,也就是说要与实际应用紧密相联;还要理
解加与减、乘与除之间的相互关系,为弄清数量关 系,打下扎实基础。可以从两方面进行:
(1 )联系实例说运算的意义;(2)正确选择简单的求和、差、积、 商等的实际问题。 整
数加减法的意义及计算法则与小数加减法的意义及计算法则这部分知识的特点是概念较多,
概念之间的 联系又非常密切。不少学生死记硬背,实际运用又经常出错。复习时,可参照总
复习第4(1 )题和第5题的要 求,结合具体的实例,列表进行对比,归纳整理异同点。 混
合运算的特点是步数增多,情况也较复杂,也最能反映出学生的计算水平和能力。复习时,
要注意几点 :(1)重视口算。(2)重视“0”与“1”的特性在计算中的运用。(3)先说出运
算顺序再计算, 如64×( 42+650÷13)。(4)有针对性练习。针对学生在计算过程中出现
的错误,设计题目,如25+75÷25=100÷2 5=4。此外,还要注意培养学生认真审题、认
真书写和自觉验算的良好习惯。 2.灵活运用更熟练。运算定律可以改变常规运算的顺序和
方法,是简算的依据。它们在整数、小数和分数 的四则运算中通用,是最基础的知识,必须
扎实训练,使学生熟练掌握,灵活运用。可进行如下训练: (1)比一比,谁写得快。(用
字母表示运算定律) (2)练一练,谁算得巧。(并口述简算的依据) (3)评一评,谁的
方法好。针对学生完成25×44 的几种不同方法(如下)组织评议。 第一种方法 第二种方
法 第三种方法 25×44 25×44 25×44=25×50-25×6 =25×40+25×4 =25×4×11=
1100 =1100 =1100 三、三角形、平行四边形、梯形 1.归纳整理成系统。平面几何的知
识点多,在教材中是间断地出现,本单元是较集中地学习。因此,复习 中要参照总复习第9、
12、13 题提出的问题,对学过的几何图形进行系统整理,使学生弄清图形间的联系和区 别,
加深对其本质特征的认识。 如复习“直线、射线和线段”,可通过列表对比
,加深对概念的理解。 又如复习“三角形的分类”和“四边形”,也可通过图解,
找出它们之间的区别和联系,形成知识的络 。 2.变式训练促深化。空间观念是在空间知觉
的基础上形成的关于物体的大小、形状及其相互位置关系在人 脑中的表象。通过变式训练,
使学生清晰地掌握图形的特征,进行全面的思考和说理,达到对知识的深化理解 ,又促进学
生空间观念的发展。 例1 指出下面梯形的上底和下底,并画出梯形的高。 附图{图} 例
2 操作题。在一个平行四边形里,画一条直线, 把它等分成两部分,有多少种分法? 例1
这组变式图形的练习, 是针对有的学生平时对梯形概念片面理解而设计的。复习时,要将学
习主动权 交给学生,热情地鼓励他们参与,根据梯形的概念进行观察、判断。得出:无论梯
形的位置怎样变化,上底与 下底始终保持平行,上、下底确定后,高也就容易确定了。 对
例2,要结合学具,组织讨论,得出几种不同的分法。 有条件的要发挥电教媒体的功能,引
发学生思考 ,得出:所有过平行四边形中心的直线都将这图形分成大小相等的两部分。从而
深化理解了几何形体的特征和 各种关系。 四、应用题 本册教材学的是连乘、连除应用题
和比较容易的三步计算应用题,数量关系并不复杂。但仍要从整体入手 ,重视应用题数量关
系的基础训练及有序练习,在复习中要注意以下几点: 1.综合训练夯基础。以应用题的结
构训练为思维训练的要点,引导学生探讨应用题中条件与条件、条件与 问题之间组合和搭配
的方式,熟练地掌握“三量关系”之间的变化规律。尤其是在题组的对比训练中,突出抓 基
本的数量关系,异中求同,以不变应万变,拓宽思路,夯实基础,培养能力。