数学人教版七年级下册第三课时
人教版七年级下册数学《平方根》实数教学说课复习课件(第3课时)

6.1 平方根
第3课时
课件
导入新知
1.什么叫做算术平方根?
如果一个正数x的平方等于a,那么这个正数x叫做a的
算术平方根.
2.判断下列各数有没有算术平方根,如果有,请求出它
们的算术平方根.
36
100; 1;
;
121
0; -0.0025; (-3)2 ; -25.
导入新知
3. 填空:
例如:
4的平方根表示为 :
4,
4 2
5的平方根表示为 :
5,
25
25
25
5
,
:
的平方根表示为
36
36
36
6
0的平方根表示为: 0
规定
:
0 0. 0 0
0的平方根为0.
探究新知
考 点 1
利用平方根的表示求平方根
分别求下列各数的平方根:
(1)36 ;
25
(2)
典例精析
例2 下列说法正确的是( A
)
A.因为62=36,所以6是36的算术平方根
B.因为(-6)2=36,所以-6是36的算术平方根
C.因为(±6)2=36,所以6和-6都是36的算术平方根
D.以上说法都不对
例3 16的算术平方根是
4
例4 下列说法正确的是
①
①4是25的算术平方根.
② 0.01是0.1的算术平方根.
边长是多少分米?
实际上就是要求出一个数,使
它的平方等于9,即:
(
)
2
9
9平方分米
显然,括号里应是±3,但-3不符
9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知
审
解用 决一
设
实元 际一
列
问次
题不
解
的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型
人教版数学七年级下册:第七章 平面直角坐标系 第3课时 课件

※11.如图,正方形A1A2A3A4, A5A6A7A8,A9A10A11A12,…,(每 个正方形从第三象限的顶点开始 ,按顺时针方向顺序,依次记为 A1,A2,A3,A4;A5,A6,A7, A8;A9,A10,A11,A12;…)的中 心均在坐标原点O,各边均与x轴 或y轴平行,若它们的边长依次是 2为,(45,,6﹣…,5)则.顶点A20的坐标
•
12、人乱于心,不宽余请。2021/4/30 2021/4/ 302021 /4/30F riday, April 30, 2021
•
13、生气是拿别人做错的事来惩罚自 己。202 1/4/30 2021/4/ 302021 /4/302 021/4/3 04/30/ 2021
•
14、抱最大的希望,作最大的努力。2 021年4 月30日 星期五 2021/4 /30202 1/4/302 021/4/ 30
•
9、 人的价值,在招收诱惑的一瞬间被决定 。2021/ 4/30202 1/4/30 Friday, April 30, 2021
•
10、低头要有勇气,抬头要有低气。2 021/4/ 302021 /4/3020 21/4/3 04/30/2 021 2:39:36 PM
•
11、人总是珍惜为得到。2021/4/3020 21/4/30 2021/4 /30Apr-2130-A pr-21
课后作业
3.在平面直角坐标系中,若点P的坐标为 (﹣3,2),则点P所在的象限是( B ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
课后作业
人教版七年级数学下册名师课件:6.1_第3课时_平方根

归纳总结
平方根的性质: 1.正数有两个平方根,两个平方根互为相反数. 2.0的平方根还是0. 3.负数没有平方根.
素养考点 1 求平方根
例1 求下列各数的平方根:
(1)100;
(2)
9 16
;
(3)0.25.
解:(1) ∵(±10)2=100,
(3) ∵(±0.5)2=0.25,
∴100的平方根是±10; ∴0.25的平方根是±0.5.
因此1.21的平方根是1.1与-1.1.
即± 1.21=± 1.1.
3. 求下列各数的平方根:
(1)81; (2)1265 ; (3)0.49; 解:(1)∵ (±9)2=81,
∴81的平方根为±9.即 81 9 .
(2)
4
2
16
5 25
16 的平方根是 4 ,即 16 4 .
25
(2)
∵(±
3 4
)2= 9
16
,
∴ 9 的平方根是±3 ;
16
4
1.判断下列说法是否正确:
(1)0的平方根是0;
(√ )
(2)1的平方根是1;
(× )
(3)-1的平方根是-1;
(× )
(4)0.01是0.1的一个平方根.( × )
2.填表:
x
8 -8
3 5
-3
5
+4 -4 +0.6 -0.6
x2 64 64
a 平
方
任 2 何幂
数
正数的平方是 正 数;
零的平方是 0 ; 负数的平方是 正 数.
联系: 区别:
平方根与算术平方根的联系与区别: 1.包含关系:平方根包含算术平方根,算术 平方根是平方根的一种.
人教版七年级数学下册第3课时导学案

1 人教版七年级数学 下册导学案
第三课时 6.1.2 平面直角坐标系(2) 一、自学范围 P42—43 二、自学目标 1、知道平面直角坐标系内有几个象限,是如何分布的。 2、探究出各象限的点的坐标的符号特点。 三、自学重点 探究出各象限的点的坐标的符号特点。 四、自学过程 1、自学42页思考下面第一段和图6.1-5,回答下列问题: (1)四个象限在坐标系内按_______(顺、逆)时针排列的。 2
(2)x轴和y轴上的点_____属于任何象限。 2、自学例题。 3、做一做P44习题6.1中的第2题填表。 4、做一做P43探究。 五、学效测试 1、在平面直角坐标系中,点(-3,2)在( ) A第一象限 B第二象限 C第三象限 D第四象限 2、在平面直角坐标系中,标出下列各点: 点A在y轴上,位于原点上方,距离原点2个单位长度; 点B在x轴上,位于原点右侧,距离原点1个单位长度; 点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度; 点D在x轴上,位于原点右侧,距离原点3个单位长度; 点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。 依次连接这些点,你能得到什么图形? 3
3、 点B(4,3),到x轴距离为_____,到y轴距离为____.
6.1.2 平面直角坐标系(2) 当堂检测题 1.若点M的坐标是(a,b),且a>0,b<0,则点M在_______________. 2.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F( 2, 0) 在______轴上. 4
3.已知点M(a,b),当a>0,b>0时,M在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M在第四象限;当a<0,b<0时,M在第______象限. 4、已知点P(x,y)在第四象限,且︱x︱=3,︱y︱=5,则P点坐标是___________. 5、已知正方形ABCD的边长为4,它在坐标系内的位置如图所示,请求出下列情况下四个顶点的坐标。
第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时——平行线及其性质(答案卷)知识点一:平行线:1.平行线的定义:在同一平面内,的两条直线叫做平行线。
若直线a平行于直线b,则记作,读作。
注意:一定要在同一平面内。
且一定要时直线。
2.平行线的画法:过直线外一点画直线与已知直线平行的具体步骤:①将直角三角板的一条直角边与已知直线重合。
②将直尺与三角尺的另一直角边紧靠在一起。
③固定直尺不变,平移三角尺,使三角尺原来与已知直线重合的直角边与已知点重合。
④沿着三角尺该直角边画直线。
【类型一:确定平行线】1.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定2.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条3.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【类型二:作图】4.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?5.在下面的方格纸中经过点C 画与线段AB 互相平行的直线l 1,再经过点B 画一条与线段AB 垂直的直线l 2.知识点二:平行公理及其推论:1. 平行公理:经过直线外一点, 条直线与这条直线平行。
有且只有:存在且唯一。
2. 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即若c b b a ∥,∥, 则a c 。
3. 垂直于同一直线的两直线平行:若c a b a ⊥⊥,,则b c 。
【类型一:对平行公理及其推论的判断理解】6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法正确的是( )A .a 、b 、c 是直线,若a ⊥b ,b ∥c ,则a ∥cB .a 、b 、c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a 、b 、c 是直线,若a ∥b ,b ⊥c ,则a ∥cD .a 、b 、c 是直线,若a ∥b ,b ∥c ,则a ∥c8.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系9.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个10.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行知识点三:平行线的性质:1.两直线平行,同位角相等:两条平行线被第三条直线所截,同位角相等。
人教版七年级数学下册教案第6章 实 数1 平方根(3课时)

第六章实数教材简析本章的内容包括:平方根、立方根、实数.在学习了有理数的基础上,加强与实际的联系,从现实世界中抽象出一种不同于有理数的数,即无理数,开平方运算与开立方运算也是实际中经常用到的两种运算;注意将新旧知识进行联系与类比,数的范围由有理数扩充到实数,与有理数有关的运算法则、运算律、运算顺序在实数范围内都仍然适用.在中考中,本章的考点有平方根、立方根的定义及运算,实数的运算及大小比较等,考查基本概念及基本计算.教学指导【本章重点】平方根、算术平方根、立方根、无理数、实数的有关概念和运算.【本章难点】对无理数意义的理解、用有理数估计无理数的方法及实数与数轴上点的对应关系.【本章思想方法】1.体会分类的数学思想,如:对实数进行分类.2.掌握分类讨论思想,如:由于一个正数的平方根有两个,且这两个数互为相反数,因此与平方根有关的题目往往需要进行分类讨论.3.掌握转化思想,如:学习了平方根和立方根后,运用转化思想将某些二次方程、三次方程转化为求平方根、立方根的问题求解.4.体会数形结合思想,如:数的范围由有理数扩充到实数,实数与数轴上的点建立了一一对应关系,这样可以通过观察“形”的特点,解答一些关于实数的比较抽象的问题.课时计划6.1平方根3课时6.2立方根1课时6.3实数1课时6.1 平方根第1课时算术平方根教学目标一、基本目标【知识与技能】1.了解算术平方根的概念,会用根号表示一个数的算术平方根. 2.根据算术平方根的概念求出非负数的算术平方根. 3.了解算术平方根的性质. 【过程与方法】加强概念形成过程的教学,提高学生的思维水平,鼓励学生进行探索和交流,培养他们的创新意识和合作精神.【情感态度与价值观】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣.二、重难点目标 【教学重点】 算术平方根的概念. 【教学难点】根据算术平方根的概念正确求出非负数的算术平方根. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P40的内容,完成下面练习. 【3 min 反馈】1.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.2.规定:0的算术平方根是0.3.算术平方根具有双重非负性:(1)a ≥0;(2)a ≥0. 4.求下列各数的算术平方根: (1)81; (2)0.25; (3)23. 解:(1)9. (2)0.5. (3)23. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各数的算术平方根: (1)64; (2)0.36; (3)214; (4)412-402.【互动探索】(引发学生思考)如何根据算术平方根的定义求非负数的算术平方根?【解答】(1)∵82=64,∴64的算术平方根是8. (2)∵0.62=0.36,∴0.36的算术平方根是0.6. (3)∵⎝⎛⎭⎫322=94=214,∴214的算术平方根是32. (4)∵412-402=81,92=81,∴81=9. ∵32=9,∴412-402的算术平方根是3.【互动总结】(学生总结,老师点评)(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.活动2 巩固练习(学生独学) 1.5的算术平方根为( A ) A.5 B .25 C .±25D .±52.一个数的算术平方根是34,这个数是( C )A.32 B .34C.916D .不能确定3.要切一块面积为0.81 m 2的正方形钢板,它的边长是0.9m. 4.4的算术平方根是 2.5.已知3+a 的算术平方根是5,求a 的值.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 活动3 拓展延伸(学生对学)【例2】已知x 、y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.【互动探索】算术平方根和平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得出什么结论?【解答】由题意,得x -1=0,y -2=0, 所以x =1,y =2. 所以x -y =1-2=-1.【互动总结】(学生总结,老师点评)算术平方根、绝对值和平方式都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.环节3 课堂小结,当堂达标 (学生总结,老师点评)算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a性质:双重非负性⎩⎨⎧a ≥0a ≥0练习设计请完成本课时对应练习!第2课时 估算算术平方根教学目标 一、基本目标 【知识与技能】1.会比较两个数的算术平方根的大小.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识. 3.会用计算器求一个数的算术平方根. 【过程与方法】体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数. 【情感态度与价值观】培养学生的探究能力和归纳问题的能力. 二、重难点目标 【教学重点】夹值法及估计一个(无理)数的大小. 【教学难点】夹值法及估计一个(无理)数的大小的思想. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P41~P44的内容,完成下面练习. 【3 min 反馈】1.无限不循环小数是指小数位数无限,且小数部分不循环的小数.实际上,许多正有理数的算术平方根(例如3,5,7)都是无限不循环小数.2.被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律:当被开方数扩大(或缩小)到原来的100倍⎝⎛⎭⎫1100,10000倍⎝⎛⎭⎫110000…时,其算术平方根相应地扩大(或缩小)到原来的10倍⎝⎛⎭⎫110,100倍⎝⎛⎭⎫1100…3.用计算器求一个正有理数的算术平方根的方法:大多数计算器都有键,用它可以求出任意一个正有理数的算术平方根(或其近似值).先按ON键开机,再按键、“被开方数”、=,即可显示“算术平方根”.4.与37最接近的整数是(B)A.5B.6C.7D.8环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】通过估算比较下列各组数的大小:(1)5与1.9;(2)6+12与1.5.【互动探索】(引发学生思考)(1)估算5的大小,或先求1.9的平方,再比较5与1.92的大小;(2)先估算6的大小,再比较6与2的大小,从而进一步比较6+12与1.5的大小.【解答】(1)(方法一)因为5>4,所以5>4,即5>2,所以5>1.9. (方法二)因为1.92=3.61,3.61<5,所以5>1.9.(2)因为6>4,所以6>4,所以6>2,所以6+12>2+12=1.5,即6+12>1.5.【互动总结】(学生总结,老师点评)比较两个数的大小常用方法有:①作差比较法;②作商比较法;③移因数于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.活动2巩固练习(学生独学)1.估计5+1的值,应在(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.估算19-2的值(B)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.计算:(1)1225;(2)36.42(精确到0.001);(3)13(精确到0.001).解:(1)1225=35.(2)36.42≈6.035.(3)13≈3.606.活动3拓展延伸(学生对学)【例2】全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?【互动探索】(1)根据题意可知是求当t=16时d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值,直接把对应数值代入关系式即可求解.【解答】(1)当t=16时,d=7×16-12=7×2=14.即冰川消失16年后苔藓的直径是14厘米.(2)当d=35时,即7×t-12=35,所以t-12=25,解得t=37.即冰川约是在37年前消失的.【互动总结】(学生总结,老师点评)本题考查算术平方根的实际应用,注意实际问题中涉及开平方通常取算术平方根.环节3课堂小结,当堂达标(学生总结,老师点评)1.夹值法及估计一个(无理)数的大小.2.用计算器求一个正数的算术平方根.练习设计请完成本课时对应练习!第3课时平方根教学目标一、基本目标【知识与技能】掌握数的开方的意义、平方根的意义、平方根的表示方法.【过程与方法】通过带领学生探究一个数的平方根,使学生理解数的开方、平方根的概念.【情感态度与价值观】培养学生的探究能力和归纳问题的能力.二、重难点目标 【教学重点】 平方根的概念. 【教学难点】 求一个数的平方根. 教学过程环节1 自学提纲、生成问题 【5 min 阅读】阅读教材P44~P46的内容,完成下面练习. 【3 min 反馈】1.一般地,如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根或叫二次方根.也就是说,如果x 2=a ,那么x 叫做a 的平方根.2.一个正数有两个平方根,且它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.3.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. 4.下列说法不正确的是( C ) A .-2是2的平方根 B.2是2的平方根 C .2的平方根是 2 D .2的算术平方根是 2 5.求下列各数的平方根: 16,0,49,242.解:16的平方根是±4. 0的平方根是0. 49的平方根是±23. 242的平方根是±24. 环节2 合作探究,解决问题 活动1 小组讨论(师生对学) 【例1】求下列各数的平方根: (1)12425; (2)0.0001;(3)(-4)2; (4)81.【互动探索】(引发学生思考)把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.【解答】(1)∵12425=4925,⎝⎛⎭⎫±752=4925,∴12425的平方根是±75,即±12425=±75. (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01. (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4. (4)∵(±3)2=9=81,∴81的平方根是±3.【互动总结】(学生总结,老师点评)正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.【例2】已知一个正数的两个平方根分别是2a +1和a -4,求这个数.【互动探索】(引发学生思考)一个正数的平方根有两个,它们之间有什么关系呢? 【解答】由于一个正数的两个平方根分别是2a +1和a -4,则有2a +1+a -4=0. 即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9.【互动总结】(学生总结,老师点评)一个正数的平方根有两个,它们互为相反数,即它们的和为零.活动2 巩固练习(学生独学)1.关于平方根,下列说法正确的是( B ) A .任何一个数有两个平方根,并且它们互为相反数 B .负数没有平方根C .任何一个数只有一个算术平方根D .以上都不对2.如果a 、b 分别是16的两个平方根,那么ab =-16. 3.若25x 2=16,则x 的值为±45.4.求下列各数的平方根:(1)196; (2)10-4; (3)144169; (4)3625.解:(1)±14. (2)±10-2. (3)±1213. (4)±95.活动3 拓展延伸(学生对学) 【例3】求下列各式中x 的值. (1)x 2=361; (2)81x 2-49=0; (3)(3x -1)2=(-5)2.【互动探索】上述方程都可以化成一个数或代数式的平方的形式,结合平方根的定义,你能算出x 的值吗?【解答】(1)∵x 2=361,∴开平方,得x =±361=±19. (2)整理,得x 2=4981,∴开平方,得x =±4981=±79. (3)∵(3x -1)2=(-5)2,∴开平方,得3x -1=±5. 当3x -1=5时,x =2;当3x -1=-5时,x =-43.综上所述,x =2或-43.【互动总结】(学生总结,老师点评)利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.环节3 课堂小结,当堂达标 (学生总结,老师点评) 平方根⎩⎪⎨⎪⎧平方根的概念平方根的性质开平方及相关运算练习设计请完成本课时对应练习!。
2022-2023学年七年级数学下册课件之平行线的性质 第三课时(人教版)

∴∠1 = ∠2 (两直线平行,同位角相等). ∴ ∠2= ∠1 = 90° (等量代换).
∴a⊥c (垂直的定义).
总结
证明是从条件出发,经过一步步推理,最后推出结论的过 程.证明的每一步推理都要有根据,不能“想当然”,这些根据 可以是已知条件,也可以是定义、公理,已学过的定理.在初学 证明时要把根据写在每一步推理后面的括号里,如本例中的“已 知”“等量代换”等.
1 在下面的括号内,填上推理的根据.
如图,∠A+∠B=180°,求证∠C+∠D=180°. 证明:∵∠A+∠B=180°, ∴AD∥BC( 同旁内角互补,两直线平行 ). ∴ ∠C+∠D=180°(两直线平行,同旁内角互补) .
B
C
2 命题“同位角相等”是真命题吗?如果是,说出理由; 如果不是,请举出反例.
①两直线平行,同旁内角互补;②相等的角是对
顶角;③等角的余角相等;④对顶角相等.
A.1个
B.2个
C.3个
D.4个
5 能说明命题“对于任何实数a,|a|>-a”是假
命题的一个反例可以是( A )
A.a=-2
B.a= 1
3
C.a=1
D.a=2
把“同旁内角互补”改写为“如果……那么……”的形式. 解: 如果两个角是同旁内角,那么这两个角互补. 易错点:改写命题时,语句不通顺,命题补充不完整.
(2)命题改写的方法:先搞清命题的题设(已知事项)部 分和结论部分;再将其改写为“如果……那么……” 的形式:“如果”后面跟的是已知事项,“那么” 后面跟的是由已知事项推出的事项(即结论).
1 指出下列命题的题设和结论:
(1)如果AB⊥CD,垂足为O,那么∠AOC=90°;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1平方根(三)
(第三课时)
学习目标1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别.
2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互
逆关系.
教学重点:平方根的概念和求数的平方根。
教学难点:平方根和算术平方根的联系与区别
一、学习准备:
1、什么数的平方是49? 2、平方得81的数有几个?分别是什么?
3、一对互为相反数的平方有什么关系?
总结:由问题出发,认识到平方得一个正数的数有个,并且互为
二、合作交流,解读探究
自主探索:独立看书,自学教材p44~46
想一想:到底什么是平方根,它和我们已经认识的算术平方根有何关系?
⑴什么叫一个数的平方根?如何用符号表示?
⑵根据平方根的定义,只有什么数才有平方根? ⑶什么叫开方?
[⑴如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,用符
号表示为:若2,xaxa则;⑵只有非负数才有平方根;⑶求一个数a的平
方根的运算叫做开平方运算。]
练一练:求下列数的平方根
⑴100 ⑵916⑶0.25 ⑷16⑸ 0
三、总结归纳:
1、正数有平方根,它们互为0的平方根是负数
讨论:平方根与算术平方根之间有什么关系?
总结:1、平方根与算术平方根之间的区别
⑴定义不同:如果2xa,那么x叫做a的平方根。一个正数有两个平方根,
它们互为相反数;0有一个平方根,是0本身;负数没有平方根。如果2xa,
并且0x,那么x叫做a的算术平方根。一个正数的算术平方根只有一个,非
负数的算术平方根一定是非负数
⑵表示方法不同:正数a的平方根表示为a;正数a的算术平方根为a
⑶平方根等于本身的数是0;算术平方根等于本身的数是0或1
2、平方根与算术平方根之间的联系
3、⑴二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中
的非负的那一个
⑵存在条件相同,非负数才有平方根和算术平方根 ⑶0的平方根和0的算术平
方根都是0
四 、 应用迁移,巩固提高
例1 说出下列各数的平方根
⑴0.04 ⑵81121⑶256⑷164
例2 说出下列各数的平方根各是什么?
⑴64 ⑵0⑶20.4⑷2213⑸16⑹34
例3 计算
⑴719⑵41264⑶224140
五、课堂跟踪反馈 练习课本P46 练习1、2、3
补充:1、⑴121____,⑵1.69____,⑶49____,100⑷20.3____
2、若7x,则_____x,x的平方根是_____
3、8116的平方根是() A.94 B. 94 C.32 D.32
4、给出下列各数:49,22,30,4,3,3,45,其中有平方根的数
共有()A.3个 B. 4个 C.5个 D.6个
5、若一个数a的平方根等于它本身,数b的算术平方根也等于它本身,试求
ab
的平方根。
选作题:(1)如果一个正数的两个平方根为1a和27a,请你求出这个正数
(2) 已知1372305abab,求:aba的平方根
(3)请你试着求等式2162810x中的x值.
(4).要使1xx有意义,x的取值范围是______________
作业 P47-48习题6.1第3、4、8、11、12题。