(模电)比例求和积分微分电路
积分和微分电路

模电总结复习资料_模拟电子技术基础(第五版)

绪论一.符号约定•大写字母、大写下标表示直流量。
如:V CE、I C等。
•小写字母、大写下标表示总量〔含交、直流〕。
如:v CE、i B等。
•小写字母、小写下标表示纯交流量。
如:v ce、i b等。
•上方有圆点的大写字母、小写下标表示相量。
如:等。
二.信号〔1〕模型的转换〔2〕分类〔3〕频谱二.放大电路〔1〕模型〔2〕增益如何确定电路的输出电阻r o?三.频率响应以及带宽第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯洁的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
表达的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。
*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
实验七比例求和运算电路

03 实验步骤与操作
搭建比例运算电路
选择合适的运算放大器
搭建电路
根据实验需求,选择具有适当性能指 标的运算放大器,如低失真、低噪声 等。
按照设计好的电路图,在面包板上搭 建比例运算电路,注意元件布局和走 线。
设计比例运算电路
根据所需放大倍数,设计合适的比例 运算电路,包括电阻、电容等元件的 选型和取值。
搭建求和运算电路
设计求和运算电路
根据实验需求,设计能够实现两 个或多个输入信号求和的运算电
路。
选择合适的元件
根据设计需求,选择合适的电阻、 电容等元件,实现信号的加权和求 和。
搭建电路
在面包板上按照设计好的电路图搭 建求和运算电路,确保连接正确且 紧固。
组合比例求和运算电路
连接比例运算电路和求和运算电路
实验意义及价值
拓展电子技术应用领域
比例求和运算电路作为一种基本的模拟电路,在电子技术应 用领域具有广泛的应用前景,如信号处理、自动控制等。
促进电子技术教学发展
通过本次实验,可以帮助学生深入理解和掌握模拟电路的基 本原理和设计方法,提高其实践能力和创新意识。
对未来研究的建议
深入研究高性能比例求和运算电路
实验七比例求和运算电路
目 录
• 引言 • 比例求和运算电路基本原理 • 实验步骤与操作 • 实验数据分析与讨论 • 实验结论与总结
01 引言
实验目的
掌握比例求和运算电 路的基本原理和实现 方法。
通过实验验证理论分 析和电路设计的正确 性。
学会使用运算放大器 构建比例求和电路。
实验背景
比例求和运算电路是模拟电子技术中的一种基本电路,广泛应用于信号处理、自动 控制等领域。
微分积分电路简述

微分与积分电路图一、微分电路一、积分电路输出信号与输入信号的积分成正比的电路,称为积分电路。
原理:从图2得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c)∫icdt=(1/RC)∫icdt这就是输出Uo正比于输入Ui的积分(∫icdt)RC电路的积分条件:RC≥Tk图2、积分电路微分电路电路结构如图W-1,微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
而对恒定部分则没有输出。
输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。
此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C 少于或等于输入波形宽度的1/10就可以了。
积分电路和微分电路的特点1:积分电路可以使输入方波转换成三角波或者斜波微分电路可以使使输入方波转换成尖脉冲波2:积分电路电阻串联在主电路中,电容在干路中微分则相反3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度4:积分电路输入和输出成积分关系微分电路输入和输出成微分关系微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
而对恒定部分则没有输出。
输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。
此电路的R*C 必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。
积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。
电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于积分电路能将方波转换成三角波。
积分电路和微分电路实验报告

积分电路和微分电路实验报告篇一:积分电路与微分电路实验报告四、积分电路与微分电路目的及要求:(1)进一步掌握微分电路和积分电路的相关知识。
(2)学会用运算放大器组成积分微分电路。
(3)设计一个RC微分电路,将方波变换成尖脉冲波。
(4)设计一个RC积分电路,将方波变换成三角波。
(5)进一步学习和熟悉Multisim软件的使用。
(6)得出结论进行分析并写出仿真体会。
一.积分电路与微分电路1. 积分电路及其产生波形1.1运算放大器组成的积分电路及其波形设计电路图如图所示:图 1.1积分电路其工作原理为:积分电路主要用于产生三角波,输出电压对时间的变化率与输入阶跃电压的负值成正比,与积分时间常数成反比,即?U0?t??UinR1C式中,R1C积分时间常数,Uin为输入阶跃电压。
反馈电阻Rf的主要作用是防止运算放大器LM741饱和。
C为加速电容,当输入电压为方波时,输入端U01的高电平等于正电源?Vcc,低电平等于负电源电压?Vdd,比较器的U??U??0时,比较器翻转,输入U01从高电平跳到低电平?Vdd。
输出的是一个上升速度与下降速度相等的三角波形。
图1.2积分电路产生的波形1.2微分电路及其产生波形2. 运算放大器组成的微分电路及其波形设计的微分电路图:图2.1微分电路其工作原理为:将积分电路中的电阻与电容对换位子,并选用比较小的时间常数RC,便得到了微分电路。
微分电路中,输出电压与输入电压对时间的变化率的负值成正比,与微分时间常数成反比,所以RinU0??RfC?U?tin的主要作用是防止运放LM741产生自激振荡。
v0??RCdV/dt,输出电压正比与输入电压对时间的微商,符号表示相位相反,当输入电压为方波时,当t?o时输出电压为一个有限制。
随着C的充电,输出电压v0将逐渐衰减,最后趋于零,就回形成尖顶脉冲波。
微分电路中用信号发生器输入方波信号,经过微分电路就会产生输出脉冲波信号。
结论与体会:通过此设计学会了用运算放大器组成的积分电路和微分电路,还学会了Multisim 软件的应用和使用方法。
《模拟电子技术》教学大纲

《模拟电子技术》课程教学大纲课程名称: 模拟电子技术课程代码: 0730081课程类型: 专业核心课学分: 4 总学时: 72 理论学时: 56 实验(上机)学时: 16 先修课程: 电路基础高等数学大学物理适用专业:应用电子技术、电子信息工程、通信工程一、课程性质、目的和任务本课程是应用电子技术、电子信息工程、通信工程专业必修的专业基础课和核心课程。
本课程的目的和任务是使学生获得模拟电子技术的基本理论、基本知识和基本技能, 培养学生分析问题和解决问题的能力。
通过学习使学生掌握线性电子电路中基本单元电路的工作原理、分析方法、主要性能指标等, 获得信息传递技术必备的理论知识, 为学习后续课程以及从事有关的工程技术工作和科学研究工作打下一定的基础。
二、教学基本要求1.掌握各章节基本内容, 对基本电路原理的分析能力和实验能力是学习模拟电路课的最基本要求, 要求学生很好理解和掌握。
在教学中要注重培养学生的创新意识和科学精神。
2.本课程是电专业的非常重要的专业基础课, 也是电信专业研究生入学考试的必考课程, 且具有广阔的工程应用背景。
因此, 在教学中应注意培养学生的逻辑思维能力、综合运用模拟电路理论分析和解决问题的能力, 注意理论联系实际, 同时根据本课程的特点严格要求学生独立完成一定数量的习题与课程设计。
本课程教学的组织方式包括三大部分:基本理论课、习题课、实验课、理论课采用多媒体教学手段, 实验课将通过实际的操作和设计, 使学生加深对电路、器件模型等内容的理解, 巩固课堂教学内容。
3.本课程考核由期末卷面考试、期中考试、平时抽查、平时作业、实验过程、实验报告等部分组成。
期末考试: 50%;平时成绩(含平时考勤、提问、作业): 20%;实验: 10%;期中: 20%。
三、教学内容及要求第一章常用半导体元器件(10学时)内容①导体半导体和绝缘体、半导体的共价键结构半导体的导电机构--电子和空穴、P型半导体、N型半导体、半导体载流子的漂移运动和扩散运动、PN结的单向导电性②普通二极管的结构、伏安特性、主要参数及注意事项稳压管的结构、伏安特性、主要参数及注意事项③双极型三极管的结构、电流分配与放大原理、输入输出特性曲线, 主要参数及注意事项结型及绝缘体场效应管的结构、工作原理、主要参数及使用注意事项。
实验六 比例求和运算电路实验报告

《模拟电子技术》 实验报告
实验名称
实验六比例求和运算电路(集成运放的线性应用)
班级
姓名-学号
报 告 内 容
实验目的:
1.掌握用集成运算电路放大器组成比例,求和电路的特点及性能。
-300mV
-1000mV
-3V
-10V
-30V
实测值(mV)
49.0mV
-656mV
-2.66V
-9.69V
-10.14V
误差
1.16
0.344
0.11
0.031
0.662
3.同相比例放大器
电路如图6.3所示。
理论计算:
表6.3
直流输入电压U(mV)
30
100
300
1000
输出Uo电压
理论估算(mV)
-4.56
1.546
5.双端输入求和放大电路
实验电路为图6.5所示。
理论计算:
表6.5
Vi1(V)
1
2
0.2
Vi2(V)
0.5
1.8
-0.2
理论值
-5V
-2V
-4V
Vo(V)
-6.77V
-10.13V
-2.85V
总结本实验中5种运算电路的特点及性能:
330mV
1.1V
3.3V
11V
实测值(mV)
686mV
1.456V
3.65V
11.29V
误差
1.07
0Байду номын сангаас33
积分微分电路

积分微分电路
积分微分电路是一种常见的电路类型,它能够对输入信号进行积分或微分运算,从而对信号进行处理。
积分电路主要由电容器和电阻器组成,当输入信号经过该电路时,电容器会对信号进行积分运算,输出信号会随着时间的增加而不断增加。
微分电路则主要由电阻器和电容器组成,当输入信号经过该电路时,电容器会对信号进行微分运算,输出信号会随着时间的增加而越来越小。
积分微分电路广泛应用于信号处理、滤波、放大等领域,是电子工程中不可或缺的一部分。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告
课程名称:模拟电路
实验名称:比例、求和、积分、微分电路
学院:信息工程学院
专业:班级: 07
组号:指导教师:吴迪
报告人:王逸晨学号: 2014130358 实验时间: 2015 年 10 月 2 日星期五
实验地点: N102
实验报告提交时间: 2015 年 10 月 16 日
一、实验目的
(1)掌握用集成运算放大电路组成的比例、求和电路的特点及性能;
(2)掌握用运算放大器组成积分微分电路的方法;
(3)学会上述电路的测试和分析方法。
二、实验仪器
(1)数字万用表;
(2)双踪示波器;
(3)信号发生器。
三、实验内容
1.电压跟随电路
实验电路图如下,按表1内容实验并测量记录。
表1
U i/V -2 -0.5 0 +0.5 1 U0/V R L=∞-2.005 -0.502 / 0.499 1.002 R L=5.1kΩ-2.003 -0.502 / 0.499 1.002
2.反相比例放大器
实验电路如图,U0=-RF*Ui/R1,按表2内容实验并测量记录。
表2
3.同相比例放大电路
实验电路如下所示,U0=(1+RF/R1)Ui,按表3实验测量并记录。
表3
直流输入电压U i /mV
30
100 300 1000 3000 输出电压 U 0
理论估算/V / -1.000 -3.000 -10 -30 实际值/V
/ -1.0211 -3.030 -9.916 -9.970 误差/mV
/
21.1
30
84
20030
直流输入电压U i/mV 30 100 300 1000
3000
输出电压U0理论估算/V / 1.1 3.3 11 33
实际值/V / 1.090 3.301 11.095 11.340 误差/mV / 10 1 95 21660
4.反相求和放大电路
实验电路如图,U0=-RF(Ui1/R1+Ui2/R2),按表4内容进行实验测量。
表4
Ui1/V 0.3 -0.3
Ui2/V 0.2 0.2
U0/V -5.032 0.951
U0估/V -5.000 1.000
5.积分电路
(1)Ui输入频率为100Hz、幅值为±1V(峰峰值为2V)的方波信号。
同时观察和比较Ui与U0的幅值大小及相位关系,并记录波形。
四、实验结果与讨论
(1)总结本实验中的6种运算电路的特点及性能;
答:
一、电压跟随器具有输入电阻高、带负载能力强的特点。
二、反相比例放大电路的输出电压与输入电压保持反相关系。
输入电阻不大,输出电阻R0=0。
三、同相比例放大电路的输出电压与输入电压保持同向关系。
输入电压越大,输出电压也越大。
电路具有输入电阻高、输出电阻低的优点,但同相端与反相端同处于高电位,实际应用时有其不利因素。
四、反相求和放大电路兼具反相比例放大电路和反相加法电路的特点。
五、积分电路结构简单,输出电压为输入电压对时间的积分。
(2)整理实验中的数据及波形;
(3)分析理论计算与实验结果之间出现误差的原因。
答:
1.电源内阻导致误差;
2.导线本身有电阻导致误差;
3.仪器本身测量有误差;
4.电阻值不恒等电路标出值;
5.环境温度对电阻有影响导致误差;
指导教师批阅意见:
成绩评定:
指导教师签字:
年月日备注:
注:1、报告内的工程或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。