展开与折叠选择填空解答60题(有答案 )
展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。
五年级下册数学一课一练-2.2展开与折叠 北师大版(2014秋)(含答案)

五年级下册数学一课一练-2.2展开与折叠一、单选题1.图中四个图形都是由6个大小相同的正方形组成。
其中是正方体展开图的是()A. ①②③B. ②③④C. ①③④D. ①②④2.把下面长方体、正方体和相应的展开图连起来是(1)()A.B.C.(2)()A.B.C.(3)()A.B.C.3.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A. B. C. D.4.下图是一个无盖正方体的展开图,①号面的对面应该是( )号面。
A. ②B. ③C. ④D. ⑤二、判断题5.左图不能折成正方体.6.图形,一定能围成正方体。
7.下面的展开图可以拼成一个长方体。
三、填空题8.小鹏同学在一个正方体盒子的每一个面上都写上一个字,分别是:我、喜、欢、数、学、课,正方体的平面展开图如右图所示,那么在该正方体盒子中,和“我”相对的面所写的字是________.9.动手折一折.________10.下边正方体是由27个棱长为3cm的小正方体垒成的,并按规律涂上了阴影.大正方体的表面积是________平方厘米.阴影部分的面积是________平方厘米.涂有阴影的小正方体有________个.11.如下图,水平放置的正方体六个面分别用“前面、后面、上面、下面、左面、右面”表示,这是一个正方体的平面展开图,若图中的“进”表示正方体的前面,“步”表示右面,“习”表示上面,则“祝”“你”“学”分别表示正方体的________面、________面、________面。
12.看图回答问题由图一________折叠,图二________折叠,图三________折叠,若能,“你”的对面是________四、解答题13.操作方格纸中每个小方格的面积都表示1平方厘米.下图是一个长方体展开图的前面、右面和后面.(1)画出这个长方体展开图的另外三个面.(2)这个长方体的表面积是________平方厘米?体积是________立方厘米?14.下面6张纸片能组成一个长方体吗?(1)先想一想,再剪出相同大小的纸片试一试.(2)能将这个长方体的草图画在下面吗?五、应用题15.拓展与研究在用纸板制作的三个正方体中,各有三个面标三个号码1、2、3(如图).请你想一想:哪个正方体展开后,可以得到右面的展开图?究竟想得对不对呢?可以动手试一试.参考答案一、单选题1.【答案】D【解析】【解答】解:图形③折叠后会有重叠的面,只有③不是正方体的展开图。
专题4.1 认识立体图形、展开与折叠【八大题型】(举一反三)(人教版)(解析版)

专题4.1 认识立体图形、展开与折叠【八大题型】【人教版】【题型1 几何体的识别、立体图形的分类】 (1)【题型2 动态认识点、线、面、体】 (5)【题型3 立体图形的计算】 (7)【题型4 几何体展开图的认识】 (9)【题型5 由展开图计算几何体的面积或体积】 (11)【题型6 正方体几种展开图的识别】 (14)【题型7 正方体相对两面上的字】 (17)【题型8 含图案的正方体的展开图】 (19)【知识点1立体图形的认识】1.有些几何图形(如长方体、正方体、圆柱、圆锥、棱柱、棱锥、球等)的各部分不都在同一个平面内,这就是立体图形.立体图形除了按照柱体、锥体、球分类,也可以按照围成几何体的面是否有曲面划分:①有曲面:圆柱、圆锥、球等;②没有曲面:棱柱、棱锥等.2.棱柱的有关概念及其特征:①在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱,棱柱所有侧棱长都相等,棱柱的上下底面的形状、大小相同,并且都是多边形;棱柱的侧面形状都是平行四边形.②棱柱的顶点数、棱数和面数之间的关系:底面多边形的边数n确定该棱柱是n棱柱,它有2n个顶点,3n 条棱,n条侧棱,有n+2个面,n个侧面.【题型1几何体的识别、立体图形的分类】【例1】(2023春·七年级单元测试)下列几何体中,与其他几个不同类的是()A.B.C.D.【答案】C【分析】根据棱柱和圆柱的概念进行区分即可.【详解】A、B、D属于棱柱,C属于圆柱.故选:C.【点睛】本题考查几何体的概念,柱体分为棱柱和圆柱,棱柱所有的侧棱都相等,圆柱没有侧棱,解题的关键是弄清概念.【变式1-1】(2023春·七年级单元测试)下列说法:①棱柱的侧面是长方形;②棱柱的侧面可能是三角形;③正方体的所有棱长都相等;④棱柱的所有侧棱长都相等.其中正确的有_____.(填序号)【答案】③④【分析】要根据各种几何体的特点进行判断.【详解】①当棱柱是侧棱柱时,侧面是平行四边形,不一定是长方形,因是错误的;②棱柱的侧面是平行四边形,棱锥的侧面是三角形,所以是错误的;③正方体的所有棱长都相等,故是正确的;④无论是正棱柱与侧棱柱,侧棱长都相等,所以是正确的;故正确的序号是:③④.故答案为③④.【点睛】本题考查的知识点是认识立体图形,解题关键是准确掌握各种棱柱的特点.【变式1-2】(2023春·七年级单元测试)用线把实物图与相应的几何图形连接起来.【答案】见解析【分析】根据立体图形的相关概念连线即可.【详解】解:连线如图所示:.【点睛】本题考查了立体图形的识别,解题关键是准确识别立体图形.【变式1-3】(2023春·山西晋城·七年级校考期末)综合与实践新年晚会是我们最欢乐的时候,会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.下面是常见的一些多面体:操作探究:(1)通过数上面图形中每个多面体的顶点数(V)、面数(F)和棱数(E),填写下表中空缺的部分:多面体顶点数(V)面数(F)棱数(E)四面体4六面体86八面体812十二面体2030通过填表发现:顶点数(V)、面数(F)和棱数(E)之间的数量关系是,这就是伟大的数学家欧拉(L.Euler,1707—1783)证明的这一个关系式.我们把它称为欧拉公式;探究应用:(2)已知一个棱柱只有七个面,则这个棱柱是棱柱;(3)已知一个多面体只有8个顶点,并且过每个顶点都有3条棱,求这个多面体的面数.【答案】(1)表见解析,V+F−E=2(2)五(3)6【分析】(1)通过观察,发现棱数=顶点数+面数−2;(2)根据棱柱的定义进行解答即可;(3)由(1)得出的规律进行解答即可.【详解】(1)解:填表如下:多面体顶点数(V)面数(F)棱数(E)四面体446六面体8612八面体6812十二面体201230顶点数(V)、面数(F)和棱数(E)之间的数量关系是V+F−E=2,故答案为:V+F−E=2;(2)解:∵一个棱柱只有七个面,必有2个底面,∴有7−2=5个侧面,∴这个棱柱是五棱柱,故答案为:五;=12(条),(3)解:由题意得:棱的总条数为8×32由V+F−E=2可得8+F−12=2,解得:F=6,故该多面体的面数为6.【点睛】本题考查了多面体与棱柱的认识,点线面体的相关概念,正确看出图形中各量之间的关系是解题的关键.【知识点2点、线、面、体的关系】①体与体相交成面,面与面相交成线,线与线相交成点.②点动成线,线动成面,面动成体.③点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.【题型2动态认识点、线、面、体】【例2】(2023春·七年级单元测试)哥哥花瓶的表面可以看作由哪个平面图形绕虚线旋转一周而得到?用线连一连.【答案】见解析【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【详解】解:如图所示:【点睛】本题主要考查的是点、线、面、体、认识几何体,根据平面图形的特点,判断出旋转后的结合体的形状是解题的关键.【变式2-1】(2023·全国·七年级假期作业)几何图形都是由点、线、面、体组成,点动成线,线动成面,面动成体.下列生活现象中,可以反映“面动成体”的是()A.打开折扇B.流星划过夜空C.旋转门旋转D.汽车雨刷转动【答案】C【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【详解】A、打开折扇是“线动成面”,故本选项不合题意;B、流星划过夜空是“点动成线”,故本选项符合题意;C、旋转门的旋转是“面动成体”,故本选项符合题意;D、汽车雨刷的转动是“线动成面”,故本选项不合题意;故选:C.【点睛】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.【变式2-2】(2023春·全国·七年级专题练习)“笔尖在纸上快速滑动写出数字9”运用数学知识解释这一现象为( )A.点动成线B.线动成面C.面动成体D.面与面相交得线【答案】A【分析】这一现象为:点动成线.【详解】解:笔尖在纸上快速滑动写出数字9,用数学知识解释为点动成线.故选A.【点睛】本题考查点,线,面,体之间的关系.熟练掌握点动成线,线动成面,面动成体,是解题的关键.【变式2-3】(2023春·江苏·七年级专题练习)飞机表演“飞机拉线”时,我们用数学的知识可解释为点动成线.用数学知识解释下列现象:(1)流星从空中划过留下的痕迹可解释为______;(2)自行车的辐条运动可解释为_____;(3)一只蚂蚁行走的路线可解释为_____;(4)打开折扇得到扇面可解释为_____;(5)一个圆面沿着它的一条直径旋转一周成球可解释为____.【答案】(1)点动成线;(2)线动成面;(3)点动成线;(4)线动成面;(5)面动成体.【分析】根据点线面体之间的关系为:点动成线,线动成面,面动成体的规律来解答即可.【详解】(1)解:流行是点,光线是线,流星划出一条长线,所以流星从空中划过留下的痕迹可解释为点动成线;(2)解:自行车的辐条是线,在运动过程中形成面,所以自行车的辐条运动可解释为线动成面;(3)解:蚂蚁可看做是点,行走的路线是线,所以一只蚂蚁行走的路线可解释为点动成线;(4)解:折扇合起来时是一条线,打开折扇得到扇面可解释为线动成面;(5)解:一个圆是面,球是立体图形,一个圆面沿着它的一条直径旋转一周成球可解释为面动成体.【点睛】此题主要考查了点、线、面、体,关键是掌握四者之间的关系.【题型3立体图形的计算】【例3】(2023春·全国·七年级专题练习)直角三角形的两直角边分别为8cm、6cm,以其中一条直角边所在直线为轴旋转一周,得到的几何体的体积是多少?(结果保留π)【答案】96πcm3或128πcm3.【分析】分两种情况讨论:①以8cm的直角边为轴旋转;②以6cm的直角边为轴旋转,得到的几何体为圆锥,再利用圆锥的体积公式即可得到答案.【详解】解:①以8cm的直角边为轴旋转,得到的是一个底面半径为6cm,高为8cm的圆锥,π×62×8=96π(cm3),体积是:13②以6cm的直角边为轴旋转,得到的是一个底面半径为8cm,高为6cm的圆锥,π×82×6=128π(cm3),体积是:13答:绕它的一条直角边旋转一周,得到的几何体的体积是96πcm3或128πcm3.【点睛】本题考查了点、线、面、体,圆锥的体积公式,解题关键是理解点、线、面、体,熟记圆锥体积公式.【变式3-1】(2023春·七年级单元测试)从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积.【答案】(1)24;(2)7.【详解】试题分析:本题考查整体的思想及简单几何体表面积的计算能力.从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积;这个零件的体积为原正方体的体积减去挖去的小正方体的体积.试题解析:解:(1)挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24,答:这个零件的表面积为24;(2)23﹣13=8﹣1=7.答:这个零件的体积为7.点睛:本题考查了几何体的表面积与体积,(1)可以有多种解决方法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.【变式3-2】(2023·全国·七年级假期作业)如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为__cm3.(结果保留π)【答案】27π【详解】正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为底面半径为3,高为3的圆柱体,该圆柱体的体积为:π×32×3=27πcm3.故答案为:27π.【变式3-3】(2023春·江苏淮安·七年级统考期末)如图所示,由直角三角形和正方形拼成的四边形.(1)将这个四边形绕图中虚线旋转一周,可以得到一个立体图形,这能说明的事实是(选择正确的一项序号)①点动成线;②线动成面;③面动成体.(2)求得到的立体图形的体积.(V圆柱=πr2ℎ,V圆锥=13πr2ℎ,r为圆柱和圆锥底面半径,h为圆柱和圆锥的高,结果保留π)【答案】(1)③(2)39π【分析】(1)由四边形绕图中虚线旋转一周,可以得到一个立体图形可知是面动成体;(2)分别求出圆柱体和圆锥体的体积,作差即可【详解】(1)∵四边形是平面图形,绕图中虚线旋转一周,可以得到一个立体图形∴是面动成体故选③(2)∵V圆柱=πr2ℎ=π×32×5=45πV圆锥=13πr2ℎ=13×π×32×2=6π∴V=V圆柱−V圆锥=45π−6π=39π【点睛】本题考查面动成体,圆柱和圆锥的体积公式,记忆理解公式是解题的关键【题型4几何体展开图的认识】【例4】(2023•南开区七年级期末)下列图形中,是长方体表面展开图的是()A.B.C.D.【答案】C【分析】根据长方体有六个面,以及Z字型进行判断即可.【详解】解:A中展开图有7个面,不符合要求;B中展开图无法还原成长方体,不符合要求;C正确,故符合要求;D中展开图有5个面,不符合要求,故选:C.【点睛】本题考查了长方体的展开图.解题的关键在于对知识的熟练掌握.【变式4-1】(2023·江苏泰州·统考二模)下列图形中,为棱锥侧面展开图的是()A.B.C.D.【答案】B【分析】由棱锥的侧面展开图的特征可知答案.【详解】棱锥的侧面是三角形.故选:B.【点睛】本题考查了几何体的展开图,熟记常见立体图形的侧面展开图和侧面的特征是解决此类问题的关键.【变式4-2】(2023春·山西吕梁·七年级统考期末)如图是某几何体的平面展开图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.长方体【答案】C【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由侧面是3个矩形,上下为2个三角形,可得该几何体为三棱柱.故选:C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.【变式4-3】(2023春·七年级单元测试)如图,六个平面图形中,有圆柱、圆锥、三棱柱(它的底面是三边相等的三角形)的表面展开图,请你把立体图形与它的表面展开图用线连起来(不考虑尺寸).【答案】见解析【分析】根据立体图形的平面展开图求解即可.【详解】解:如图,【点睛】本题考查立体图形的平面展开图,培养空间想象力是解题关键.【题型5由展开图计算几何体的面积或体积】【例5】(2023春·浙江·七年级专题练习)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【答案】(1)长方体(2)22平方米(3)6立方米【分析】(1)根据几何体的展开图可知,该几何体为长方体;(2)求出各个面的面积,然后相加即可;(3)根据长方体体积公式求出体积即可.【详解】(1)解:该几何体展开图中六个面均为长方形,因此该几何体为长方体.(2)解:3×1×2+3×2×2+2×1×2=22(平方米),答:该几何体的表面积为22平方米.(3)解:3×2×1=6(平方米),答:该几何体的体积为6立方米.【点睛】本题主要考查了长方体的展开图,求长方体的表面积和体积,解题的关键是熟记长方体的展开图.【变式5-1】(2023春·广东茂名·七年级信宜市第二中学校考期中)如图,是某几何体的表面展开图(1)指出这个几何体的名称;(2)求这个几何体的体积.(结果保留π)【答案】(1)圆柱体(2)4000πcm3【分析】(1)根据圆柱体的展开图解答;(2)求出圆柱的底面半径,然后利用圆柱的体积公式列式计算即可得解.【详解】(1)解:根据题意得∶这个几何体是圆柱体;(2)解:由图可知,圆柱的底面圆的半径是20÷2=10cm,体积=π×102×40=4000πcm3.【点睛】本题考查了几何体的展开图,解题的关键是主要利用了圆柱体的展开图和体积公式.【变式5-2】(2023春·全国·七年级专题练习)如图,是一个几何体的表面展开图.(1)该几何体是________;A.正方体B.长方体C.三棱柱D.四棱锥(2)求该几何体的体积.【答案】(1)C;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C.×2×2=2;该几何体的高为2;(2)由图已知:该几何体底面积为等腰三角形面积=12故该几何体体积=底面积×高=2×2=4.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.【变式5-3】(2023·湖北黄冈·七年级专题练习)已知一个圆柱的侧面展开图为如图所示的长方形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π【答案】C【分析】分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解:【详解】解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选C.【点睛】本题考查了求圆柱展图的底面半径,分类讨论是解题的关键.【知识点3正方体的平面展开图】正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型有6种;二三一型有3种;三三型有1种;二二二型有一种.正方体展开图口诀:①一线不过四;田凹应弃之;②找相对面:相间,“Z”端是对面;③找邻面:间二,拐角邻面知.【题型6正方体几种展开图的识别】【例6】(2023·吉林长春·东北师大附中七年级期末)下列图形中,不是正方体的平面展开图的是()A.B.C.D.【答案】B【分析】根据正方体的展开图对本题进行判断即可.【详解】解:根据正方体的十一种展开图可知,B选项不能折成正方体,故选:B.【点睛】本题主要考查的是正方体的展开图,熟记十一种模型规律,以及不能折叠的“凹”,“田”两种特殊形态是解题的关键.【变式6-1】(2023·河北沧州·校考模拟预测)如图,点P,Q是一正方体展开图上的两个顶点,则顶点P,Q在正方体上的位置标记正确的是()A.B.C.D.【答案】C【分析】根据正方体展开图直接判断即可得到答案;【详解】解:由图像可得,P,Q在相对的两面,且与相邻正方形顶点重合,故P,Q在同一条棱上,故选C;【点睛】本题考查正方体展开图,解题的关键是熟练掌握展开图的相对相邻面及相邻棱之间的关系.【变式6-2】(2023·江苏南京·统考二模)如图,将左图的正方形纸盒切去一角得到下图,下列选项中,不能作为纸盒剩余部分的展开图的是()A.B.C.D.【答案】C【分析】根据正方体展开图的特征,由条件结合图形验证是否能拼成正方体,逐项判断即可得出结论.【详解】解:根据正方体的展开图的特征可知:A.图形是中间四个连一行,两边随意摆的形式,符合正方体的展开图,所以A选项正确;B.图形是二三相连错一个,三一相连随意的形式,符合正方体的展开图,所以B选项正确;C.图形是三个两排一对齐,不符合正方体的展开图,无法拼成正方体,所以C选项不正确;D.图形是两两相连各错一的形式,符合正方体的展开图,所以D选项正确;故选:C.【点睛】本题主要考查了正方体展开图的特征,熟练掌握正方体展开图的各种形式,是解题的关键.【变式6-3】(2023·河北衡水·校联考二模)如图,将一个无盖正方体盒子展开成平面图形的过程中,需要剪开的棱的条数是()A.2条B.3条C.4条D.5条【答案】C【分析】根据无盖正方体的棱的条数及展开图之间的棱计算即可得到答案.【详解】解:由题意可得,无盖正方体连接相邻面的棱:8条,展开图连接相邻面的棱:4条,8−4=4,∴要剪开4条棱,故选B.【点睛】本题考查正方体的棱及展开图棱的关系,解题的关键是根据图形得到两个棱的数量.【题型7正方体相对两面上的字】【例7】(2023春·广东茂名·七年级统考期末)有同样大小的三个立方体骰子,每个骰子的展开图如图1所示,现在把三个骰子放在桌子上(如图2),凡是能看得到的点数之和最大是_______.【答案】51【分析】观察图形可知,1和6相对、2和5相对,3和4相对;要使能看到的纸盒面上的数字之和最大,则把第一个正方体的数字1的面与第二个正方体的数字2的面相连,把数字2的面放在下面,则第一个图形露出的数字分别是3、4、5、6;第二个正方体的数字1面与第三个正方体的数字1的面相连,数字3的面放在下面,则第二个正方体露在外面的数字是4、5、6,第三个正方体露在外面的数字就是3、4、5、6,据此可得能看得到的点数之和最大值.【详解】解:根据题意得:露在外面的数字之和最大是:3+4+5+6+4+5+6+3+4+5+6=51,故答案为:51.【点睛】本题主要考查学生的空间想象能力和推理能力,也可动手制作一个正方体,根据题意在各个面上标上数字,再确定对面上的数字,可以培养动手操作能力和空间想象能力.【变式7-1】(2023春·山西吕梁·七年级统考期末)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“孝”字一面相对面上的字是()A.和B.谐C.美D.丽【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中有“和”字的一面相对面上的字是“义”,“孝”字的一面相对面上的字是“丽”,“谐”字的一面相对面上的字是“美”.故选:D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【变式7-2】(2023春·七年级单元测试)如图,已知一个正方体的六个面上分别写着六个连续的正整数,且每个相对面上的两个数的和都相等,图中所能看到的数是20,23和24,求这六个正整数的和.【答案】135【分析】根据六个面上的数是连续整数可得另外三个面上的数有两个是21,22,再根据已知数有23,24可知另一个数不可能是19,只能是25,然后求解即可.【详解】解:∵六个面上分别写着六个连续的整数,∴看不见的三个面上的数必定有21,22,若另一个面上数是19,则23与20是相对面,所以,另一面上的数是25,此时20与25相对,21与24相对,22与23相对,所以,这六个正整数的和为3×(20+25)=135.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题,难点在于确定出看不见的三个面中有一个是25.【变式7-3】(2023春·七年级单元测试)请根据图中(1)(2)两图所示的数字,在图(3)的空格中应如何填数字.【答案】见解析【分析】根据图(3)判断出4与9是相对面,根据(1)(2)判断出5、6是相对面,再根据图(2)8在前面时,6在上面,4在左面判断出7在4的左边,8在4的右边,然后填写即可.【详解】解:如图所示.【点睛】本题考查了正方体相对面上的文字,难点在于判断出7、8的位置.【题型8含图案的正方体的展开图】【例8】(2023春·江西吉安·七年级统考期末)如图所示,正方体的展开图为()A.B.C.D.【答案】A【分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【详解】解:根据正方体表面展开图的“相对的面”的判断方法可知,“<”与“等号”不是相对的面,故选项B不合题意;“当“圆圈”在前面时,“等号”在右面时,上面的“不等号”的方向与题意不一致,故选项C不合题意;“等号”方向与“圆圈”与题意不一致,故选项D不合题意;通过折叠可得,选项A符合题意.故选:A.【点睛】题考查几何体的展开图,掌握正方体展开图的特征是正确判断的前提.【变式8-1】(2023春·七年级单元测试)将一个小正方体按图中所示的方式展开,则在展开图中表示棱a的线段可以是()A.线段CD B.线段EF C.线段AD D.线段BC【答案】C【分析】将原图复原找出对应边.【详解】解:在正方体中,阴影三角形面的对面为面ABCD,边a对应的边为边AD.故选:C.【点睛】本题考查几何体的展开图,解题关键是具备一定的空间想象力.【变式8-2】(2023春·全国·七年级专题练习)如图,正方体纸盒的底面和侧面的下半部分涂有黑色漆,下列不是由它展开得到的表面展开图的是_________.(填序号)【答案】②③④【分析】根据正方体展开图的特点找出下底面和上底面,再根据涂有黑色漆的部分作出选择即可.【详解】解:正方体纸盒的底面和侧面的下半部分涂有黑色漆,将它展开得到的表面展开图如下:则不是由正方体纸盒展开得到的表面展开图的是②③④,故答案为:②③④.【点睛】本题考查了正方体的展开图,熟练掌握正方体展开图的特点是解题关键.【变式8-3】(2023春·全国·七年级专题练习)如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同_____.【答案】(2)(4).【分析】首先确定每个图形的对面是谁,然后再找同一个基准图形,将其周围四个图案按照顺时针或逆时针的顺序排列,就会发现其不同,从而找到答案.【详解】解:∵(1)菱形对面是×,正方形对面是※,+对面是○;(2)菱形对面是×,○对面是※,+对面是正方形;以※为正面,(上,左,下,右)=(+,X,正方形,菱形);(3)菱形对面是×,○对面是※,+对面是正方形;以※为正面,(上,左,下,右)=(+,菱形,正方形,X);(4)菱形对面是×,○对面是※,+对面是正方形;以※为正面,(上,左,下,右)=(+,X,正方形,菱形).∴两个完全相同的是(2)(4).故答案为:(2)(4).【点睛】本题考查立体图形的展开图.培养了学生的立体思维与空间想象能力,注意找同一个基准图形,再将其周围四个图案按照顺时针或逆时针顺序排列.。
五年级数学北师大版下册课时练第2章《展开与折叠》(2)(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第2单元长方体(一)展开与折叠一、单选题1.在下面的硬纸中,能折成一个正方体的是()A. B. C. D.2.下面的图形中,()不能折成正方体。
A. B. C.3.把下图折起来,可以折成一个正方体,和1号相对的面是()号。
A.4B.5C.64.下图是一个正方体的展开图这个正方体3号的对面是()号面。
A.1B.2C.4D.5二、判断题5.图形,一定能围成正方体。
()6.长方体的6个面中,最多只能有4个面是正方形。
()7.如果一个长方体的底面是正方形,那么它的四个侧面一定完全相同。
()三、填空题8.下图是由四个完全一样的正方体拼成的长方体。
每个正方体的六个面分别涂着红、紫、黄、绿、蓝、黑六种颜色,判断相对的面所涂的颜色.黑的对面是________,黄的对面是________,紫的对面是________.9.如下图,这是一个棱长为2cm的正方体展开图,数字3所对的面是数字________,这个正方体的表面积是________cm2。
专题-展开与折叠测试-初中数学七年级上册同步讲练

专题1.2展开与折叠一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.是正方体的展开图的是()A.B.C.D.2.下列各图中,经过折叠不能围成一个棱柱的是()A.B.C.D.3.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体4.如图是一个正方体展开图,把展开图折叠成正方体后,“抗”字一面相对面上的字是()A.新B.冠C.病D.毒5.(2020·柘城县实验中学初三二模)下列图形中为正方体的平面展开图的是()A.B.C.D.6.如图是某几何体的展开图,则该几何体是()A.四棱锥B.三棱锥C.四棱柱D.长方体7.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.8.如图是一个正方体的表面展开图,在这个正方体中,与点A重合的点为()A.点C和点N B.点B和点M C.点C和点M D.点B和点N 9.下列图形经过折叠不能围成棱柱的是()A.B.C.D.10.下列图形不可能是长方体展开图的是()A.B.C.D.11.如果有一个正方体,它的展开图可能是下列四个展开图中的()A.B.C.D.12.如图是一个正方形盒的展开图,若在其中的三个正方形a、b、c内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形a、b、c内的三个数依次为()A.3,0,4-B.0,3,4-C.3-,0,4D.3,4-,013.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4B.6C.12D.15==;F,H为CD边14.如图所示,在长方形纸片ABCD中,E,G为AB边上两点,且AE EG GB==.沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH 上两点,且DF FH HC折叠,使B落在点E上,点C落在点F上.叠完后,剪一个直径在EF上的半圆,再展开,则展开后的图形为()A.B.C.D.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.如图为某几何体的展开图,该几何体的名称是___.16.将面积为225cm2的正方形硬纸片围成圆柱的侧面,则此圆柱的底面直径为______cm(结果保留π).17.下列各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样的是____________.(填序号)18.一个小立方块的六个面分别标有数字1,-2,3,-4,5,-6,从三个不同方向看到的情形如图,则如图放置时的底面上的数字之和等于_____。
展开图折叠成几何体-北京习题集-教师版

展开图折叠成几何体(北京习题集)(教师版)一.选择题(共5小题)1.(2019•朝阳区模拟)把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民2.(2017秋•西城区期末)某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是()A.B.C.D.3.(2018•平谷区一模)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥4.(2017秋•朝阳区期末)下列四组图中,每组左边的平面图形能够折叠成右边的立体图形的是()A.①②B.①④C.②D.③5.(2017•海淀区一模)下列选项中,左边的平面图形能够折成右边封闭的立体图形的是() A.B.C.D.二.填空题(共3小题)6.(2019秋•石景山区期末)如图,①~④展开图中,能围成三棱柱的是.7.(2017秋•石景山区期末)小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分),经折叠后发现还少一个面.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).8.(2010春•西城区期末)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为25cm,宽为x cm,为了保证能折成图④的形状(即纸条两端均超出点)P,那么x的取值范围是cm.三.解答题(共3小题)9.(2019秋•怀柔区期末)在把如图折叠成正方体后,(1)AB与GB的位置关系是;(2)CB与GB的位置关系是;(3)AB与BC的位置关系是,理由解释为.10.(2007秋•东城区期末)小芳制作一个封闭的正方体盒子,她先用了5个大小一样的正方形制成如图所示的实线部分,经折叠后发现少了一个面,请你接一个正方形,使实线所组成的图形能拼成一个封闭的正方体.要求用两种方法拼接,并分别把所接的正方形用斜线涂成阴影,画在下面的两个图中.11.(2005•海淀区)印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为4页,再对折一次为8页,连续对折三次为16页, ;然后再排页码.如果想设计一本16页的毕业纪念册,请你按图1、图2、图3(图中的1,16表示页码)的方法折叠,在图4中填上按这种折叠方法得到的各页在该面相应位置上的页码.展开图折叠成几何体(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2019•朝阳区模拟)把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民【分析】先根据所给图形确定出翻滚后小正方体底面的文字,然后找出底面的对面即可.【解答】解:由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选:A.【点评】本题主要考查的是正方体相对两个面上的文字,找出翻滚后底面的文字是解题的关键.2.(2017秋•西城区期末)某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是()A.B.C.D.【分析】观察正方体的展开图中两种阴影部分的位置即可作出判断.【解答】解:观察选项,只有选项D的展开图符合题意.故选:D.【点评】本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.另外,本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.3.(2018•平谷区一模)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥【分析】由平面图形的折叠及三棱柱的展开图解题.【解答】解:两个三角形和三个矩形可围成一个三棱柱.故选:A.【点评】本题考查图形的折叠以及三棱柱的基本性质,掌握好基本性质即可.4.(2017秋•朝阳区期末)下列四组图中,每组左边的平面图形能够折叠成右边的立体图形的是()A.①②B.①④C.②D.③【分析】根据几何体的展开图,可得答案.【解答】解:①不能折叠成正方体,②能折叠成长方体,③不能折成圆锥,④不能折成四棱锥,故选:C.【点评】本题考查了展开图折叠成几何体,熟记常见几何体的展开图是解题关键.5.(2017•海淀区一模)下列选项中,左边的平面图形能够折成右边封闭的立体图形的是() A.B.C.D.【分析】根据立体图形平面展开图的特征进行判断即可.【解答】解:A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,可得B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中,有一个圆,故D选项错误.故选:B.【点评】本题主要考查了展开图折叠成几何体,解题时注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.二.填空题(共3小题)6.(2019秋•石景山区期末)如图,①~④展开图中,能围成三棱柱的是②.【分析】依据展开图的特征,即可得到围成的几何体的类型.【解答】解:图①能围成圆锥;图②能围成三棱柱;图③能围成正方体;图④能围成四棱锥;故答案为:②.【点评】本题主要考查了展开图折成几何体,通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.7.(2017秋•石景山区期末)小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分),经折叠后发现还少一个面.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示).【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,答案不唯一.【解答】解:答案不唯一,如图所示:【点评】考查了展开图折叠成几何体,正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.8.(2010春•西城区期末)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为25cm,宽为x cm,为了保证能折成图④的形状(即纸条两端均超出点)P,那么x的取值范围是05<<cm.x【分析】立体图形问题可以转化为平面图形问题解决.将图形展开我们可看到,超出P点的线段有两条与x相等,还有两条是以x为边长的正方形的对角线,列出不等式解答即可.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.【解答】解:展开后AP与BM之间的部分有五个边长为x的正方形,根据题意列不等式可得0525<<,x解得05<<.x故答案为:05<<.x【点评】本题主要考查展开图折叠成几何体.通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们展开以后的形状.三.解答题(共3小题)9.(2019秋•怀柔区期末)在把如图折叠成正方体后,(1)AB与GB的位置关系是垂直;(2)CB与GB的位置关系是;(3)AB与BC的位置关系是,理由解释为.【分析】根据正方体的展开与折叠、两直线的位置关系解答即可.【解答】解:(1)AB与GB的位置关系是垂直;(2)CB与GB的位置关系是垂直;(3)AB与BC的位置关系是重合,理由解释为:过一点有且只有一条直线与已知直线垂直.故答案为:垂直,垂直,重合,过一点有且只有一条直线与已知直线垂直.【点评】本题考查了正方体的展开与折叠、两直线的位置关系.熟练掌握两直线的位置关系是解题的关键.10.(2007秋•东城区期末)小芳制作一个封闭的正方体盒子,她先用了5个大小一样的正方形制成如图所示的实线部分,经折叠后发现少了一个面,请你接一个正方形,使实线所组成的图形能拼成一个封闭的正方体.要求用两种方法拼接,并分别把所接的正方形用斜线涂成阴影,画在下面的两个图中.【分析】根据正方体展开图特点补图即可.【解答】解:如图所示:.【点评】此题主要考查了正方体展开图,关键是掌握正方体展开图的特点.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.11.(2005•海淀区)印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为4页,再对折一次为8页,连续对折三次为16页, ;然后再排页码.如果想设计一本16页的毕业纪念册,请你按图1、图2、图3(图中的1,16表示页码)的方法折叠,在图4中填上按这种折叠方法得到的各页在该面相应位置上的页码.【分析】此题可以实际动手操作:首先按要求进行对折,按页数标上数字,然后展开,即可快速准确地看到数字的对应位置的数字.【解答】解:【点评】此题是动手操作题,让学生实际动手操作,直观易解.。
展开与折叠的练习题
展开与折叠的练习题一、选择题1、在下面的图形中,()是正方体的表面展开图.2、下面的图形通过折叠不能围成一个长方体的是()3、如图1–10所示的立方体,若是把它展开,能够是以下图形中的()4、圆锥的侧面展开图是()A、三角形B、矩形C、圆D、扇形二、填空题1、人们通常依照底面多边形的_将棱柱分为三棱柱、四棱柱、五棱柱……因此,长方体和正方体都是_____棱柱2、若是一个棱往是由12个面围成的,那么那个棱柱是____棱柱.3、一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长4cm,那么它的所有侧面的面积之和为______.4、哪一种立体图形的表面能展开成下面的图形?5、一个直棱柱共有n个面,那么它共有______条棱,______个极点三、想一想.1、底面是三角形、四边形、八边形的棱柱各有多少条棱?2、下面10个图形中哪些能够折成没有盖子的五个面的小方盒?请指明.长方体表面积的练习题一、填空。
一、正方体是由()个完全相同的()围成的立体图形,正方体有()条棱,它们的长度都(),正方体有()个极点。
二、因为正方体是长、宽、高都()的长方体,因此正方体是()的长方体。
3、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,那个正方体的棱长总和是()厘米。
4、相交于一个极点的()条棱,别离叫做长方体的()、()、()。
五、一根长96厘米的铁丝围成一个正方体,那个正方体的棱长是()厘米。
六、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。
高是()厘米。
7、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
八、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
九、一个长方体最多能够有()个面是正方形,最多能够有()条棱长度相等。
二、应用题。
一、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?二、用一根铁丝恰好焊成一个棱长8厘米的正方体框架,若是用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?3、天天游泳池,长25米,宽10米,深米,在游泳池的周围和池底砌瓷砖,若是瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?4、把棱长12厘米的正方体切割成棱长是3厘米的小正方体,能够切割成多少块?五、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,能够做如此的硬纸盒多少个?(不计接口)六、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?7、一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?八、.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸?九、一只无盖的长方形鱼缸,长米,宽米,深米,做这只鱼缸至少要用玻璃多少平方米?10、.用36厘米的铁丝焊接成一个正方体框架,那个正方体棱长是多少?若是用纸糊满框架的表面,至少需要纸多少平方厘米?1二、.用一根铁丝恰好焊成一个棱长8厘米的正方体框架,若是用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?13、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做如此一对鱼缸需要多少平方厘米的玻璃?14、楼房外壁用于流水的水管是长方体。
2023中考九年级数学分类讲解 第十三讲 图形的变换、立体图形的展开与折叠(含答案)(全国通用版)
第十三讲图形的变换、立体图形的展开与折叠专项一轴对称与中心对称知识清单1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做对称点.2.轴对称图形:如果一个平面图形沿一条直线,直线两旁的部分能够互相,这个图形就叫做轴对称图形,这条直线就是它的.3.轴对称的性质:(1)关于某条直线对称的两个图形;(2)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴,对应线段,对应角.4.中心对称:把一个图形绕着某一点旋转,如果它能够与另一个图形,那么就说这两个图形关于这个点对称或中心对称,这个点叫做.5.中心对称图形:把一个图形绕某一个点旋转,如果旋转后的图形能够与原来的图形,那么这个图形叫做中心对称图形,这个点就是它的.6.中心对称的性质:(1)成中心对称的两个图形;(2)成中心对称的两个图形,对应线段,对应角,对应点的连线都经过,且被对称中心.考点例析例1以下是我国部分博物馆的标志图案,其中既是轴对称图形又是中心对称图形的是()A B C D分析:根据轴对称图形及中心对称图形的定义逐项判断即可.例2如图1,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,P是线段AC上一动点,点M在线段AB上.当AM=13AB时,PB+PM的最小值为()A.B.C.2D.3图1 图2分析:如图2,作点B关于AC的对称点B',连接B'M交AC于点P,此时PB+PM的值最小,为B'M 的长.在Rt△ABC中,由∠A=30°,AB=6,可求得BC,进而求得B'B,过点B'作B'H⊥AB于点H,解Rt△B'HB,得B'H,BH的长,结合AM=13AB,可求得MH,最后在Rt△B'HM中,利用勾股定理求出B'M,即可得解.归纳:在一条直线同侧有两点,则直线上存在到两点的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线的对称点,对称点与另一点的连线与直线的交点即为所求点.跟踪训练1.下列图形中,是轴对称图形但不是中心对称图形的是()A B C D2.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.3.如图,在△ABC中,AC=BC,∠B=38°,D是AB边上一点,点B关于直线CD的对称点为B′.若B′D∥AC,则∠BCD的度数为.第3题图第4题图4.如图,在菱形ABCD中,BC=2,∠C=120°,Q为AB的中点,P为对角线BD上任意一点,则AP+PQ 的最小值为.专项二图形的平移知识清单1.平移:在平面内,把一个图形由一个位置整体沿某一直线方向移动到另一个位置,这样的图形运动叫做平移.2.平移两要素:平移的和平移的.3.平移的性质:(1)平移不改变图形的形状和大小,即平移前后的两个图形;(2)平移前后,对应线段(或在同一条直线上)且,对应角;(3)平移前后,连接对应点的线段(或在同一条直线上)且.考点例析例如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.分析:由平移的性质可知BE=CF,结合题中给出的数据计算即可.跟踪训练1.四盏灯笼的位置如图所示,已知点A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3.5,b).若平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位长度B.将C向左平移4个单位长度C.将D向左平移5.5个单位长度D.将C向左平移3.5个单位长度第2题图2.在平面直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位长度得到点A2,则点A2的坐标为.3.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(﹣1,1)和(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是.专项三图形的旋转知识清单1.旋转:在平面内,把一个图形绕着平面内某一点O转动一个角度,这样的图形运动叫做旋转,点O 叫做,转动的角叫做.2.旋转三要素:、和.3.旋转的性质:(1)旋转不改变图形的形状和大小,即旋转前后的两个图形;(2)对应点到的距离相等;(3)对应点与旋转中心所连线段的夹角等于.考点例析例如图,将△ABC绕点A逆时针旋转55°得到△ADE.若∠E=70°,AD⊥BC于点F,则∠BAC的度数为( )A .65°B .70°C .75°D .80°分析:由旋转的性质,得∠BAD =55°,∠C =∠E =70°,再由直角三角形的性质,得∠DAC 的度数,进而得解.归纳:图形的旋转为全等变换,解题时可充分利用其性质,得出线段的长或角的度数.另外,注意旋转角为60°时考虑运用等边三角形的性质,旋转角为90°时考虑运用等腰直角三角形的性质.跟踪训练1.如图,在△AOB 中,AO =1,BO =AB =32.将△AOB 绕点O 逆时针方向旋转90°,得到△A ′OB ′,连接AA ′,则线段AA ′的长为( )A .1BC .32 D第1题图 第2题图2.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A 'B 'C ,点B 的对应点B '在AC 边上(不与点A ,C 重合),则∠AA 'B '的度数为( )A .αB .α﹣45°C .45°﹣αD .90°﹣α3.如图,在平面直角坐标系中,线段OA 与x 轴正方向的夹角为45°,且OA =2.若将线段OA 绕点O 沿逆时针方向旋转105°得到线段OA ′,则点A ′的坐标为( )A .)1-B .(-C .()D .(1,第3题图 第4题图 4.如图,在平面直角坐标系中,点C 的坐标为(﹣1,0),点A 的坐标为(﹣3,3),将点A 绕点C 顺时针旋转90°得到点B ,则点B 的坐标为 .专项四立体图形的展开与折叠知识清单正方体的表面展开图考点例析例1 下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个分析:根据正方体的表面展开图的特征解答即可.归纳:判断正方体表面展开图的方法:(12)若展开图有三行,3布在该图形上下两侧.借助这些方法可采用排除法快速判断正方体的表面展开图.例2 如图是一个正方体的表面展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点解答即可.归纳:判断正方体表面展开图的相对面的方法:(1)在一条直线上的三个正方形,首尾两个正方形一定是正方体的相对面;(2)由几个小正方形组成的“Z”字型两端的小正方形是相对面.正方体的每个面都有且只有一个相对面,所以在展开图中分析每个小正方形相对面的个数也可用来判断其是否能围成正方体.跟踪训练1.下列四个图形中,不能作为正方体的展开图的是()A B C D2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱第2题图第3题图3.一个骰子相对两面的点数之和为7,它的展开图如图所示,则下列判断正确的是()A.A代表B.B代表C.C代表D.B代表专项五投影知识清单1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.投影分为投影(由平行光线形成的投影,如太阳光线)和投影(由点光源发出的光线形成的投影).3.在平行投影中,当投影线与投影面时,物体在投影面上的投影叫做正投影.平面图形的正投影的规律:平行形不变,倾斜形改变,垂直成线段.考点例析例在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8 m的竹竿的影长为3 m,某一高楼的影长为60 m,那么这幢高楼的高度是()A.18 m B.20 m C.30 m D.36 m分析:设此高楼的高度为x m,根据同一时刻物高与影长成正比例列出关于x的比例式,求解即可.归纳:投影中蕴含着相似三角形,借助相似三角形的性质进行相关计算可使问题迎刃而解.跟踪训练1.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A B C D2.学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7 m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8 m到达点D处,测得影子DE长为2 m,则路灯灯泡A 离地面的高度AB为m.第2题图专项六三视图知识清单1.对一个物体在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做.2.画三视图时,三个视图都要放在正确的位置,并且注意视图与视图的长对正,视图与视图的高平齐,视图与视图的宽相等.考点例析例1一个几何体如图1所示,它的左视图是()A B C D 图1分析:左视图是由左向右观察物体的视图.归纳:画三视图时一定要将物体的边缘、棱、顶点都体现出来,并规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线,不能漏掉.例2 由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图2所示,则搭成该几何体所用的小立方块的个数可能是()A.4个B.5个C.7个D.8个图2分析:由左视图第一行有1个正方形,结合俯视图可知几何体上面一层有1或2个小立方块,由左视图第二行有2个正方形,结合俯视图可知几何体下面一层有4个小立方块,所以该几何体有5或6个小立方块.例3 如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π图3分析:观察三视图可知该几何体是空心圆柱,根据圆柱体积公式结合图中数据计算即可.归纳:根据三视图计算几何体的表面积或体积时,首先要确定几何体的形状,若是常见几何体,根据几何体的表面积公式或体积公式直接计算即可;若是较复杂的组合体,可拆分成常见几何体再进行计算.注意要准确判断三视图中的已知数据在实物图中对应的含义.跟踪训练1.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.长方体C.球D.圆柱第1题图第2题图2.如图所示的几何体是由5个大小相同的小正方体搭成的,其左视图是()A B C D3.如图,该几何体的左视图是()A B C D第3题图第4题图4.如图是由若干个相同的小立方体搭成的几何体的主视图和左视图,则搭成这个几何体的小立方体的个数不可能是( )A .3B .4C .5D .65.我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是( )A .7.2πB .11.52πC .12πD .13.44π第5题图 第6题图 6.已知某几何体的三视图如图所示,则该几何体的侧面展开图中圆心角的度数为( )A .214°B .215°C .216°D .217°专项七 图形变换中的分类讨论思想知识清单在解决图形变换的有关问题时,由于经过变换的图形位置或形状不确定常导致问题的结果有多种可能,这时就需要把待求解的问题根据图形变换的可能性结合题目要求进行分类讨论,分类讨论时要选择恰当的分类标准,做到不重复、不遗漏.考点例析例 如图1,已知AD ∥BC ,AB ⊥BC ,AB =3,E 为射线BC 上一动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于M ,N 两点.当B ′为线段MN 的三等分点时,BE 的长为( )A .32BC .32D图1分析:当MB '=13MN 时,如图2所示;当NB '=13MN 时,如图3所示.可设BE =x ,由折叠的性质表示出相关线段,再在Rt△B'EN中,利用勾股定理列方程即可求得BE的长.图2 图3跟踪训练1.如图,在△AOB中,OA=4,OB=6,AB=△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.()4-或()-C.()-或()2-D.(2,-或(-第1题图第3题图2.)在矩形ABCD中,AB=2 cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD 交于点E,且DE=3 cm,则矩形ABCD的面积为cm2.3.如图,腰长为2的等腰三角形ABC中,顶角∠A=45°,D为腰AB上的一个动点,将△ACD沿CD折叠,点A落在点E处.当CE与△ABC的某一条腰垂直时,BD的长为.参考答案专项一轴对称与中心对称例1 A 例2 B1.D 2.(2,﹣4)3.33°4专项二图形的平移例 31.C 2.(0,﹣2) 3.(4,﹣1)专项三图形的旋转例 C1.B 2.C 3.C 4.(2,2)专项四立体图形的展开与折叠例1 C 例2 D1.D 2.A 3.A专项五投影例 D1.D 2.8.5专项六三视图例1 B 例2 B 例3 B1.D 2.A 3.D 4.D 5.C 6.C专项七图形变换中的分类讨论思想例 D1.C 2.(或(6-3或- 11 -。
5.3 图形的展开与折叠课时训练(含答案)
5.3展开与折叠姓名_____________班级____________学号____________分数_____________一、选择题1 .如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是( )A.和B.谐C.社D.会2.下列各图中,( )是长方体的展开图A、B、C、D、3 .圆锥侧面展开图可能是下列图中的()4 .下列图形中,是正方体表面展开图的是( ).(A) (B) (C) (D)A.B.C.D.图1图25.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )二、填空题6.一个长、宽、高分别为15cm ,10cm ,5cm 的长方体包装盒的表面积为________cm 2. 7.将一个立方体展开后如图所示 ,请在空格处填上适当的整数,使相对的面的两数积为-24(要求数字不能重复使用)。8.如图,长方体的长BE =5cm ,宽AB =3cm ,高BC =4cm ,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是___________cm 。EDCBA9.如图是一个正方体的表面展开图,已知正方体相对两个面上的数字互为倒数,则a =_______,b =_______,c =_________.三、解答题10.如图是一个多面体展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A 在多面体的底部,那么在上面的一面是_____ (2)如果面F 在前面,从左面看面B ,那么在上面的一面是___OOO OABCD图4 abc12.53A B CDEF13cm14cm高长 宽(3)从右面看是面C ,面D 在后面,那么在上面的一面是____11.某长方体包装盒的展开图如图所示.如果长方体盒子的长比宽多4cm ,求这个包装盒的体积.。
七年级数学上册认识图形,展开与折叠练习题(附答案)
北师版七年级数学上册——同步题型第一章丰富的图形世界专题1.1生活中的立体图形第2课时点、线、面的认识一、题型过关知识点❶点、线、面、体的关系1.笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为( )A.点动成线B.线动成面C.面动成体D.以上都不对2.下雨时汽车的雨刷把玻璃上的雨水刷干净属于下列哪个选项的实际应用( ) A.点动成线B.线动成面C.面动成体D.以上都不对3.把一张纸折叠,展开后得到一条折痕,这个现象用数学知识可解释为( ) A.面与面相交成线B.线动成面C.面动成体D.点动成线知识点❷立体图形的构成4.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )5.下列图形分别由几个面围成的,有几个平面和几个曲面.图①由______个面围成,分别有______个平面,_____个曲面;图②由_______个面围成,分别有______个平面,_____个曲面;图③由_____个面围成,分别有_____个平面,______个曲面.二、探索提升6.观察如图所示的棱柱,它的侧面和一个底面相交成( )A.3条线B.4条线C.5条线D.6条线7.一个几何体只有一个顶点,一个侧面,一个底面,则这个几何体可能是( ) A.棱柱B.棱锥C.圆锥D.圆柱8.下图中几何体没有曲面的是( )9.下列图形中,图(a)是正方体木块,把它切去一块,得到如图(b),(c),(d),(e)的木块.(1)我们知道,图(a)的正方体木块有8个顶点,12条棱,6个面.请你将图(b),(c),(d),(e)中木块的顶点数、棱数和面数填入下表:(2)根据上表中各种木块的顶点数、棱数、面数之间的数量关系可归纳出一个规律,请你试写出顶点数x、棱数y、面数z之间的数量关系.三、回顾与总结方法技能:1.图形是由点、线、面构成的;2.面与面相交得到线,线与线相交得到点;3.点动成线,线动成面,面动成体.易错提示:线分直线和曲线;面分平面和曲面.(参考答案)1. A2. B3. A4. A5.6,6,0,3,2,1,2,1,16. B7. C8. B9.解:(1)6 9 5 8 12 6 8 13 7 10 15 7(2)x+z-y=2北师版七年级数学上册——同步题型第一章丰富的图形世界专题1.2展开与折叠第1课时正方体的展开与折叠一、题型过关知识点❶正方体的展开与折叠1.(长春中考)下列图形中,可以是正方体表面展开图的是( )2.(达州期末)下列平面图形不能够围成正方体的是( )3.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的①,②,③,④某一位置,所组成的图形不能围成正方体的位置是( )A.① B.② C.③ D.④4.(教材P9习题4改编)下面都是由五个相同的小正方形组成的图形,请你在各图中分别添加一个小正方形,使它们能折叠成小正方体.知识点❷利用正方体的展开图解答相关问题5.(达州期末)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是( )A.伟 B.大 C.的 D.国6.(达州月考)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )7.正方体的六个面上分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是( )A.1 B.5 C.4 D.38.如图是一个正方体的展开图,如果正方体相对的面上标注的值相等,那么x=_______,y=_______.9.在如图的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=____,b=_____,c=______.二、探索提升10.将一正方体纸盒沿如图所示的裁剪线剪开,展开成平面图形,其展开图的形状为( )11.(淄博中考)将图①围成图②的正方体,则图②中的红心“♥”标志所在的正方形是正方体中的( )A.面CDHE B.面BCEF C.面ABFG D.面ADHG12.(无锡中考)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子表面展开(外表面朝上),展开图可能是( )13.将左图折叠起来围成一个正方体,应该得到( )14.图①是一个小正方体的表面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.梦 B.水 C.城 D.美15.(达州期中)在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是__________________.16.如图所示是一张3×5的方格纸,现将其剪为三部分,使每部分都可以拆成一个无盖的小方盒,请问该如何剪?在图中画出裁剪线.17.把立方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见表:现将上述大小相同,颜色、花朵分布也完全相同的四个立方体拼成一个水平放置的长方体,如图所示.问长方体的下底面共有多少朵花?三、回顾与总结方法技能:将正方体沿不同的棱展开,共有11种展开图,141型6种,231型3种,33型1种,222型1种.易错提示:注意在正方体展开图中,对面相隔不相邻.北师版七年级数学上册——同步题型第一章丰富的图形世界专题1.2展开与折叠第1课时正方体的展开与折叠(参考答案)10.D11.B12.A13.解:14.A15.B16.B17.x=4,y=10.18.a=6,b=2,c=4.19.B20.A21.D22.D23.A24.剪去1号、2号或3号小正方形25.解:17.解:因为长方体是由大小相同,颜色、花朵分布也完全相同的四个立方体拼成,所以根据图中红色的面,可以确定出一个小立方体各个面的颜色为:红色面对绿色面,黄色面对紫色面,蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有17朵.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.下列图形中,哪一个是正方体的展开图( )B .C.D.B .C.D..B.C.D..B.C.D.B .C.D.B .C.D..下列展开图中,不能围成几何体的是( ).B.C.D..B C D.B .C.D.B .C.D.B .C.D..如果有一个正方体,它的展开图可能是下面四个展开图中的( )B.C.D.B .C.D..B.C.D.15.如图,正方体纸盒的底面和侧面的下半部分涂有黑色漆,将它展开得到的表面展开图是( ).B.C.D..B.C.D.B .C.D.B .C.D.B .C.D..已知平面展开图如图所示,其中是三棱柱的是( )B .C.D.B.下列4个图形,经过折叠可以围成一个棱柱的是( ).B.C.D..下面图形不能围成封闭几何体的是( ).B.C.D.B.C.D.、B.、C.、D.、1 B 2则展开图可能是 _________ (错填得0分,少填酌情给分).下列图形是某些多面体的平面展开图,说出这些多面体的名称: 表面展开图.(填出两种答案) 参考答案:1.解:折叠后,没有上下底面,故不能折成正方体;B、C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故只有D是正方体的展开图.故选D 2.解:选项A、C中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后三角形和圆的位置不符,所以正确的是D.故选D 3.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选B 4.解:图形!与圆圈折叠后应平行,而C,D与此不符,且带图案的三个面相交于一点,B与此不符,所以正确的是A.故选A5.解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、C都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是B.故选B 6.解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选A 7.解:A能围成三棱锥,C能围成三棱柱,D能围成四棱柱,只有B两个底面在侧面的同一侧,不能围成四棱柱.故选B.8.解:正方体的平面展开图中,相对的面一定之间相隔一个正方形,所以使做成后三组对面的图案相同,正确的应是C.故选C9.解:A、C、D图折叠后,箭头不指向白三角形,与原正方体不符.B折叠后与原正方体相同.故选B10.解:选项A能折叠成原正方体的形式,而选项B、C带图案的三个面不相邻,没有一个公共顶点,不能折叠成原正方体的形式;选项D折叠后带圆圈的面在上面时,带三角形的面在左边与原正方体中的位置不同,故选A 11.解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项补画后的情况都不能拼成一个正方体,而D 是正方体的展开图.故选D12.解:由原正方体的特征可知,含有4,6,8的数字的三个面一定相交于一点,而选项B、C、D中,经过折叠后与含有4,6,8的数字的三个面一定相交于一点不符.故选A.13.解:如带圆圈图案的面在前,那么带直线图案的面一定与它相邻,所以A,B错误;D中,带圆圈图案的面应和带直线图案的面平行,所以D也错误.故选C 14.解:A、三角符号、圆圈和感叹号不在一条直线上,故本选项错误;B、感叹号应在圆圈的右面,故本选项错误;C、所给的图形不能折叠成正方体,故本选项错误;D、所给的图形经过折叠符合图的展开图,故本选项正确.故选:D15.解:正方体纸盒的底面和侧面的下半部分涂有黑色漆,将它展开得到的表面展开图是.故选:B 16.解:由四棱柱四个侧面和上下两个底面的特征可知,第1个、第2个和第3个图形可以拼成一个无盖正方体;而第4个图形是田字格不能折成正方体,故不是正方体的展开图.故选:C17.解:选项B、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有A正确.故选:A18.解:A 三角形面与正方形面成了对面,故A错误;B 正方形面与三角形面有一条公共边,故B错误;C三角形面与正方形面成了对面,故C错误;D 圆面、正方向面、三角形面是临面,且正方形面与三角形面只有一个公共顶点,故D正确;故选:D19.解:把三棱柱纸盒往上打开为上底面,同时展开侧面,上面阴影正好与下面空白在最左边,且三角形垂直于矩形,利用空间想象能力,可以确定,第C选项符合该展开图.故选:C 20.解:根据有图案的表面之间的位置关系,正确的展开图是D.故选:D21.解:A、是三棱锥的展开图,故选项错误;B、是四棱锥的展开图,故选项错误;C、是三棱柱的平面展开图,故选项正确;D、无法拼成三棱柱,故选项错误.故选C 22.解:∵甲的容积为:(50﹣20)×(40﹣20)×10=6000(cm3),乙的容积为:(50﹣8)×(40﹣8)×8=10752(cm3),丙的容积为:(50﹣6)×(40﹣6)×6=8976(cm3),∴容积最大的纸盒是乙.故选:B 23.如图所示:共四种.故选B. 24.解:A、不能围成棱柱,侧面有4个,底面是三角形,应该是四边形才行,故此选项错误;B、不能围成棱柱,侧面有4个,底面是5边形,应该是四边形才行,故此选项错误;C、能围成三棱柱,侧面有3个,底面是三角形,故此选项正确;D、不能围成棱柱,底面应该在两侧,故此选项错误;故选:C25.解:A、是缺少一个面的圆柱,不能围成封闭几何体,符合题意;B、是正方体的展开图,能围成封闭几何体,不符合题意;C、是圆锥的展开图,能围成封闭几何体,不符合题意;D、是三棱柱的展开图,能围成封闭几何体,不符合题意.故选A 26.解:根据展开图可以得出正方体有两底面是两阴影小正方体相连接组成的图案,符合要求的只有A,D,但是对角线相连部分,不可能与正方形再次相连,则A错误.故选:D27.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“3”是相对面,“B”与“5”是相对面,“C”与“2”是相对面,∵对面上的数字互为倒数,∴A、B面上的数字分别为、.故选B 28.解:∵大小颜色花朵分布完全一样,∴由图形可知:红色紧邻的是蓝、黄、黑、白;∴可以推断出最右边的正方体的绿色面是在它的左侧面;∴最右边的正方体是:上黄,下蓝,左绿,右红,前黑,后白,依次对应从左至右的四个正方体,下底面分别是:黑,绿,黑,蓝.代入花朵数:6+4+6+2=18朵.故选D 29.解:这是一个正方体的平面展开图,共有六个面,其中面“x”与面“1”相对,面“★”与面“x﹣4”相对,面“!”与面“2x﹣2”相对.因为相对两个面上的数相同,所以x=1,∴★=x﹣4=﹣3,!=2x﹣2=0.故选B30.解:根据前2个正方体可判断出三个正方体的六个面依次是,其中正面“4”与背面“3”相对,右面“5”与左面“2”相对,“4”,“5”,“1”是三个邻面,当正方体是第三种位置关系时,“1”在底面,故“?”在正上面是“6”.故选D31.解:正方体的展开图的每个面都有对面,可得③、⑦、④、⑤的任意一个面,都能使其构成正方体的展开图,故答案为:③、⑦、④、⑤. 32.解:把正方体纸盒沿棱剪开,平铺在桌面上,原来与点A重合的顶点是I,故答案为:I 33.解:正方体展开图有11种,①若沿对角线切则得到两个三角形;②切开平行的两个边则得到两个四边形;③切断相邻的两个边则得到一个三角形一个五边形.故可得到:三角形,四边形,五边形.故答案为:11;三或四或五34.解:这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对.因为相对面上两个数之和为6,所以,x=5,y=3.35.解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴19、20两个较大的数都与16不是相对面,∴16是最小的数,如图所示,这6个整数之和=16+17+18+19+20+21=3(16+21)=111.故答案为:111. 四棱柱 三棱锥 圆柱 三棱柱 圆锥 .50.如图所示: 52.如图所示:53.如图,以“红色”为突破口,红色与黑色、黄色、白色、蓝色相邻,所以红色的对面是绿色;黄色与红色、黑色、白色、绿色相邻,所以黄色的对面是蓝色,则剩余的白色与黑色相对54.解:如图所示:55.解:对图象进行折叠,可得一正方体,点1会和点2,点6相交于一个点 56.解:由图可知黄紫相对,绿红相对,白蓝相对,∴长方体的下底面数字和为5+2+6+4=17.答:长方体的下底面数字和为17 57.解:根据有“田”字格的展开图都不是正方体的表面展开图可知:应剪去1或2或3 58.解:(1)这个直四棱柱一共有6个面,8个顶点.(2)这个直四棱柱有12条棱.(3)将这个直四棱柱的侧面展开成一个平面图形,这个图形是长方形,面积是4×5×8=160cm2.(4)这个直四棱柱的体积是5×5×8=200cm359. 解:∵这个盒子的底面长是[(a+b)﹣4]厘米,宽是(a﹣4)厘米,∴这个盒子的底面积[(a+b)﹣4]•(a﹣4)=a2+ab﹣8a﹣4b+16(平方厘米);答:这个盒子的底面积是a2+ab﹣8a﹣4b+16平方厘米60.解:(1)面“f”与面“d”相对,∴面“扬”的对面是面“爱”;(2)由图可知,如果面“丽”是右面,面“美”在后面,“扬”面会在上面;(3)根据三角形边长求出,△ABM的面积为10×5×=25。