★试卷3套汇总★北京市平谷区2020年初一下学期期末数学综合测试试题

合集下载

北京市平谷区2019-2020学年初一下期末考试数学试卷及答案

北京市平谷区2019-2020学年初一下期末考试数学试卷及答案

北京市平谷区2019-2020学年初一下期末考试数学试卷及答案下面各题均有四个选项,其中只有一个..是符合题意的. 1. 人体中成熟的红细胞的平均直径为0.0000077m ,用科学记数法表示为 A.57.710m -⨯ B. 67710m -⨯ C. 57710m -⨯ D. 67.710m -⨯ 2. 下列不等式变形正确的是A .若a b >,则22a b ->-B .若122a -<,则4a <- C .若a b >,则1212a b ->- D .若a b <,则22ac bc < 3.不等式的解集在数轴上表示如下,正确的是上,若∠1=65°,则∠2的度数为 A. 10° B. 15° C. 20° D. 25°5.计算()835a a a --⋅的结果等于A .0B .82a -C .16a -D .162a - 6.下面计算正确的是 A .623x x x ÷= B .642()()x x x -÷-=-C .34233694a b a b ab ÷= D .322(23)()23x x x x x x --÷-=-+ 7. 下列调查中,适合普查方法的是A .了解一批灯泡的使用寿命B .了解某班学生对“社会主义核心价值观”的知晓率C .了解全国中学生体重情况D .了解电视台《红绿灯》栏目的收视率8. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( ) A .先右转50°,后左转50° A .先右转50°,后左转40° C .先右转50°,后左转130° D .先右转50°,后右转40°9. 某商场一天中售出某种品牌的运动鞋25双,其中23~25尺码的鞋的销售量统计如下:在这25 A .23.5,24 B .24,24.5 C .24,24 D .24.5,24.5 10. 多项式229x mxy y -+能用完全平方因式分解,则m 的值是 A .3 B .6 C .3± D .6± 二、填空题(本题共18分,每小题3分)11. 分解因式:224x y -= _____________________.12.用不等式表示“b 的2倍与7的差是负数” _____________________.13. 12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值为_________________.14.写出二元一次方程25x y +=的非负整数解_______________________ 15.写一个以21x y =-⎧⎨=⎩为解的二元一次方程组_____________________.16. 图中的每个图都是由若干盆花组成的正多边形的图案,每条边(包括两个顶点) 有n (n >2)盆花,每个图案花盆的总数是S ,按此规律推断,S 与n 的关系式 是:_____________________.****************** ********************n =3,S=6 n =4,S=12 n =5 ,S=20 三、解答题(本题共20分,每小题5分)17.计算:121(2015)(2)13-⎛⎫-+---- ⎪⎝⎭.18.因式分解:3223363a b a b ab -+-.19.在下面的括号内标注理由.已知:如图,BE 、CF 分别平分∠ABC 和∠BCD ,且BE //CF , 求证:AB //CD .证明:∵BE 、CF 分别平分∠ABC 和∠BCD , ∴∠ABC =2∠1,∠BCD =2∠2.( ) ∵BE//CF ,∴∠1=∠2.( ) ∴2∠1 =2∠2. ( ) ∴∠ABC =∠BCD .( ) ∴AB //CD .( )20.某校为了更好地开展“阳光体育一小时”活动项目(只写一项)”分.其它抽样调查学生最喜欢的运动项目的人数统计图(1)该校对多少名学生进行了抽样调查? (2)请将图1和图2补充完整(3)已知该校九年级学生比八年级学生少5人,请你补全上表,并利用样本数据估计全校三个年级学生中最喜欢跳绳运动的人数约为多少? 四、解答题(本题共36分,每小题6分)21.解方程组2312 4.x y x y +=⎧⎨-=⎩,22.求一元一次不等式组5626344(1)x x x x +≥-⎧⎨->-⎩的整数解.23.已知:如图,在△ABC 中,BD ⊥AC 于点D ,E 为 BC 上 一点,过E 点作EF ⊥AC ,垂足为F ,过点D 作DH//BC 交AB 于点H .(1)请你补全图形.(2)求证:∠BDH =∠CEF . 24.化简求值:已知2760a a ++=,求2(32)(3)(21)a a a ----的值.25.列方程组解应用题某高校共有5个一样规模的大餐厅和3个一样规模的小餐厅.经过测试,若同时开放3个大餐厅、2个小餐厅,可供3300名学生就餐.若同时开放2个大餐厅、1个小餐厅,可供2100名学生就餐.求1个大餐厅和1个小餐厅分别可供多少名学生就餐?26.列不等式解应用题。

(汇总3份试卷)2020年北京市七年级下学期期末调研数学试题

(汇总3份试卷)2020年北京市七年级下学期期末调研数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,面积为64的正方形ABCD被分成4个相同的长方形和1个面积为4的小正方形,则a,b的值分别是()A.3,5 B.5,3 C.6.5,1.5 D.1.5,6.5【答案】A【解析】开方后求出大、小正方形的边长,观察图形,根据a、b之间的关系可得出关于a、b的二元一次方程组,解之即可得出结论.【详解】=8,=1.根据题意得:,解得:.故选:A.【点睛】本题考查了算术平方根的意义,二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……按此规律,则第50个图形中面积为1的正方形的个数为()A.1322B.1323C.1324D.1325【答案】D【解析】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.【详解】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个.当n=50时,==1325,即第50个图形中面积为1的正方形的个数为1325,故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.3.若2022110.3,3,,33a b c d--⎛⎫⎛⎫=-=-=-=-⎪ ⎪⎝⎭⎝⎭,则它们的大小关系是( )A.a<b<c<d B.a<d<c<b C.b<a<d<c D.c<a<d<b 【答案】C【解析】直接化简各数,进而比较大小即可.【详解】解:∵a=-0.32=-0.09,b=-3-2=19-,c=212-⎛⎫- ⎪⎝⎭=4,d=13⎛⎫-⎪⎝⎭=1,∴它们的大小关系是:b<a<d<c.故选C.【点睛】此题主要考查了负指数幂的性质以及有理数大小比较,正确化简各数是解题关键.4.有一种手持烟花,点然后每隔1.4秒发射一发花弹。

北京市2020〖人教版〗七年级数学下册期末复习考试试卷参考答案与试题解析

北京市2020〖人教版〗七年级数学下册期末复习考试试卷参考答案与试题解析

北京市2020年〖人教版〗七年级数学下册期末复习考试试卷参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题1.(4分)如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°考点:平行线的性质.专题:计算题.分析:由m∥n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.解答:解:∵m∥n,∴∠1+∠2=180°,而∠1=105°,∴∠2=180°﹣105°=75°.故选D.点评:本题考查了平行线的性质:两直线平行,同旁内角互补.2.(4分)(•大连)在平面直角坐标系中,点P(﹣3,2)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点在第二象限的坐标特点即可解答.解答:解:∵点的横坐标﹣3<0,纵坐标2>0,∴这个点在第二象限.故选B.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(4分)(•深圳)在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.6考点:用样本估计总体;频数与频率;频数(率)分布表.分析:根据频率的意义,每组的频率=小组的频数:样本容量,据此即可解答.解答:解:0.12×50=6,在总体1000个数据中,数据落在54.5~57.5之间的约有120个.故选A.点评:本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.4.(4分)(•安徽)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5 考点:估算无理数的大小.专计算题.题:分析:先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.解答:解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.点评:此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5.(4分)在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A.13 B.14 C.15 D.16考点:解三元一次方程组.专题:计算题.分析:根据题意得到三元一次方程组得,再解方程组得,则y=2x2﹣3x+1,然后把x=﹣2代入计算.解答:解:根据题意得,解方程组得,所以y=2x2﹣3x+1,当x=﹣2时,y=2×4﹣3×(﹣2)+1=15.故选C.点评:本题考查了解三元一次方程组:利用加减消元或代入消元把解三元一次方程组的问题转化为解二元一次方程组的问题.6.(4分)已知不等式3x﹣a≤0的正整数解恰是1,2,3,4,那么a的取值范围是()A.a>12 B.12≤a≤15 C.12<a≤15 D.12≤a<15 考点:一元一次不等式的整数解.分析:首先确定不等式组的解集,利用含a的式子表示,再根据整数解的个数就可以确定有哪些整数解,然后根据解的情况可以得到关于a的不等式,从而求出a的范围.解答:解:不等式的解集是:x≤,∵不等式的正整数解恰是1,2,3,4,∴4≤<5,∴a的取值范围是12≤a<15.故选D.点评:本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定的范围,是解决本题的关键.解不等式时要用到不等式的基本性质.二、填空题7.(4分)x的与5的差不小于3,用不等式表示为x≥3.考点:由实际问题抽象出一元一次不等式.分析:不小于就是大于或等于,根据题意可列出不等式.解答:解:根据题意得:x﹣5≥3.故答案为:x﹣5≥3.点评:本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.8.(4分)点A(a2+1,﹣1﹣b2)在第四象限.考点:点的坐标;非负数的性质:偶次方.分析:根据平方数非负数判断出点A的横坐标是正数,纵坐标是负数,然后根据各象限内点的坐标特征解答.解答:解:∵a2≥0,∴a2+1≥1,∵﹣b2≤0,∴﹣1﹣b2≤﹣1,∴点A的横坐标是正数,纵坐标是负数,∴点A在第四象限.故答案为:四.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(4分)一组数据共有50个,分别落在5个小组内,第一、二、三、四小组的频数分别为3、8、21、13,则第五小组的频数为5.考点:频数与频率.分析:用数据总数减去其它四组的频数就是第五小组的频数.解答:解:根据题意可得:第一、二、三、四小组的频数分别为3、8、21、13,共(3+8+21+13)=45,样本总数为50,故第五小组的频数是50﹣45=5.故答案为:5.点评:本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.10.(4分)=4,=5,的平方根是±.考点:算术平方根;平方根.分析:根据算术平方根、平方根的定义求出每个式子的值即可.解答:解:=4,==5,1的平方根是±=±=±,故答案为:4,5,±.点评:本题考查了算术平方根、平方根的应用,主要考查学生的计算能力.11.(4分)一只船在A、B两码头间航行,从A到B顺流航行需2小时,从B到A逆流航行需3小时,那么一只救生圈从A顺流漂到B需要12小时.考点:二元一次方程组的应用.分析:设A、B两码头间的距离为a,船在静水中的速度为x,水流的速度为y,根据航行问题的数量关系建立方程组求出其解即可.解答:解:设A、B两码头间的距离为a,船在静水中的速度为x,水流的速度为y,由题意,得,解得:,∴只救生圈从A顺流漂到B需要的时间为:12y÷y=12小时.故答案为:12.点评:本题考查了航行问题在数学实际问题中的运用,设参数在解运用题中的运用,解答时建立方程组表示出A、B间的距离是关键.12.(4分)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示,点A4n的坐标(n是正整数)是:A4n(2n﹣1,0)考点:规律型:点的坐标.分析:根据A4,A8、A12都在x轴上,得出A4n也在x轴上,再根据A4,A8、A12点的坐标的规律,即可得出答案.解答:解:由图可知,A4,A8、A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=1,OA8=3,OA12=5,∴A4(1,0),A8(3,0)OA12(5,0),OA4n=4n÷2﹣1=2n﹣1,∴点A4n的坐标(2n﹣1,0);故答案为:(2n﹣1,0).点评:本题考查了点的坐标,仔细观察图形,确定出A4n都在x轴上再根据各点的坐标,找出规律是解题的关键.三、解答下列各题(共75分)13.(12分)(1)解方程组:(2)解不等式组:.考点:解一元一次不等式组;解二元一次方程组.分析:(1)由于两个方程里的两个未知数的系数都有倍数关系,宜用加减法解答;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.解答:解:,①×2+②得,x=,把x=代入①得,y=﹣,所以方程组的解为;(2)由1﹣3(x﹣1)<8﹣x,得x>﹣2,+3≥x+1,得x≤1,所以原不等式组的解集为﹣2<x≤1.点评:本题考查的是解二元一次方程组及解一元一次不等式组,解二元一次方程组的基本思想是消元,如果两个方程里的两个未知数的系数都有倍数关系,可选择消去系数较小的未知数;解一元一次不等式组依据的是不等式的基本性质.14.(6分)请根据证明过程,在括号内填写相应理由,如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:因为∠1=∠2(已知)所以BD∥CE(内错角相等,两直线平行)所以∠C=∠ABD(两直线平行,同位角相等)因为∠C=∠D(已知)所以∠D=∠ABD (等量代换)所以DF∥AC(内错角相等,两直线平行)所以∠A=∠F(两直线平行,内错角相等)考点:平行线的判定与性质.专题:推理填空题.分析:第一、四空根据平行线的判定填写,第二、五空根据平行线的性质填写,第三空根据等量关系填写.解答:证明:∵∠1=∠2(已知),∴BD∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等);∵∠C=∠D(已知),∴∠D=∠ABD (等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).点评:本题主要考查平行线的性质及判定,找到相应关系的角是解题的关键.15.(6分)已知和互为相反数,且x﹣y+4的平方根是它本身,求x、y的值.考点:立方根;平方根.分析:根据已知得出方程y﹣1=﹣(3﹣2x),x﹣y+4=0,求出两方程组成的方程组的解即可.解答:解:∵和互为相反数,∴y﹣1=﹣(3﹣2x),∵x﹣y+4的平方根是它本身,∴x﹣y+4=0,即,解得:x=6,y=10.点评:本题考查了相反数、平方根、解二元一次方程组的应用,关键是能根据题意得出方程组.16.(8分)(•福州)李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员小俐小花月销售件数(件)200 150月总收入(元)1400 1250假设月销售件数为x件,月总收入为y元,销售每件奖励a元,营业员月基本工资为b元.(1)求a,b的值;(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件?考点:一次函数的应用.分析:(1)设一次函数为:y=ax+b,根据小俐和小花的月销售件数和月总收入,可将a和b的值求出;(2)月总收入不低于1800,即y≥1800.从而可将x的值求出.解答:解:①依题意,得y=ax+b,解得a=3,b=800.②依题意,得y≥1800,即3x+800≥1800.解得x≥∵x为正整数∴x最小为334,故小俐当月至少要卖服装334件.点评:此题中x的值为正整数,在解题过程中注意未知量的取值范围.17.(10分)已知方程组的解x、y满足:x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,关于x的不等式2ax+x>2a+1的解集为x<1.考点:解一元一次不等式组;解二元一次方程组;解一元一次不等式.分析:(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据不等式2ax+x>2a+1的解为x<1,得出2a+1<0且﹣2<a≤5,解此不等式得到关于a取值范围,找出符合条件的a的值.解答:解:(1)解这个方程组的解为,由题意,得,第一个不等式的解集是:a≤5,第二个不等式的解集是:a>﹣2,则原不等式组的解集为﹣2<a≤5;(2)∵不等式2ax+x>2a+1的解集为x<1,∴2a+1<0且﹣2<a≤5,∴在﹣2<a<﹣范围内的整数有a=﹣1.点评:本题考查的是解二元一次方程组及解一元一次不等式组、代数式的化简求值,先把a当作已知求出x、y的值,再根据已知条件得到关于a的不等式组求出a的取值范围是解答此题的关键.18.(10分)(•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:压轴题.分析:(1)根据购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元,得出等量关系,列出二元一次方程组即可;(2)根据该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元,即可得出不等式组,求出即可.解答:解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:,解得:,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50﹣m)台,根据题意得:,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400(元),方案二的利润:25×10+25×160=4250(元),方案三的利润:26×10+24×160=4100(元),∴方案一的利润最大为4400元.点评:此题主要考查了二元一次方程组的应用以及不等式组的应用,根据题意得出等量关系是解决问题的关键.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

┃精选3套试卷┃2020届北京某附属名校中学七年级下学期数学期末质量检测试题

┃精选3套试卷┃2020届北京某附属名校中学七年级下学期数学期末质量检测试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104【答案】B【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).6400000一共7位,从而6400000=6.4×2.故选B.2.某次考试中,某班级的数学成绩统计图如图.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是26【答案】D【解析】为了判断得分在70~80分之间的人数是不是最多,通过观察频率分布直方图中最高的小矩形即可;为了得到该班的总人数只要求出各组人数的和即可;为了看得分在90~100分之间的人数是否最少,只有观察频率分布直方图中最低的小矩形即可;为了得到及格(≥60分)人数可通过用总数减去第一小组的人数即可.【详解】A、得分在70~80分之间的人数最多,故正确;B、2+4+8+12+14=40(人),该班的总人数为40人,故正确;C、得分在90~100分之间的人数最少,有2人,故正确;D、40-4=36(人),及格(≥60分)人数是36人,故D错误,故选D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.如图,∠ACB=90°,DE过点C且平行于AB,若∠BCE=33°,则∠A的度数为()A.33°B.47°C.57°D.67°【答案】C【解析】先根据平行线的性质求出∠B 的度数,再由余角的定义即可得出结论.【详解】∵∠ACB=90°∴∠A=90°−33°=57°故选:C【点睛】本题考查了直角三角形的性质以及平行线的性质,基础知识要熟练掌握.4.在平面直角坐标系中,已知A (﹣2,3),B (2,1),将线段AB 平移后,A 点的坐标变为(﹣3,2),则点B 的坐标变为( )A .(﹣1,2)B .(1,0)C .(﹣1,0)D .(1,2) 【答案】B【解析】由A (﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B 点变化后的坐标.【详解】解:∵A (﹣2,3)平移后坐标变为(﹣3,2),∴可知点A 向左平移1个单位,向下平移1个单位,∴B 点坐标可变为(1,0).故选:B .【点睛】本题运用了坐标的平移变化规律,由分析A 点的坐标变化规律可求B 点变化后坐标.5.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >【答案】D【解析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,即可得到答案.【详解】解:A 、不等式的两边都加3,不等号的方向不变,故A 错误;B 、不等式的两边都乘以﹣3,不等号的方向改变,故B 错误;C 、不等式的两边都除以3,不等号的方向不变,故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选:D .【点睛】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.6.将数0.000000076用科学记数法表示为( )A .70.7610-⨯B .87.610-⨯C .97.610-⨯D .107610-⨯【答案】B 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000076=7.6×10-8,故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.现有一摞数学书,总厚度为120cm ,下表是拿走数学书本数与余下书的厚度之间的关系:根据此表提供的信息,估计数学书一共有( )A .57本B .58本C .59本D .60本【答案】D【解析】根据题意设一共有x 本数学书,再根据列表中数据可知一本书的厚度为2cm ,即可列出方程2x=120,解得答案即可.【详解】设共有x 本数学书,再根据列表中数据可知一本书的厚度为2cm ,即可列方程2x=120解得x=60一共有60本数学书故选D.【点睛】本题考查根据题意列出方程并解答,熟练掌握计算法则是解题关键.8.已知在同一平面内有三条不同的直线a b c ,,,下列说法错误的是( )A .如果//,a b a c ⊥,那么b c ⊥B .如果//,b a c a //,那么//b cC .如果,b a c a ⊥⊥,那么b c ⊥D .如果,b a c a ⊥⊥,那么//b c 【答案】C【解析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行;同一平面内,垂直于同一直线的两条线平行进行分析判断即可.【详解】解:A. 如果//,a b a c ⊥,那么b c ⊥,说法正确;B. 如果//,b a c a //,那么//b c ,说法正确;C. 如果,b a c a ⊥⊥,那么b c ⊥,说法错误;D. 如果,b a c a ⊥⊥,那么//b c ,说法正确.故选C.【点睛】本题主要考查平行线的判定推理以及其传递性,解此题的关键在于熟练掌握其知识点.9.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是( )①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明; ②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A .①②B .①③C .②③D .①②③【答案】D【解析】①求出80元以上的人数,能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【详解】解:①超过月均花费80元的人数为:200+100+80+50+25+25+15+5=500,小明乘坐地铁的月均花费是75元,所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为①②③,故选:D.【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.10.把不等式组的解集表示在数轴上,正确的是()A.B. C.D.【答案】D【解析】先求出每一个不等式的解集,得到不等组的解集,然后在数轴上表示出来即可.【详解】解:解不等式①得:x>-1,解不等式②得:x≤1,所以不等组的解集为:-1<x≤1,在数轴上表示为:,故选D.【点睛】本题考查解一元一次不等式组,熟练掌握不等式的基本性质是解不等式的关键.二、填空题题11.将方程3x﹣2y﹣6=0变形为用含x的式子表示y,则y=_____.【答案】33 2x【解析】先移项,再方程两边都除以-2,即可得出答案.【详解】解:1x-2y-6=0,∴2y=1x-6,∴y=32x-1, 故答案为:y=32x-1. 【点睛】本题考查了解二元一次方程和等式的性质的应用,能熟记等式的基本性质是解此题的关键.12.某水果店花费760元购进一种水果40千克,在运输与销售过程中,有5%的水果正常损耗,为了避免亏本,售价至少应定为_____元/千克.【答案】1【解析】设水果店把售价应该定为每千克x 元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x (1-5%),根据题意列出不等式即可.【详解】解:设售价应定为x 元/千克,根据题意得:x (1﹣5%)≥76040, 解得x≥1.故为避免亏本,售价至少应定为1元/千克.故答案为1.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.13.已知 (x ﹣a)(x+a)=x 2﹣9,那么a =_____.【答案】3±.【解析】将等式的左边展开,并和等式的右边对边可得29a =,由此即可求得a 的值.【详解】解:∵2()()9x a x a x -+=-, ∴2229x a x -=-,∴29a =,∴3a =±故答案为:3±.【点睛】熟记乘法的平方差公式:22()()a b a b a b +-=-是解答本题的关键.14.若a 、b 均为整数,且a b a+b 的最小值是_________ .【答案】7【解析】由a,b均为正整数,且a b>>,推出a>3,b>2,由此即可解决问题.【详解】∵a b>>∴a>3,b>2,∵a,b均为正整数,且最小正整数为:a=4,b=3∴a+b的最小值为7,故答案为:7【点睛】本题考查无理数,根式等知识,解题的关键是学会估计无理数的大小.15.三张同样大小的卡片上分别写上3,5,8三个数,小明从中任意抽取一张作百位,再任意抽取一张作十位,余下的一张作个位,小明抽出的这个数大于500的概率是_______【答案】2 3【解析】可先列举出这三个数组成的所有三位数,然后从中找出大于500的个数,最后根据P(A)=A事件可能出现的次数所有可能出现的次数求解即可.【详解】解:小明抽出的所有可能的数为: 358、385、538、583、835、853,共6个. 其中大于500的数有:538、583、835、853,共4个故抽取的数大于500的概率为42 = 63故小明抽取的这个数大于500的概率为2 3故答案为:2 3【点睛】此题考查概率公式,解题关键在于列举出所有可能16.用科学记数法表示:0.00000706=_____.【答案】7.01×10-1【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000701=7.01×10﹣1.故答案为7.01×10﹣1.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.计算:2(23)-=___________.【答案】7-43.【解析】依据完全平方公式222()2a b a ab b -=-+进行计算.【详解】2443(372433)=-+=--【点睛】此题考查完全平方公式以及二次根式的混合运算,熟记公式即可正确解答.三、解答题18.如图,A ,B 是旧河道l 两旁的两个村庄.为方便村民饮水,计划在旧河道l 上打一口水井P ,用管道引水到两村,要求该井到两村的距离相等,请用尺规在图中作出点P 的位置(保留作图痕迹,不要求写作法).【答案】见解析.【解析】因为线段垂直平分线上的点到线段两个端点的距离相等.所以P 应在线段AB 的垂直平分线上.【详解】解:P 点位置如图所示:作法:①连结AB ,分别以点A ,B 为圆心,以大于12AB 的长为半径作弧,两弧交于两点M ,N ,作直线MN ;②直线MN 交l 于点P ,点P 即为所求.【点睛】 本题考查作图−应用与设计,熟知到平面内两个点距离相等的点在连接这两点的线段的垂直平分线上是解题关键.19.解下列不等式或不等式组.(1)()10351x -+≤ (2)()6>03121x x x +⎧⎨-≤-⎩ 【答案】(1)x ≥-2 (2)6<2x -≤【解析】试题分析:(1)根据解不等式的方法可以解答本题;(2)根据解不等式的方法分别求出两个不等式的解集,再求公共部分即可;试题解析:(1)()10351x -+≤10-3x-15≤1,-3x≤1,x≥-2;(2)()6>0......312 1......x x x +⎧⎪⎨-≤-⎪⎩①② 解不等式①得:x>-1,解不等式②得:x≤1,所以不等式组的解集为-1.20.工厂工人小李生产A 、B 两种产品.若生产A 产品10件,生产B 产品10件,共需时间350分钟;若生产A 产品30件,生产B 产品20件,共需时间850分钟.(1)小李每生产一件A 种产品和每生产一件B 种产品分别需要多少分钟;(2)小李每天工作8个小时,每月工作25天.如果小李四月份生产A 种产品a 件(a 为正整数). ①用含a 的代数式直接表示小李四月份生产B 种产品的件数;②已知每生产一件A 产品可得1.40元,每生产一件B 种产品可得2.80元,若小李四月份的工资不少于1500元,求a 的最大值.【答案】(1)生产1件A 产品需要15分钟,生产1件B 产品需要20分钟;(2)①36004a -;②1. 【解析】(1)设小李生产1件A 产品需要x 分钟,生产一件B 产品各需要y 分钟,根据题意列出方程组求解即可;(2)①设小李四月份生产B 种产品b 件,根据生产A 、B 产品的总时间为工作时间列方程即可; ②根据题中条件列出不等式求解即可.【详解】解:(1)设生产1件A 产品需要x 分钟,生产1件B 产品需要y 分钟,由题意得1010=3503020850x y x y +⎧⎨+=⎩解得 1520x y =⎧⎨=⎩ 答:生产1件A 产品需要15分钟,生产1件B 产品需要20分钟.(2)①设小李四月份生产B 种产品b 件,则152025860a b +=⨯⨯, 整理得36004b a =-, 因此小李四月份生产B 种产品的件数为36004a -; ②根据题意得,3146002815004.a a .⎛⎫+-⨯≥ ⎪⎝⎭, 解得18007a ≤ , 由于a 为正整数,因此a 的最大值为1.【点睛】本题考查了一元一次不等式的运用和二元一次方程组的运用,找到等量关系列出方程是解题的关键. 21.将长为30cm 的长方形白纸,按图中的方法粘合起来,粘合部分的宽为3cm .(1)求5张白纸粘合后的长度.(2)设x 张白纸粘合后的长度为y cm ,写出y 与x 之间的关系式.并求当20x 时,y 的值.【答案】(1)5张白纸粘合后的长度是138cm ;(2)273=+y x ,543y =.【解析】(1)根据图形列出算式,求出即可;(2)根据题意列出算式()30271273y x x =+-=+,代入求出即可;【详解】解:(1)30274138+⨯=.答:5张白纸粘合后的长度是138cm .(2)()30271273y x x =+-=+,当20x 时,543y =.【点睛】此题考查函数关系式,函数值,解题关键在于根据题意列出方程.22.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在BC 边上时,填空:线段DE 与AC 的位置关系是 ;②设△BDC 的面积为S 1,△AEC 的面积为S 1.则S 1与S 1的数量关系是 . (1)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 1的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=4,OE ∥AB 交BC 于点E (如图4),若在射线BA 上存在点F ,使S △DCF =S △BDC ,请直接写出相应的BF 的长【答案】解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2.【解析】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=1AC .又∵AD=AC∴BD=AC .∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,ACN DCMCMD NAC CD∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF1⊥BD,∵∠ABC=20°,F1D∥BE,∴∠F1F1D=∠ABC=20°,∵BF1=DF1,∠F1BD=12∠ABC=30°,∠F1DB=90°,∴∠F1DF1=∠ABC=20°,∴△DF1F1是等边三角形,∴DF1=DF1,过点D作DG⊥BC于G,∵BD=CD,∠ABC=20°,点D是角平分线上一点,∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92,∴3∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF1=320°-150°-20°=150°,∴∠CDF 1=∠CDF 1,∵在△CDF 1和△CDF 1中,1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===,∴△CDF 1≌△CDF 1(SAS ),∴点F 1也是所求的点,∵∠ABC=20°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×20°=30°, 又∵BD=33,∴BE=12×33÷cos30°=3, ∴BF 1=3,BF 1=BF 1+F 1F 1=3+3=2,故BF 的长为3或2.23.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分. 视力频数/人 频率 4.0≤x <4.320 0.1 4.3≤x <4.640 0.2 4.6≤x <4.970 0.35 4.9≤x <5.2a 0.3 5.2≤x <5.5 10 b(1)在频数分布表中,a=_________,b=_________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比.【答案】(1)60,0.2 (2)见解析(3)70%【解析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.【详解】解:(1)总人数=20÷0.1=1.∴a=1×0.3=60,b=1-0.1-0.2-0.35-0.3=0.2,故答案为60,0.2.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是140200×100%=70%.【点睛】本题考查了频数分布表和频数分布直方图的综合,解答此类题目,要善于发现二者之间的关联点,用频数分布表中某部分的频数除以它的频率求出样本容量,进而求解其它未知的量.24.在如图所示的正方形网格中,每个小正方形的边长都是1个单位长度,ABC的顶点均在格点上.(画图要求:先用2B铅笔画图,然后用黑色水笔描画)(1)①画出ABC ∆绕点A 按逆时针方向旋转90︒后的11AB C ∆;②连结1CC ,请判断1ACC ∆是怎样的三角形,并简要说明理由.(2)画出222A B C ∆,使222A B C ∆和11AB C ∆关于点O 成中心对称;(3)请指出如何平移11AB C ∆,使得222A B C ∆和11AB C ∆能拼成一个长方形.【答案】(1)①11AB C ∆如图所示;见解析;②1ACC ∆是等腰直角三角形理由见解析;(2)222A B C ∆如图所示,见解析;(3)先向右平移5个单位,再向下平移6个单位。

北京市2020〖人教版〗七年级数学下册期末复习考试试卷348

北京市2020〖人教版〗七年级数学下册期末复习考试试卷348

北京市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(共10小题,每小题3分,满分30分)1.同一个平面内,若a⊥b,c⊥b,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°3.既是方程2x﹣y=3的解,又是方程3x+4y=10的解是()A.B.C.D.4.下列说法正确的是()A.1的平方根是1 B.1的算术平方根是1C.﹣2是2的算术平方根D.﹣1的平方根是﹣15.下列各式正确的是()A.()2=B. =1C. =2+=2D. =13﹣7=66.已知点A(x,y)且xy≥0,则点A的位置是()A.在x轴上B.在y轴上C.在一、三象限D.在两坐标轴上或一、三象限7.下列结论不正确的是()A.若a>b,c=d,则a﹣c>b﹣d B.若a2+b2=0,则a=b=0C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b8.不等式的解集x<﹣2在数轴上表示为()A.B.C.D.9.平面直角坐标系中,点A(﹣1,﹣3)在第()象限.A.一B.二C.三D.四10.有以下三个说法:①对顶角相等是真命题;②连接直线外一点与直线上个各点的所有线段中,垂线段最短;③平面直角坐标系内的所有点都分别属于四个象限;④经过一点有且只有一条直线与已知直线平行;其中错误的有()个.A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,满分30分)11.在下列四幅图中,哪几幅图是可以经过平移变换得来的.12.若81x2=49,则x=.13.若点M(a﹣2,2a+3)是x轴上的点,则a的值是.14.如图,已知函数和y=kx的图象交于点P(﹣4,﹣2),则根据图象可得关于x的不等式>kx的解集为.15.如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.16.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x元,练习本每本y 元,写出以x和y为未知数的方程为.17.已知点A(﹣4,﹣6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为.18.五•一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.19.观察下列数表:根据数表所反映的规律,猜想第n行与第n列交叉点上的数为.20.如果∠1两边与∠2的两边互相平行,且∠1=(3x+20)°,∠2=(8x﹣5)°,则∠1的度数为.三、解答题(共7小题,满分60分)21.(7分)解方程组:(1)(2).22.(7分)如图:(1)将△ABO向右平移4个单位,画出平移后的图形.(2)求△ABO的面积.23.(8分)如图直线AB⊥CD,垂足为O,直线EF过点O,且∠1=30°,求∠2、∠3的度数.24.(8分)已知x、y、z满足:|4x﹣4y+1|+(z﹣)2=﹣,求(y+z)•x2的值.25.(10分)如图,已知AD⊥BC,EF⊥BC于F,∠E=∠1,问AD平分∠BAC 吗?请说明理由.26.(10分)甲、乙两车分别从相距200千米的A、B两地相向而行,甲乙两车均保持匀速,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇;若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度.(2)若甲乙两车同时按原速度行驶1小时以后,甲车发生故障不动了,则乙车至少再以多大的速度行驶,才能保证在甲车出发以后3小时内与甲车相遇?27.(10分)如图,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.同一个平面内,若a⊥b,c⊥b,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【考点】平行线的判定.【分析】由已知a⊥b,c⊥b进而得出a与c的关系.【解答】解:∵a⊥b,c⊥b,∴a∥c.故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.3.既是方程2x﹣y=3的解,又是方程3x+4y=10的解是()A.B.C.D.【考点】二元一次方程的解.【分析】根据题意即可得到方程组:,解方程组即可求解.【解答】解:根据题意得:,①×4+②得:x=2,把x=2代入①得:y=1.则方程组的解是:.故选B.【点评】本题主要考查了一元一次方程组的解法,正确根据方程组的解的定义,转化为解方程组的问题是解题关键.4.下列说法正确的是()A.1的平方根是1 B.1的算术平方根是1C.﹣2是2的算术平方根D.﹣1的平方根是﹣1【考点】算术平方根;平方根.【分析】根据平方根、算术平方根,即可解答.【解答】解:A、1的平方根是±1,故错误;B、1的算术平方根是1,正确;C、是2的算术平方根,故错误;D、﹣1没有平方根,故错误;故选:B.【点评】本题考查了算术平方根、平方根,解决本题的关键是熟记算术平方根,平方根的平方根.5.下列各式正确的是()A.()2=B. =1C. =2+=2D. =13﹣7=6【考点】算术平方根;有理数的乘方.【分析】根据算术平方根得定义和有理数的乘方法则分别对每一项进行分析,即可得出答案.【解答】解:A、()2=,故本选项错误;B、=1,故本选项正确;C、=,故本选项错误;D、=2,故本选项错误;故选B.【点评】此题考查了算术平方根和有理数的乘方,掌握算术平方根的定义和有理数的乘方的法则是本题的关键,是一道基础题.6.已知点A(x,y)且xy≥0,则点A的位置是()A.在x轴上B.在y轴上C.在一、三象限D.在两坐标轴上或一、三象限【考点】点的坐标.【分析】根据同号得正判断出x、y同号,再考虑x、y等于0的情况,然后根据各象限内点的坐标特征以及坐标轴上的点的特征解答.【解答】解:∵xy≥0,∴x、y同号或x=0或y=0或x=y=0,当x、y同号时,点A在第一三象限,当x=0时,点A在y轴上,当y=0时,点A在x轴上,当x=y=0,点A为坐标原点,综上所述,点A在两坐标轴上或一、三象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.下列结论不正确的是()A.若a>b,c=d,则a﹣c>b﹣d B.若a2+b2=0,则a=b=0C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【考点】不等式的性质;非负数的性质:偶次方.【分析】根据不等式的性质分别对每一项进行分析,即可得出答案.【解答】解:A、若a>b,c=d,则a﹣c>b﹣d,正确;B、若a2+b2=0,则a=b=0,正确;C、若a>b,当c>0时,得出ac2>bc2,故本选项错误;D、若ac2>bc2,则a>b,正确;故选C.【点评】本题考查了不等式性质,注意:①不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8.不等式的解集x<﹣2在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】将已知解集表示在数轴上即可.【解答】解:不等式的解集x<﹣2在数轴上表示为,故选D【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.平面直角坐标系中,点A(﹣1,﹣3)在第()象限.A.一B.二C.三D.四【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点A(﹣1,﹣3)在第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.有以下三个说法:①对顶角相等是真命题;②连接直线外一点与直线上个各点的所有线段中,垂线段最短;③平面直角坐标系内的所有点都分别属于四个象限;④经过一点有且只有一条直线与已知直线平行;其中错误的有()个.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析所给的命题是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:∵对顶角相等是真命题,∴选项①正确;∵连接直线外一点与直线上个各点的所有线段中,垂线段最短,∴选项②正确;∵坐标轴上的点是不属于任何象限的,∴选项③不正确;∵经过直线外一点,有且只有一条直线与这条直线平行,∴选项④不正确.综上,可得错误的说法有2个:③、④.故选:B.【点评】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(共10小题,每小题3分,满分30分)11.在下列四幅图中,哪几幅图是可以经过平移变换得来的①②④.【考点】利用平移设计图案.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移可直接得到答案.【解答】解:根据平移的定义可得①②④是由平移得到的,③利用旋转可以得到.故答案为:①②④.【点评】此题主要考查了生活中的平移,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.12.若81x2=49,则x=±.【考点】平方根.【分析】先求出x2的值,再根据平方根的定义解答.【解答】解:由81x2=49得:x2=,直接开平方,得:x=±,故答案为:±.【点评】本题考查了利用平方根求未知数的值,熟练掌握平方根的定义是解题的关键.13.若点M(a﹣2,2a+3)是x轴上的点,则a的值是﹣.【考点】点的坐标.【分析】根据x轴上的点的坐标的特点解答即可.【解答】解:∵点M(a﹣2,2a+3)是x轴上的点,∴这点的纵坐标是0,即2a+3=0,解得:a=﹣.故答案填:﹣.【点评】本题主要考查了x轴上的点的坐标的特点,即纵坐标等于0.14.如图,已知函数和y=kx的图象交于点P(﹣4,﹣2),则根据图象可得关于x的不等式>kx的解集为x<﹣4.【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x<﹣4时,的图象都在y=kx的图象上方,即>kx.【解答】解:当x<﹣4时,的图象都在y=kx的图象上方,所以关于x的不等式>kx的解集为x<﹣4.故答案为:x<﹣4.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15.如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是70°.【考点】平行线的性质;三角形内角和定理.【分析】连接AC,根据平行线的性质得到∠BAC+∠ACD=180°,求出∠CAE+∠ACE=110°,根据三角形的内角和定理即可求出答案.【解答】解:连接AC,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAE=25°,∠ECD=45°,∴∠CAE+∠ACE=180°﹣25°﹣45°=110°,∵∠E+∠CAE+∠ACE=180°,∴∠E=180°﹣110°=70°,故答案为:70°.【点评】本题主要考查对平行线的性质,三角形的内角和定理等知识点的理解和掌握,正确作辅助线并利用性质进行计算是解此题的关键.16.买14支铅笔和6本练习本,共用5.4元.若铅笔每支x元,练习本每本y 元,写出以x和y为未知数的方程为14x+6y=5.4.【考点】由实际问题抽象出二元一次方程.【分析】等量关系为:14支铅笔总价钱+6本练习本总价钱=5.4,把相关量代入即可.【解答】解:铅笔每支x元,14支铅笔需14x元;练习本每本y元,6本练习本需付6y元,共用5.4元,可列方程为:14x+6y=5.4.【点评】根据共用去的钱得到相应的等量关系是解决问题的关键,注意单价与数量要保持对应关系.17.已知点A(﹣4,﹣6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为(0,0).【考点】坐标与图形变化-平移.【分析】让点A的横坐标加4,纵坐标加6即可得到A′的坐标.【解答】解:由题中平移规律可知:A′的横坐标为﹣4+4=0;纵坐标为﹣6+6=0;∴A′的坐标为(0,0).故答案填:(0,0).【点评】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.18.五•一期间,某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了九折优惠.【考点】一元一次方程的应用.【分析】本题的等量关系是:售价﹣优惠后的价钱=节省下来的钱数.根据等量关系列方程求解.【解答】解:设用贵宾卡又享受了x折优惠,依题意得:10000﹣10000×80%×=2800解之得:x=9即用贵宾卡又享受了9折优惠.故答案为:九.【点评】此题关键是掌握公式:现价=原价×打折数,找出等量关系列方程.19.观察下列数表:根据数表所反映的规律,猜想第n行与第n列交叉点上的数为3n.【考点】规律型:数字的变化类.【分析】根据第1行与第1列、第2行与第2列以及第3行与第3列交叉点上的数的大小,猜想第n行与第n列交叉点上的数为多少即可.【解答】解:第1行与第1列交叉点上的数是3(3=3×1),第2行与第2列交叉点上的数是6(6=3×2),第3行与第3列交叉点上的数是9(9=3×3),…,∴猜想第n行与第n列交叉点上的数等于3的n倍,为3n.故答案为:3n.【点评】此题主要考查了探寻数字变化规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律.20.如果∠1两边与∠2的两边互相平行,且∠1=(3x+20)°,∠2=(8x﹣5)°,则∠1的度数为35°或65°.【考点】平行线的性质.【分析】根据:∠1两边与∠2的两边互相平行得出∠1=∠2或∠1+∠2=180°,代入求出x,即可得出答案.【解答】解:∵∠1两边与∠2的两边互相平行,∴∠1=∠2或∠1+∠2=180°,∵∠1=(3x+20)°,∠2=(8x﹣5)°,∴3x+20=8x﹣5或3x+20+8x﹣5=180,解得:x=5,或x=15,当x=5时,∠1=35°,当x=15时,∠1=65°,故答案为:35°或65°.【点评】本题考查了平行线的性质的应用,能知道“如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补”是解此题的关键.三、解答题(共7小题,满分60分)21.解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①+②×5得:13x=13,即x=1,把x=1代入②得:y=1,则方程组的解为;(2)方程组整理得:,①×3+②×4得:17x=34,即x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图:(1)将△ABO向右平移4个单位,画出平移后的图形.(2)求△ABO的面积.【考点】作图-平移变换.【分析】(1)根据图形平移不变性的性质画出平移后的三角形即可;(2)利用正方形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图所示;=4×4﹣×2×4﹣×2×2﹣×2×4=16﹣4﹣2﹣4=6.(2)S△ABO【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.如图直线AB⊥CD,垂足为O,直线EF过点O,且∠1=30°,求∠2、∠3的度数.【考点】垂线.【分析】根据对顶角相等可得∠3=∠1=30°,根据邻补角互补可得∠EOB=150°,再由垂直可得∠BOD=90°,根据∠2=90°﹣∠1即可算出度数.【解答】解:∵直线AB和EF交于点O,∠1=30°,∴∠3=∠1=30°,∵AB⊥CD,∴∠BOD=90°,∴∠2=90°﹣30°=60°.【点评】此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.24.已知x、y、z满足:|4x﹣4y+1|+(z﹣)2=﹣,求(y+z)•x2的值.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出算式,求出x、y、z的值,代入计算即可.【解答】解:由题意得,4x﹣4y+1=0,z﹣=0,2y+z=0,解得,x=﹣,y=﹣,z=则(y+z)•x2=×=.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.(10分)(春•双城市期末)如图,已知AD⊥BC,EF⊥BC于F,∠E=∠1,问AD平分∠BAC吗?请说明理由.【考点】平行线的判定与性质.【分析】先根据垂直的性质得出∠AD=∠EFC=90°,故可得出AD∥EF,由平行线的性质即可得出结论.【解答】解:AD平分∠BAC.理由:∵AD⊥BC,EF⊥BC,∴∠AD=∠EFC=90°,∴AD∥EF,∴∠CAD=∠E,∠BDA=∠1.∵∠E=∠1,∴∠CAD=∠BAD,∴AD平分∠BAC.【点评】本题考查的是平行线的判定与性质,先根据题意得出AD∥EF是解答此题的关键.26.(10分)(春•双城市期末)甲、乙两车分别从相距200千米的A、B两地相向而行,甲乙两车均保持匀速,若甲车行驶2小时,乙车行驶3小时,两车恰好相遇;若甲车行驶4小时,乙车行驶1小时,两车也恰好相遇.(1)求甲乙两车的速度.(2)若甲乙两车同时按原速度行驶1小时以后,甲车发生故障不动了,则乙车至少再以多大的速度行驶,才能保证在甲车出发以后3小时内与甲车相遇?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设甲车的速度为xkm/h,乙车的速度为ykm/h,利用路程等于时间乘以速度列方程组,然后解方程组即可;(2)设乙车再以akm/h的速度行驶,则乙以akm/h的速度行驶的时间为(3﹣1)=2小时,利用甲乙行驶的路程和不小于200列不等式,然后解不等式后求出不等式的最大解即可.【解答】解:(1)设甲车的速度为xkm/h,乙车的速度为ykm/h,根据题意得,解得,答:甲车的速度为40km/h,乙车的速度为40km/h;(2)设乙车再以akm/h的速度行驶,根据题意得40×1+40×1+(3﹣1)a≥200,解得a≥60,答:乙车至少再以60km/h的速度行驶,才能保证在甲车出发以后3小时内与甲车相遇.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.也考查了二元一次方程组的应用.27.(10分)(春•双城市期末)如图,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.【考点】垂线;对顶角、邻补角.【分析】(1)根据∠AOC+∠AOD=180°可得∠AOC和∠AOD的度数,根据对顶角相等可得∠BOD=70°,再利用角平分线定义可得∠DOE=35°,再根据邻补角定义可得∠COE的度数;(2)分两种情况画图,进而求出∠COF的度数.【解答】解:(1)∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°,∵∠BOD=∠AOC,∴∠BOD=70°,∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣∠DOE=145°;(2)分两种情况,如图1,∵OF⊥OE,∴∠EOF=90°,∴∠COF=∠COE﹣∠EOF=145°﹣90°=55°,如图2,∠COF=∠360°﹣∠COE﹣∠EOF=125°.【点评】此题主要考查了垂线、邻补角、对顶角,关键是掌握对顶角相等,邻补角互补.。

(汇总3份试卷)2020年北京市某中学七年级下学期数学期末复习能力测试试题

(汇总3份试卷)2020年北京市某中学七年级下学期数学期末复习能力测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.2(4)-等于( )A .4±B .4-C .4D .2【答案】C【解析】根据二次根式的性质进行计算. 【详解】解:2(4)44-=-=,故选:B .【点睛】本题考查了二次根式的性质与化简.二次根式的性质:2||a a =,算术平方根的结果为非负数. 2.如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于A .90°B .180°C .210°D .270°【答案】B 【解析】试题分析:如图,如图,过点E 作EF ∥AB ,∵AB ∥CD ,∴EF ∥AB ∥CD ,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B3.已知一个样本的最大值是178,最小值155,对这组数据进行整理时,若取组距为2.3,则组数为( ) A .10B .11C .12D .13【答案】A【解析】用最大值减去最小值求出极差,然后除以组距即得到组数.-=【详解】解:∵最大值与最小值的差为:17815523÷=∴23 2.310∴组数为10组,故选:A【点睛】本题考查了组数的确定方法,它是作频率分布直方图的基础.4.下列调查中,适宜采用全面调查方式的是()A.对我国中学生体重的调查B.对我国市场上某一品牌食品质量的调查C.了解一批电池的使用寿命D.了解某班学生的身高情况【答案】D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】对我国中学生体重的调查适宜采用抽样调查方式;对我国市场上某一品牌食品质量的调查适宜采用抽样调查方式;了解一批电池的使用寿命适宜采用抽样调查方式;了解某班学生的身高情况适宜采用全面调查方式;故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.B.C.D.【答案】C【解析】根据对顶角相等可知∠2=∠1=70°,再根据两直线平行,同旁内角互补求解即可.【详解】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°-∠1=180°-70°=110°.故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.6.如图,直线AB∥CD,∠FGH=90°,∠GHM= 40°,∠HMN=30°,并且∠EFA的两倍比∠CNP大10°,则∠PND的大小是()A.100°B.120°C.130°D.150°【答案】C【解析】作辅助线:延长PM、EG交于点K;EG的延长线交CD于点O,PM延长线交AB于点L,利用平行线性质进行求解.【详解】延长PM、EG交于点K;EG的延长线交CD于点O,PM延长线交AB于点L,如图,∵∠HMN=30゜,∴∠HMK=150゜,在四边形GHMK中,∠HGK=90゜,∠GHM=40゜,∠HMK=150゜,∴∠GKM=360゜-∠HGK-∠GHM-∠HMK=360゜-90゜-40゜-150゜=80゜,∴∠FKL=100゜,∴∠NKO=100゜,设∠EFA =x,则∠PNC =2x-10゜,∴∠KNO=2x-10゜,∵AB∥CD,∴∠KON=∠EFA=x,∵∠KNO+∠NKO+∠KON=180゜,∴2x-10゜+x+100゜=180゜,解得,x=30゜,∴∠PNC=2×30゜-10゜=50゜,∴∠PND=180゜-50゜=130゜.故选C.【点睛】本题考查了平行线的性质,平行线的性质可以简单的记忆为:两直线平行内错角相等、同位角相等,同旁内角互补.7.若不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<﹣1 B.a>﹣1 C.a<0 D.a<1【答案】A【解析】由已知不等式的解集,利用不等式的基本性质判断即可确定出a的范围.【详解】∵不等式(a+1)x>a+1的解集是x<1,∴a+1<0,解得:a<−1.故选A.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则8.下列四个图中,∠1与∠2是对顶角的是A.B. C.D.【答案】D【解析】根据对顶角的定义对各图形判断即可.【详解】A、∠1和∠2不是对顶角,故选项错误;B、∠1和∠2不是对顶角,故选项错误;C、∠1和∠2不是对顶角,故选项错误;D、∠1和∠2是对顶角,故选项正确.故选:D.【点睛】考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.9.已知,如图a∥b,∠1=55°,则∠2的度数等于()A.115°B.120°C.125°D.135°【答案】C【解析】∠1和∠3是直线a,b被第三条直线所截形成的内错角,结合已知,由两直线平行,同内角相等,可求得∠3,又∠2是∠3的补角,即可求得∠2.【详解】解:如图:∵a∥b,∠1=55°∴∠1=∠3=55°又∵∠2+∠3=180°∴∠2=180°-55°=125°故答案为C.【点睛】本题主要考查了平行线的性质,确定∠2=∠3是解答问题的关键.10.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【答案】C【解析】分析:根据两直线平行,同位角相等可得1115EGD ∠=∠=︒,再根据三角形内角与外角的性质可得∠C 的度数.详解:∵AB ∥CD ,∴1115EGD ∠=∠=︒,∵265∠=,∴1156550C ∠=-=,故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.二、填空题题11.建设路实验学校为了了解本校学生参加课外体育锻炼情况,随机抽取本校部分学生进行问卷调查统计整理并绘制了如下扇形统计图,如果抽取的学生中,从不参加课外体育锻炼的学生有9人,则抽取的学生中经常参加课外体育锻炼的学生有_____人.【答案】1【解析】根据不参加课外锻炼的人数和百分比求出总人数,然后求出答案即可.【详解】解:根据题意,总人数为:915%60÷= (人),经常参加:()60115%45%6040%24⨯--=⨯=(人) .故答案为:1.【点睛】本题考查了扇形统计图,用样本估计总体,解题的关键是正确求出抽取的总人数.12.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是______.【答案】2【解析】试题分析:依题意得,2a-1+(-a+2)=0,解得:a=-1.则这个数是(2a-1)2=(-3)2=2.故答案为2.点睛:本题考查了平方根的性质.根据正数有两个平方根,它们互为相反数建立关于a 的方程是解决此题的关键.13.若关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为_______________. 【答案】34【解析】将k 看做已知数求出x 与y ,代入2x 十3y= 6中计算即可得到k 的値.【详解】解: 5 9x y k x y k +=⎧⎨-=⎩①② ①十②得: 2x=14k ,即x=7k ,将x= 7k 代入①得:7k 十y=5k ,即y= -2k ,將x=7k , y= -2k 代入2x 十3y=6得: 14k-6k=6,解得: k=34故答案为:34 【点睛】此题考查了二元一次方程组的解以及二元一-次方程的解,方程的解即为能使方程左右两边成立的未知数的值.14.如果(21,3)P m m -+ 在第二象限,那么m 的取值范围是 __________ 【答案】132m -<< 【解析】第二象限点的坐标特点,横坐标<0,纵坐标>0,代入P 点,即可求得.【详解】∵(21,3)P m m -+ 在第二象限,∴21030m m -<⎧⎨+>⎩①② , 由①得:12m <由②得:>-3m∴132m -<<【点睛】 本题考查平面直角坐标系第二象限内点的坐标特点,以及解不等式组;熟练掌握各象限内坐标特点是解答本题的关键. 15.如图,在4×4的正方形网格中,已将四个小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是_______________.【答案】14【解析】用阴影小正方形个数除以总的小正方形个数可得. 【详解】P(阴影)=41164=. 故答案为14. 【点睛】本题考核知识点:几何概率. 解题关键点:求出面积比.16. 用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.【答案】三角形的三个内角都小于60°【解析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.17.如果a 是最大的负整数,b 是绝对值最小的数,c 是相反数等于本身的数,那么()a b c += ______.【答案】1【解析】先根据题意确定a 、b 、c 的值,再把它们的值代入代数式求值即可.【详解】解:∵a 是最大的负整数,b 是绝对值最小的数,c 是相反数等于本身的数,∴a=-1,b=1,c=1,∴(a+b)×c=1,故答案为1.【点睛】本题主要考查的是有理数的相关知识. 最大的负整数是−1,绝对值最小的有理数是1,相反数等于它本身的数是1.三、解答题18.已知,点B、D分别在∠MAN的两边AM、AN上,点C是射线AP上的一点,连接BC、DC,∠MAN=α,∠BCD=β,(0°<α<180°,0°<β<180°);BE平分∠MBC,DF平分∠NDC.(1)如图1,若α=β=80°,①求∠MBC+∠NDC的度数;②判断BE、DF的位置关系,并说明理由.(2)如图2,当点C在射线AP上运动时,若直线BE、DF相交于点G,请用含有α、β的代数式表示∠BGD.(直接写结果)【答案】(1) ① 160°,② 平行;(2)①12α-12β,②12β-12α,③180°-12α-12β.【解析】分析:(1) ①利用三角形外角即可求出; ②在①的基础上,再利用角平分线的性质即可求出;(2)分情况,四边形BCDG是凸四边形,凹四边形来讨论.详解:(1) ①α=β=80°,∵∠MBC是△ABC的外角,∴∠MBC=∠BAC+∠BCA,同理, ∠NDC=∠DAC+∠ACD,∴∠MBC+∠NDC=∠BAC+∠BCA+∠DAC+∠ACD=∠MAN+∠BCD=α+β=160°②BE∥DF∵BE平分∠MBC, DF平分∠NDC,∴∠EBC=12∠MBC, ∠CDF=12∠NDC,∴∠EBC+∠CDF=12(∠MBC+∠NDC)=12×160°=80°,在△BCD中,∵∠BCD=80°∴∠CBD+∠CDB=100°∴∠EBC+∠CBD+∠CDB=180°,即∠EBD+∠FDB=180°,∴BE∥DF(同旁内角互补,两直线平行)(2)①12α-12β,②12β-12α,③180°-12α-12β.点睛: 此题考查了平行线的性质与判定,角平分线的定义, 本题利用角平分线性质,并利用已知条件来求得, 全面思考问题,意识到有三种情形是正确解答的关键.19.为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A只愿意就读普通高中;.B只愿意就读中等职业技术学校;.C就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.【答案】(1)800;(2)216°;(3)840人.【解析】(1)根据C的人数除以其所占的百分比,求出调查的学生总数即可;(2)用总数减去A、C区域的人数得到B区域的学生数,从而补全图一;再根据百分比=频数总数计算可得A所占百分比,再乘以,从而求出A 区域的圆心角的度数;(3)求出B占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:80÷36360=800(名),则调查的学生总数为800名.故答案为800;(2)B的人数为:800-(480+80)=240(名),A 区域的圆心角的度数为480800×360°=216°, 补全统计图,如图所示:(3)根据题意得:240800240800×2800=840人.所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.20.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使120AOC ∠=︒,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OA 上,另一边ON 在直线AB 的下方,其中30OMN ∠=︒.(1)将图1中的三角尺绕点O 顺时针旋转至图2,使一边OM 在AOC ∠的内部,且恰好平分AOC ∠,求CON ∠的度数;(2)将图1中三角尺绕点O 按每秒10º的速度沿顺时针方向旋转一周,旋转过程中,在第 秒时,边MN 恰好与射线OC 平行;在第 秒时,直线ON 恰好平分锐角BOC ∠.(3)将图1中的三角尺绕点O 顺时针旋转至图3,使ON 在BOC ∠的内部,请探究BOM ∠与NOC ∠之间的数量关系,并说明理由.【答案】 (1) 150°;(2) 9或27;6或1 ;(3)见解析.【解析】(1)根据角平分线的定义求出∠COM ,然后根据∠CON=∠COM+90°解答;(2)分别分两种情况根据平行线的性质和旋转的性质求出旋转角,然后除以旋转速度即可得解;(3)用∠BOM 和∠NOC 表示出∠BON ,然后列出方程整理即可得解.【详解】解:(1)∵OM 平分∠AOC ,∴∠COM=12∠AOC=60°, ∴∠CON=∠COM+90°=150°;(2))∵∠AOC=120°,∴∠BOC=60°,∵∠OMN=30°,∴当ON在直线AB上时,MN∥OC,旋转角为90°或270°,∵每秒顺时针旋转10°,∴时间为9或27,直线ON恰好平分锐角∠BOC时,旋转角为60°或180°+60°=10°,∵每秒顺时针旋转10°,∴时间为6或1;故答案为9或27;6或1.(3)∵∠MON=90°,∠BOC=60°,∴∠BON=90°-∠BOM,∠BON=60°-∠NOC,∴90°-∠BOM=60°-∠NOC,∴∠BOM-∠NOC=30°,故∠BOM与∠NOC之间的数量关系为:∠BOM-∠NOC=30°.【点睛】本题考查了旋转的性质,角平分线的定义,平行线的性质,读懂题目信息并熟练掌握各性质是解题的关键,难点在于(2)要分情况讨论.21.解不等式组,并将解集在数轴上表示出来() 1215 32122xxx⎧--≤⎪⎨-<+⎪⎩【答案】13x-≤<.【解析】先求出两个不等式的解集,再求其公共解,然后在数轴上表示出来即可.【详解】()121532122xxx⎧--≤⎪⎨-<+⎪⎩①②解不等式①,得1x≥-.解不等式②,得3x<.不等式①、②的解集在数轴上表示如下:∴原不等式组的解集为13-≤<.x【点睛】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.如图1,AB//EF,∠2=2∠1(1)证明∠FEC=∠FCE;(2)如图2,M为AC上一点,N为FE延长线上一点,且∠FNM=∠FMN,则∠NMC与∠CFM有何数量关系,并证明.【答案】(1)见解析;(2)∠CFM=2∠NMC,理由见解析【解析】(1)由平行线的性质可得∠1=∠CEF,再加上∠2=2∠1,∠2=∠CEF+∠C,从而得到结论;(2)如图,由三角形外角性质可得∠7=∠3+∠4,从而得到∠C=∠3+∠4,再加上∠C+∠5=∠8+∠N可得∠3+∠4+∠5=∠8+∠N,再加上∠FNM=∠FMN可得:∠3+∠4+∠5=∠8+∠3+∠8,从而得出结论.【详解】(1)∵AB//EF,∴∠1=∠CEF,又∵∠2=2∠1(已知),∠2=∠CEF+∠C(三角形外角的性质),∴2∠1=∠2=∠1+∠C,∴∠1=∠C,∴∠FEC=∠C,即∠FEC=∠FCE;(2)如图所示:∵∠7=∠3+∠4,∠7=∠6,∠6=∠C(已证),∴∠C=∠3+∠4,又∵∠7=∠6,∴∠C+∠5=∠8+∠N,∴∠3+∠4+∠5=∠8+∠N,又∵∠FNM=∠FMN,∴∠N=∠3+∠8,∴∠3+∠4+∠5=∠8+∠3+∠8,又∵∠4+∠5=∠CFM,∴∠3+∠CFM=∠8+∠3+∠8,∴∠CFM=2∠8,即∠CFM=2∠NMC.【点睛】考查了三角形外角的性质和内角和定理,解题关键是充分利用了三角形外角的性质和内角和定理和灵活运用了等量代换.23.某中学要在一块如图的三角形花圃里种植花草,同时学校还打算修建一条从A点到BC边的小路.(1)若要使修建的小路所用的材料最少..,请在图1画出小路AD;(2)若要使小路两侧所种的花草面积相等....,请在图2画出小路AE,其中E点满足的条件是______. 【答案】(1)见解析;(2)点E是BC边的中点,图见解析【解析】(1)根据垂线段的性质,可得答案;(2)根据三角形中线的性质,可得答案.【详解】(1)过A点作BC边上的高.(2)过A点作BC边上的中线,点E是BC边的中点.【点睛】此题考查作图—应用与设计作图,解题关键在于掌握作图法则.24.观察以下等式:101011212++⨯=;111112323++⨯=;121213434++⨯=⋯⋯ 第1个等式; 第2个等式;第3个等式按以上规律解决下列问题:(1)写出第6个等式是什么?(2)写出你猜想的第n 个等式是什么?(用含n 的等式表示,并证明).【答案】(1)151516767++⨯=;(2)1111111n n n n n n --++=++,证明见解析。

07平谷区初一下数学期末答案2020.7

平谷区2019—2020学年度第一学期期末质量监控初一数学参考答案及评分标准 2020.7一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.(3)(3)m m +-10. 135︒两直线平行,内错角相等 11. 32 32 12. 283y +≥- 13. 9x - 14.80°15. 2()()m a m b m am bm ab ++=+++16. 8x 37x 4yy-=⎧⎨+=⎩三、解答题(本题共12道小题,第17、18题,每小题5分,第19题,10分,第20题,5分,第,21题,6分,第,22题,5分,第,23题,6分,第,24题,5分,第27、28题,每小 题,6分,共68分) 17.2()(2)()x y x y x y +--+22222(2)x xy y x xy y =++---…………………………………………………………………….2分 22222++2x xy y x xy y =++- …………………………………………………………………….3分 2=33xy y + …………………………………………………………………….5分18. 46715x x -≥-47615x x -≥- ………………………………………………………………………………….1分39x -≥- ………………………………………………………………………………2分 3x ≤ ……………………………………………………………………………….3分………………………4分∴此不等式的解集是3x ≤,其中正整数解有1,2,3………………………5分19.(1) 21, 32 5. y x x y =-⎧⎨+=⎩①②把○1代入○2得:32(21)5x x +-= ………………………………………3分11x y =⎧⎨=⎩…………………………………………5分 (2)21, 2-3. x y x y -=⎧⎨+=⎩①②○22+⨯○1得55x =- …………………………………………3分-11x y =⎧⎨=-⎩…………………………………………5分 20.依据题意得:273x +>………………………………………………………2分 270x +>…………………………………………………3分2x >-7…………………………………………………4分 72x >- …………………………………………………5分21. (1)3a b ab -=2(1)ab a - ………………………………………2分 =(1)(1)ab a a -+ ………………………………………3分 (2)231212a a -+=3(244a a -+) ………………………………………2分 =32(2)a - ……………………………………3分-1-31-2-4022.解:解不等式①得:1x ≤;…………………………………………………………………….1分解不等式②得:-x >3;…………………………………………………………………….2分把不等式①和②的解集在数轴上表示出来:………………….4分原不等式组的解集是-1x 3<≤.23. 2(m 2)(m 1)(1)(1)(1)m m m ++-+++-=22232(m 2m 1)(1)m m m ++-+++-……………………………………3分 =22232m 2m 11m m m ++---+-=21m m ++ ……………………………………4分22101m m m m +-=+= ……………………………………5分原式= 2 ……………………………………6分24. ∵DE ∥BA∴∠FDE =_∠BFD _____( 两直线平行,内错角相等 ). ………2分 ∵∠FDE =∠A ,∴∠A =_∠BFD ( 等量代换 ). ………4分∴DF ∥CA ( 同位角相等,两直线平行 ). ………5分25.(1)90,………………………………………………….2分(2)123604890︒︒⨯= ………………………………………………4分 (3)24210056090⨯=(人)………………………………………………5分26. (1)解:设每个A 种粽子x 元,每个B 种粽子y 元. ………………1分261003004500y x x y =-⎧⎨+=⎩……………………………………………2分解得,912x y =⎧⎨=⎩……………………………………………5分答:每个A 种粽子9元,每个B 种粽子12元. 27. ∵DE ∥OA∴∠ODE =∠COA . ………………………………4 ∵OC 平分∠BOA ,∴∠BOC =∠COA ………………………………5分∴∠BOC =∠EDO . ………………………………6分 (3)28.(1) ∵3x y -= ,∴2y x +=.∵x >2,所以3y +>2 , ∴1y >-. ∵y <1, ∴y -1<<1①.同理得: x 2<<4②由①+② 得 y x -1+2<+<1+4,∴x y + 的取值范围是 x y 1<+<5.………………………………2分(2)○11020a a ->⎧⎨+>⎩………………………………3分 ∴1a >① ………………………………4分○2∵4a b -= ∴4b a +=.∵a >1,所以4b +>1 , ∴3b >-② ………………………………5分由①+②得:a b +>1-3∴a b +>-2 ………………………………6分。

北京市2020学年七年级下册第二学期期末数学试卷【解析版】【精编】.doc

2019-2020学年北京市高级中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(4分×8=32分,下面每小题给出的四个选项中,只有一个是正确的)1.(4分)确定平面直角坐标系内点的位置是()A.一个实数B.一个整数C.一对实数D.有序实数对考点:坐标确定位置.分析:比如实数2和3并不能表示确定的位置,而有序实数对(2,3)就能清楚地表示这个点的横坐标是2,纵坐标是3.解答:解:确定平面直角坐标系内点的位置是有序实数对,故选D.点评:本题考查了在平面直角坐标系内表示一个点要用有序实数对的概念.2.(4分)下列方程是二元一次方程的是()A.x2+x=1 B.2x+3y﹣1=0 C.x+y﹣z=0 D.x++1=0考点:二元一次方程的定义.分析:根据二元一次方程的定义进行分析,即只含有两个未知数,未知数的项的次数都是1的整式方程.解答:解:A、x2+x=1不是二元一次方程,因为其最高次数为2,且只含一个未知数;B、2x+3y﹣1=0是二元一次方程;C、x+y﹣z=0不是二元一次方程,因为含有3个未知数;D、x++1=0不是二元一次方程,因为不是整式方程.故选B.点评:注意二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.3.(4分)已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)考点:点的坐标.分析:根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.解答:解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.点评:本题考查了点的位置判断方法及点的坐标几何意义.4.(4分)将下列长度的三条线段首尾顺次相接,能组成三角形的是()A.4cm,3cm,5cm B.1cm,2cm,3cm C.25cm,12cm,11cm D.2cm,2cm,4cm考点:三角形三边关系.分析:看哪个选项中两条较小的边的和大于最大的边即可.解答:解:A、3+4>5,能构成三角形;B、1+2=3,不能构成三角形;C、11+12<25,不能构成三角形;D、2+2=4,不能构成三角形.故选A.点评:本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和小于最大的数就可以.5.(4分)关于x的方程2a﹣3x=6的解是非负数,那么a满足的条件是()A.a>3 B.a≤3 C.a<3 D.a≥3考点:一元一次方程的解;解一元一次不等式.分析:此题可用a来表示x的值,然后根据x≥0,可得出a的取值范围.解答:解:2a﹣3x=6x=(2a﹣6)÷3又∵x≥0∴2a﹣6≥0∴a≥3故选D点评:此题考查的是一元一次方程的根的取值范围,将x用a的表示式来表示,再根据x的取值判断,由此可解出此题.6.(4分)学校计划购买一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是()A.正三角形B.正四边形C.正五边形D.正六边形考点:平面镶嵌(密铺).专题:几何图形问题.分析:看哪个正多边形的位于同一顶点处的几个内角之和不能为360°即可.解答:解:A、正三角形的每个内角为60°,6个能镶嵌平面,不符合题意;B、正四边形的每个内角为90°,4个能镶嵌平面,不符合题意;C、正五边形的每个内角为108°,不能镶嵌平面,符合题意;D、正六边形的每个内角为120°,3个能镶嵌平面,不符合题意;故选C.点评:考查一种图形的平面镶嵌问题;用到的知识点为:一种正多边形镶嵌平面,正多边形一个内角的度数能整除360°.7.(4分)下面各角能成为某多边形的内角的和的是()A.270°B.1080°C.520°D.780°考点:多边形内角与外角.分析:利用多边形的内角和公式可知,多边形的内角和是180度的整倍数,由此即可找出答案.解答:解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的整倍数,在这四个选项中是180的整倍数的只有1080度.故选B.点评:本题主要考查了多边形的内角和定理,是需要识记的内容.8.(4分)(2002•南昌)设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“■”“▲”“●”这三种物体按质量从大到小的排列顺序为()A.■●▲B.■▲●C.▲●■D.▲■●考点:一元一次不等式的应用.专题:压轴题.分析:本题主要通过观察图形得出“■”“▲”“●”这三种物体按质量从大到小的排列顺序.解答:解:因为由左边图可看出“■”比“▲”重,由右边图可看出一个“▲”的重量=两个“●”的重量,所以这三种物体按质量从大到小的排列顺序为■▲●,故选B.点评:本题主要考查一元一次不等式的应用,解题的关键是利用不等式及杠杆的原理解决问题.二、填空题9.(3分)已知点A(1,﹣2),则A点在第四象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点A(1,﹣2)在第四象限.故答案为:四.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(3分)如图,直角三角形ACB中,CD是斜边AB上的中线,若AC=8cm,BC=6cm,那么△ACD 与△BCD的周长差为2cm,S△ADC=12cm2.考点:直角三角形斜边上的中线.分析:过C作CE⊥AB于E,求出CD=AB,根据勾股定理求出AB,根据三角形的面积公式求出CE,即可求出答案.解答:解:过C作CE⊥AB于E,∵D是斜边AB的中点,∴AD=DB=AB,∵AC=8cm,BC=6cm∴△ACD与△BCD的周长差是(AC+CD+AD)﹣(BC+BD+CD)=AC﹣BC=8cm﹣6cm=2cm;在Rt△ACB中,由勾股定理得:AB==10(cm),∵S三角形ABC=AC×BC=AB×CE,∴×8×6=×10×CE,CE=4.8(cm),∴S三角形ADC=AD×CE=××10cm×4.8cm=12cm2,故答案为:2,12.点评:本考查了勾股定理,直角三角形斜边上中线性质,三角形的面积等知识点,关键是求出AD和CE长.11.(3分)如图,象棋盘上“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”的坐标为(﹣2,1).考点:坐标确定位置.分析:首先根据“将”和“象”的坐标建立平面直角坐标系,再进一步写出“炮”的坐标.解答:解:如图所示,则“炮”的坐标是(﹣2,1).故答案为:(﹣2,1).点评:此题考查了平面直角坐标系的建立以及点的坐标的表示方法.12.(3分)(2006•菏泽)黑、白两种颜色的正六边形地砖按如图所示的规律拼成若干个图案:则第n 个图案中有白色地砖4n+2块.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题;规律型.分析:通过观察,前三个图案中白色地砖的块数分别为:6,10,14,所以会发现后面的图案比它前面的图案多4块白色地砖,可得第n个图案有4n+2块白色地砖.解答:解:分析可得:第1个图案中有白色地砖4×1+2=6块.第2个图案中有白色地砖4×2+2=10块.…第n个图案中有白色地砖4n+2块.点评:本题考查学生通过观察、归纳的能力.此题属于规律性题目.注意由特殊到一般的分析方法,此题的规律为:第n个图案有4n+2块白色地砖.三、解答题(5分×5=25分)13.(5分)用代入法解方程组:.考点:解二元一次方程组.分析:把第二个方程整理得到y=3x﹣5,然后代入第一个方程求出x的值,再反代入求出y 的值,即可得解.解答:解:,由②得,y=3x﹣5③,③代入①得,2x+3(3x﹣5)=7,解得x=2,把x=2代入③得,y=6﹣5=1,所以,方程组的解是.点评:本题考查了代入消元法解二元一次方程组,从两个方程中的一个方程整理得到y=kx+b的形式的方程是解题的关键.14.(5分)用加减消元法解方程组:.考点:解二元一次方程组.专题:计算题.分析:根据x的系数相同,利用加减消元法求解即可.解答:解:,①﹣②得,12y=﹣36,解得y=﹣3,把y=﹣3代入①得,4x+7×(﹣3)=﹣19,解得x=,所以,方程组的解是.点评:本题考查了利用加减消元法解二元一次方程组,解题的关键在于找出或构造系数相同或互为相反数的未知数.15.(5分)解不等式:≥.考点:解一元一次不等式.分析:利用不等式的基本性质,首先去分母,然后移项、合并同类项、系数化成1,即可求得原不等式的解集.解答:解:去分母,得:3(2+x)≥2(2x﹣1)去括号,得:6+3x≥4x﹣2,移项,得:3x﹣4x≥﹣2﹣6,则﹣x≥﹣8,即x≤8.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)解不等式组,并求其整解数并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别求出各不等式的解集,再求出其公共解集,再其公共解集内找出符合条件的x的整数解即可.解答:解:,由①得,x<1,由②得,x≥﹣2,故此不等式组的解集为:﹣2≤x<1,在数轴上表示为:故此不等式组的整数解为:﹣2,﹣1,0.点评:本题考查的是解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.17.(5分)若方程组的解x与y相等,求k的值.考点:二元一次方程组的解.专题:计算题.分析:由y=x,代入方程组求出x与k的值即可.解答:解:由题意得:y=x,代入方程组得:,解得:x=,k=10,则k的值为10.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.四、解答题(5分×2=10分)18.(2分)如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.考点:三角形内角和定理.分析:由三角形内角和定理,可将求∠D转化为求∠CFD,即∠AFE,再在△AEF中求解即可.解答:解:∵DE⊥AB(已知),∴∠FEA=90°(垂直定义).∵在△AEF中,∠FEA=90°,∠A=30°(已知),∴∠AFE=180°﹣∠FEA﹣∠A(三角形内角和是180)=180°﹣90°﹣30°=60°.又∵∠CFD=∠AFE(对顶角相等),∴∠CFD=60°.∴在△CDF中,∠CFD=60°∠FCD=80°(已知)∠D=180°﹣∠CFD﹣∠FCD=180°﹣60°﹣80°=40°.点评:熟练掌握三角形内角和内角和定理是解题的关键.19.(2分)已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明∠1<∠2.考点:三角形的外角性质.专题:证明题.分析:由三角形的外角性质知∠2=∠ABC+∠BAC,∠BAC=∠1+∠AEF,从而得证.解答:证明:∵∠2=∠ABC+∠BAC,∴∠2>∠BAC,∵∠BAC=∠1+∠AEF,∴∠BAC>∠1,∴∠1<∠2.点评:此题主要考查学生对三角形外角性质的理解和掌握,此题难度不大,属于基础题.五、作图题(6分)20.(6分)如图,在△ABC中,∠BAC是钝角,请按下列要求画图.画(1)∠BAC的平分线AD;(2)AC边上的中线BE;(3)AB边上的高CF.考点:作图—复杂作图.专题:作图题.分析:(1)以点A为圆心,以任意长为半径画弧与边AB、AC两边分别相交于一点,再以这两点为圆心,以大于这两点距离的为半径画弧相交于一点,过这一点与点A作出角平分线AD即可;(2)作线段AC的垂直平分线,垂足为E,连接BE即可;(3)以C为圆心,以任意长为半径画弧交BA的延长线于两点,再以这两点为圆心,以大于这两点间的长度的为半径画弧,相交于一点,然后作出高即可.解答:解:(1)如图,AD即为所求作的∠BAC的平分线;(2)如图,BE即为所求作的AC 边上的中线;(3)如图,CF即为所求作的AB边上的高.点评:本题考查了复杂作图,主要有角平分线的作法,线段垂直平分线的作法,过一点作已知直线的垂线,都是基本作图,需熟练掌握.六、解答题(21题5分)21.(5分)在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.考点:坐标与图形变化-平移.分析:先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点C向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点F分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.解答:解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.点评:考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.七、解答题(7分)22.(7分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:第一次第二次甲种货车辆数(辆) 2 5乙种货车辆数(辆) 3 6累计运货吨数(吨)15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?考点:二元一次方程组的应用.专题:图表型.分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.解答:解:设甲种货车每辆每次运货x(t),乙种货车每辆每次运货y(t).则有,解得.30×(3x+5y)=30×(3×4+5×2.5)=735(元).答:货主应付运费735元.点评:应根据条件和问题知道应设的未知量是直接未知数还是间接未知数.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.列出方程组,再求解.23.(7分)探究:(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2=∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=280°;(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°=60°,猜想∠BDA+∠CEA与∠A的关系为∠BDA+∠CEA=2∠A.考点:翻折变换(折叠问题).专题:探究型.分析:根据三角形内角是180度可得出,∠1+∠2=∠B+∠C,从而求出当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°,有以上计算可归纳出一般规律:∠BDA+∠CEA=2∠A.解答:解:(1)根据三角形内角是180°可知:∠1+∠2=180°﹣∠A,∠B+∠C=180°﹣∠A,∴∠1+∠2=∠B+∠C;(2)∵∠1+∠2+∠BDE+∠CED=∠B+∠C+∠BDE+∠CED=360°,∴∠1+∠2=∠B+∠C;当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°;(3)如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°=60°,所以∠BDA+∠CEA与∠A的关系为:∠BDA+∠CEA=2∠A.点评:本题考查图形的翻折变换和三角形,四边形内角和定理,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.。

2020学年北京市名校初一下学期期末数学综合测试试题

2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.如图,AB//DE ,AC//DF ,AC =DF ,下列条件中,不能判定△ABC ≌△DEF 的是A .AB =DE B .∠B =∠EC .EF =BCD .EF//BC2.如图,△ABC ≌△A′B′C′,其中∠A =36°,∠C =24°,则∠B′=( )A .150°B .120°C .90°D .60°3.下列各数中最小的数是( )A .5-B .6-C .37-D .38-4.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D .5.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+6.如图,直线l 与直线a ,b 相交,且a∥b,∠1=110º,则∠2的度数是 ( )A .20°B .70°C .90°D .110°7.已知单项式773x y a b +和2427y x a b --是同类项,则( )A .32x y =-⎧⎨=⎩B .23x y =⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .32x y =⎧⎨=⎩ 8.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m •4m 2=8m 2D .m 5÷m 3=m 29.如图,△ABC 中,∠C=90°,AC=3,点P 是边BC 上的动点,则AP 长不可能是( )A .2.5B .3C .4D .510.如图,△ABC 中,AB =AC ,D 是BC 边的中点,点E 与点D 关于AB 对称,连接AE 、BE ,分别延长AE 、CB 交于点F ,若∠F =48°,则∠C 的度数是( )A .21°B .52°C .69°D .74°二、填空题题 11.如图,在“互”字型图形中,已知直线12l l //,点A 、E 在直线1l 上,点D 、F 在直线2l 上,若ABC BCD ∠=∠,52EAB ∠=︒,则FDC ∠=_____°.12.把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率_____. 13.(2016江苏省常州市)已知x 、y 满足248x y ⋅=,当0≤x≤1时,y 的取值范围是_________. 14.如图,将一条两边沿互相平行的纸带折叠,若144∠=︒,则α∠=__________.15.如图,有一条直的宽纸带,按图折叠,则∠α的度数为______.16.已知A(2,﹣3),先将点A 向左平移3个单位,再向上平移2个单位得到点B ,则点B 的坐标是_____. 17.据统计,某班50名学生参加综合素质测试,评价等级为、、A B C 等的学生情况如扇形图所示,则该班综合素质评价为A 等的学生有________名.三、解答题18.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图(1)所示,其中一块三角板的直角边AC 垂直于数轴,AC 的中点过数轴原点O ,AC =8,斜边AB 交数轴于点G ,点G 对应数轴上的数是4;另一块三角板的直角边AE 交数轴于点F ,斜边AD 交数轴于点H .(1)如果△AGH 的面积是10,△AHF 的面积是8,则点F 对应的数轴上的数是 ,点H 对应的数轴上的数是 ;(2)如图(2),设∠AHF 的平分线和∠AGH 的平分线交于点M ,若∠HAO=a ,试用a 来表示∠M 的大小:(写出推理过程)(3)如图(2),设∠AHF 的平分线和∠AGH 的平分线交于点M ,设∠EFH 的平分线和∠FOC 的平分线交于点N ,求∠N+∠M 的值.19.(6分)如图,直线AB ,CD 相交于点O ,OF 平分AOE ∠,OF CD ⊥,垂足为O .()1写出图中所有与AOD ∠互补的角;()2若120AOE ∠=,求BOD ∠的度数.20.(6分)如图,点D ,E ,F 在ABC ∆的三边上,DE BC ∥,180A ADF ∠+∠=︒,求证B EDF ∠=∠.21.(6分)先化简,再求值:2(2)()(2)5()a b a b a b a a b +-+---,其中1,2a b =-=.22.(8分)已知关于x ,y 二元一次方程组326x y n x y +=⎧⎨-=⎩. (1)如果该方程组的解互为相反数,求n 的值及方程组的解;(2)若方程组解的解为正数,求n 的取值范围.23.(8分)对x ,y 定义一种新运算T ,规定T (x ,y )=22ax by x y++(其中a ,b 是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T (3,1)=22319314a b a b ⨯+⨯+=+,T (m ,﹣2)=242am b m +-. (1)填空:T (4,﹣1)= (用含a ,b 的代数式表示);(2)若T (﹣2,0)=﹣2且T (5,﹣1)=1.①求a 与b 的值;②若T (3m ﹣10,m )=T (m ,3m ﹣10),求m 的值.24.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲乙两种型号设备的价格;(2)该公司决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有那几种购买方案?25.(10分)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】【详解】试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解:∵AB∥DE,AC∥DF,∴∠A=∠D,AB=DE,则△ABC和△DEF中,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故D选项错误;故选C.考点:全等三角形的判定.根据三角形内角和算出∠B的度数,再利用全等三角形的性质即可得出结果.【详解】解:∵∠A=36°,∠C=24°,∴∠B=120°,∵△ABC≌△A′B′C′,∴∠B=∠B′=120°,故选:B.【点睛】本题考查三角形内角和定理及全等三角形的性质,熟练掌握全等三角形的性质是解题关键.3.B【解析】【分析】直接化简各数,进而得出最小的数.【详解】=∴>-2>2∴-2,∴ B.【点睛】此题主要考查了实数比较大小,正确化简各数是解题关键.4.B【解析】【分析】【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+6.B【解析】已知a ∥b ,∠1=110º,根据两直线平行,同旁内角互补可得∠2=180°-∠1=180°-110°=70°,故选B. 7.B【解析】【分析】利用同类项的定义列出方程组,求出方程组的解即可得到x 与y 的值.【详解】∵773x y a b +和2427y x a b --是同类项,∴74227x y x y +==+⎧⎨⎩ , 解得:23x y =⎧⎨=-⎩ 故选B 【点睛】此题考查解二元一次方程组,同类项,掌握运算法则是解题关键8.D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B,(mn2)2=m2n4,故此选项错误;选项C,2m•4m2=8m3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.9.A【解析】已知,在△ABC中,∠C=90°,AC=3,根据垂线段最短,可知AP的长不可小于3,当P和C重合时,AP=3,故选A.10.C【解析】【分析】由等腰三角形三线合一可知AD⊥BC,又易知△ABD≌△ABE,所以∠AEB=∠ADB=90°,所以∠EBF=90°-48°=42°,得到∠EBC=180°-42°=138°,得到∠ABC=69°,可得∠C=69°【详解】∵AB=AC,D是AC中点∴AD⊥BC,∠ABC=∠C∵B点和E点关于AB对称∴△ABD≌△ABE∴∠AEB=∠ADB=90°,∠ABE=∠ABD∵∠F=48°∴∠EBF=∠AEB -∠F =90°-48°=42°∴∠ABC=12(180°-∠FBE)=69°∴∠C=∠ABC=69°故选C【点睛】本题考查三线合一、全等三角形证明与性质、角度代换等知识点,知识点比较多,属于中等难度题型二、填空题题11.128;【解析】【分析】延长AB交l2G l l//得∠DGA=∠EAG,再证明AG∥CD即可得到结论.【详解】延长AB 交l 2于点G ,如图,∵12l l //,∴∠DGA=∠EAG ,∵52EAB ∠=︒,∴∠DGA=52°,∵ABC BCD ∠=∠,∴AG ∥CD ,∴∠DGA+∠FDC=180°,∴FDC ∠=128°.故答案为:128.【点睛】此题主要考查了平行线的性质与判定,解题时注意:两直线平行内错角相等,同旁内角互补.12.13【解析】【分析】先求出将长度为6的铁丝截成3段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.【详解】因为将长度为6的铁丝截成3段,每段长度均为整数厘米,共有3种情况,分别是1,1,4;1,2,3;2,2,2;其中能构成三角形的是:2,2,2一种情况, 所以能构成三角形的概率是13. 故答案为:13. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.13.1≤y≤32. 【解析】 试题分析:∵248x y ⋅=,∴23222x y ⋅=,即2322x y +=,∴x+2y=3,∴y=32x -,∵0≤x≤1,∴1≤y≤32. 故答案为1≤y≤32. 考点:解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.14.68︒【解析】【分析】如图,根据平行线的性质可得∠1=∠2,根据折叠的性质可得∠3=∠2+α∠,再利用平角等于180°得到关于α的方程,然后求解即可.【详解】解:∵纸片两边平行,∴∠1=∠2=44°,由于折叠,∴∠3=∠2+α∠,∴∠2+2α∠=180°,∴α∠=68°.故答案为:68°.【点睛】本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点.15.55°【解析】【分析】由图形可得AG ∥BF ,可得∠EAG=180°-70°=110°,由于翻折可得两个角是重合的,解答可得答案.【详解】∵AG ∥BF ,∴∠EAG+∠BEA=180°,∵∠DEF=70°,∴∠BEA=70°,∵折叠的性质,可得2∠α=180°-70°=110°,解得∠α=55°.故答案为55°.【点睛】本题考查了平行线的性质,图形的翻折问题;找到相等的角,利用折叠性质是解答翻折问题的关键.16.(﹣1,-1)【解析】分析:将点A向左平移3个单位时,横坐标减3,纵坐标不变;向上平移2个单位时,横坐标不变,纵坐标加2,从而可求B点的坐标.详解:∵将点A向左平移3个单位,再向上平移2个单位得到点B,∴2-3=-1,-3+2=-1,∴B(-1,-1).故答案为(-1,-1).点睛:本题考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.1;【解析】【分析】先由扇形图可知C等的学生占总体的百分比是10%,然后根据B等的学生数计算B等的学生占总体的百分比,从而求出A 等的学生占总体的百分比,从而求出该班综合评价学生人数.【详解】解:由扇形图可知B等的学生有30人,占总人数50人的60%,C等的学生占总体的百分比是10%,∴A等的学生占总体的百分比是:1-60%-10%=30%,又知某班50名学生参加期末考试,∴该班综合评价为A等的学生有50×30%=1名,故答案为:1.【点睛】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.三、解答题18.(1)-5,-1(2)12ɑ+22.5°(3)∠M+∠N=97.5°. 【解析】(1)-5,-1(2) ∵∠AHF 的平分线和∠AGH 的平分线交于点M , ∴∠FHM=12∠FHA,∠HGM=12∠HGA, ∵∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,∴2∠M+2∠HGM=∠HGA+∠HAG, ∴∠M=12∠HAG=12(∠HAO+∠OAG)=12ɑ+22.5° (3) ∵∠EFH 的平分线和∠FOC 的平分线交于点N ,∴∠N=90°-12∠FAO=90°-12∠FAH -12∠OAH (可以直接利用∠N=90°-12∠FAO) =90°-15°-12∠OAH =75°-12∠OAH, ∵∠M=12∠OAH+22.5°, ∴∠M+∠N=97.5°.19.(1)与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠;(2)30.【解析】分析:(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF=∠EOF ,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC ,从而最后得解; (2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答. 详解:(1)∵直线AB ,CD 相交于点O ,∴∠AOC 和∠BOD 与∠AOD 互补,∵OF 平分∠AOE ,∴∠AOF=∠EOF ,∵OF ⊥CD ,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC ,∴∠DOE 也是∠AOD 的补角,∴与∠AOD 互补的角有∠AOC ,∠BOD ,∠DOE ;(2)∵OF 平分∠AOE ,∴∠AOF=12∠AOE=60°, ∵OF ⊥CD ,∴∠COF=90°,∴∠AOC=∠COF-∠AOF=90°-60°=30°,∵∠AOC 与∠BOD 是对顶角,∴∠BOD=∠AOC=30°.点睛:本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.20.见解析【解析】【分析】由DE BC ∥平行线的性质得到AED B ∠=∠,由180A ADF ∠+∠=︒可得AB DF ,进而可得,AED EDF ∠=∠等量代换即可得出B EDF ∠=∠.【详解】证明:∵180A ADF ∠+∠=︒,∴AB DF .∴AED EDF ∠=∠.∵DE BC ∥,∴AED B ∠=∠.∴B EDF ∠=∠.【点睛】本题主要考查了平行线的性质的运用,解题时注意运用:两直线平行,内错角相等;两直线平行,同位角相等.21.22ab b -,-8【解析】【分析】先根据多项式乘多项式、完全平方公式及单项式乘多项式计算,再合并同类项即可化简原式,最后将a 、b 的值代入计算可得.【详解】原式22222224455a ab ab b a ab b a ab =-+-+-+-+22ab b =-,当1,2a b =-=时,原式22(1)22=⨯-⨯- 44=--8=-.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握多项式乘多项式、完全平方公式及单项式乘多项式的运算法则.22.n>1【解析】【分析】(1)先根据题意求出n 的值,再求出方程组的解;(2)用含m 的代数式表示出x 、y ,根据x 的值为正数,y 的值为正数,得关于m 的一元一次不等式组,求解即可.【详解】(1)依题意得0x y +=,所以n=0026x y x y +=⎧⎨-=⎩解得2-2x y =⎧⎨=⎩(2)由326x y n x y +=⎧⎨-=⎩解得222x n y n =+⎧⎨=-⎩ ∴20220n n +>⎧⎨->⎩∴n>1【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.会用代入法或加减法解二元一次方程组是解决本题的关键.23.(1)163a b + ;(2)①a=1,b=-1,②m=2. 【解析】【分析】(1)根据题目中的新运算法则计算即可;(2)①根据题意列出方程组即可求出a,b 的值;②先分别算出T (3m ﹣3,m )与T (m ,3m ﹣3)的值,再根据求出的值列出等式即可得出结论.【详解】解:(1)T(4,﹣1)==;故答案为;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,当T(x,y)=T(y,x)时,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题.. 24.(1)甲设备每台12万元,乙设备每台10万元.(2)有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【解析】【分析】(1)设设甲设备每台x万元,乙设备每台y万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”列出二元一次方程组可以求解;(2)设购买甲设备a 台,根据购买甲型设备不少于3台,和购买甲、乙两种新设备的资金不超过110万元,列出不等式组,根据不等式组的整数解得出购买方案.【详解】(1)设甲设备每台x 万元,乙设备每台y 万元,由题意得:3216326x y y x -=⎧⎨-=⎩解得:1210x y =⎧⎨=⎩ , 答:甲设备每台12万元,乙设备每台10万元.(2)设购买甲设备a 台,则购买乙设备()10a -台,由题意得:()3121010110a a a ≥⎧⎪⎨+-≤⎪⎩解得:35a ≤≤, 又∵a 为整数,∴3a =,或4a =,或5a =,因此有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【点睛】考查一元一次不等式组和二元一次方程组的应用,分析题目中数量关系是列不等式组和方程组的关键,通过方程组确定价格,通过不等式组的整数解确定购买方案.25. (1) 65°;(2) 25°.【解析】【分析】【详解】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=12∠CBD=65°; (2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt △ABC 中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=65°; (2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确) 1.若a b >,则下列不等式正确的是( )A .33a b <B .44a b -<-C .2121a b +<+D .22a b -<- 2.下列语句正确是( )A .无限小数是无理数B .无理数是无限小数C .实数分为正实数和负实数D .两个无理数的和还是无理数3.对任意实数x ,点P(x ,x 2-2x)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限4.如果()13P mm -,在第四象限,那么m 的取值范围是( ) A .103m <<B .103m -<< C .0m < D .13m > 5.在实数|-3|,-2,-π,-1中,最小的数是( )A .3-B .2-C .π-D .1-6.已知a b <,下列不等式中,变形正确的是( )A .a 3b 3->-B .3a 13b 1->-C .3a 3b ->-D .a b 33> 7.如图,已知B 、E 、C 、F 在同一条直线上,BE CF =,//AB DE ,则下列条件中,不能判断....ABC DEF ∆≅∆的是( )A .AB DE = B .A D ∠=∠C .//AC DFD .AC DF =8.下面的计算正确的是( )A .3x 2•4x 2=12x 2B .x 3•x 5=x 15C .x 4÷x=x 3D .(x 5)2=x 79.开学前,小强、小亮和小伟去文化用品商店购买笔和本,小强用17元买了1支笔和4个本,小亮用19元买了2支笔和3个本,小伟购买上述价格的笔和本共用了48元,且本的数量不少于笔的数量,则小伟的购买方案共有( )A .1种B .2种C .3种D .4种10.有一个两位数,它的十位数字与个位数字的和为5,则符合条件的数有( ) 个A .4B .5C .6D .无数二、填空题题 11.若13的整数部分为a ,小数部分为b ,求13a b -+的值为__________.12.如图,AB∥CD,则∠1+∠3—∠2的度数等于 __________.13.在△ABC 中, ∠A=70°,∠B,∠C 的平分线交于点 O ,则∠BOC=_____度.14.方程 1﹣353x -=252x -去分母后为______. 15.对x 、y 定义一种新运算T ,规定:T (x ,y )=(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,侧如:T (1,0)==a .已知T (1,﹣1)=1,T (5,﹣2)=4,若关于m 的不等式组恰好有3个整数解,则实数P 的取值范围是_____.16.4个数a ,b ,c ,d 排列成a bc d ,我们称之为二阶行列式.规定它的运算法则为:a b c d =ad -bc .若2312x x x x -++-=-13,则x =_____. 17.命题“若a=b ,则a 2=b 2”是____ 命题(填“真”或者“假”).三、解答题18.如图,//EF AD ,12∠=∠,85BAC ∠=︒.求AGD ∠的度数.19.(6分)计算:(1)(3x +2)(4x -2);(2); (3)20.(6分)(1)|3﹣2|+3﹣327- (2)解方程组:238755x y x y -=⎧⎨-=-⎩21.(6分)小李购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:()1用含m ,n 的代数式表示地面的总面积S ;()2已知客厅面积是卫生间面积的8倍,且卫生间、卧室、厨房面积的和比客厅还少3平方米,如果铺1平方米地砖的平均费用为100元,那么小李铺地砖的总费用为多少元?22.(8分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.求购进甲、乙两种花卉,每盆各需多少元? 23.(8分)如图,网格中每个小正方形的边长均为1,ABC 的顶点都在格点上,将ABC 向左平移1格,再向上平3移格,得到'''A B C(1)请在图中画出平移后的'''A B C ;(2)若连接'',BB CC 、则这两条线段的位置关系和大小关系分别是 ;(3)此次平移也可看作'''A B C 如何平移得到ABC ?(1) 请你直接写出x的值;(2) 求2()的平方根.x225.(10分)阅读下列材料:已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED =∠B+∠D.图1小冰是这样做的:证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF +∠FED =∠B+∠D.即∠BED=∠B+∠D.请利用材料中的结论,完成下面的问题:已知:直线AB∥CD,直线MN分别与AB、CD交于点E、F.(1)如图1,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;(1)如图3,EG1和EG1为∠BEF内满足∠1=∠1的两条线,分别与∠EFD的平分线交于点G1和G1.求证:∠FG1 E+∠G1=180°.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据“不等式两边同时乘以或除以同一个正数,不等号不改变方向”对A 进行判断;根据“不等式两边同时乘以或除以同一个正数,不等号不改变方向,不等式两边同时加上或减去同一个数,不等号不改变方向”对B 、C 进行判断;根据“不等式两边同时乘以或除以同一个负数,不等号改变方向”对D 进行判断.【详解】A. 当a>b 时,则33a b >,所以A 选项错误;B. 当a>b 时,44a b -->,所以B 选项错误;C. 当a>b 时,2121a b ++>,所以C 选项错误;D. 当a>b 时,22a b -<-,所以D 选项正确。

〖汇总3套试卷〗北京市2020年七年级下学期期末质量跟踪监视数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法:①内错角相等;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④平行于同一条直线的两条直线互相平行.其中错误的有().A.1个;B.2个;C.3个;D.4个.【答案】C【解析】由题意根据相交线和平行线的性质,分别进行分析判断即可.【详解】解:①两直线平行,内错角相等,①错误;②在同一平面内,两条直线不平行必相交,②错误;③在同一平面内,过一点有且只有一条直线与已知直线垂直,③错误;④平行于同一条直线的两条直线互相平行,④正确.故选:C.【点睛】本题考查相交线和平行线的性质,熟练掌握相交线和平行线的性质以及垂直线定理即在同一平面内,过一点有且只有一条直线与已知直线垂直是解题的关键.2.解方程11132x--=,去分母正确的是()A.2-(x-1)=1 B.2-3(x-1)=6 C.2-3(x-1)=1 D.3-2(x-1)=6 【答案】B【解析】两边都乘以各分母的最小公倍数6即可.【详解】111 32x--=,两边都乘以各分母的最小公倍数6得,2-3(x-1)=6.故选B.【点睛】解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.3.如图,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A,则△ABC中,AC边上的高为()A.AD B.GA C.BE D.CF【答案】C【解析】根据垂线的定义去分析,AD 、CF 等都不是AC 所对顶点向AC 所在直线所作的垂线,由此即可判定.【详解】∵AC 边上的高是指过AC 所对顶点B 向AC 所在直线所作的垂线∴在AD ⊥BC 于D ,BE ⊥AC 于E ,CF ⊥AB 于F ,GA ⊥AC 于A 中,只有BE 符合上述条件.故选C .【点睛】本题考查了学生对三角形的高这一知识点的理解和掌握,难度不大,要求学生应熟练掌握.4.如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【答案】B【解析】由点P(a −4,a)在y 轴上,得a −4=0,解得a=4,P 的坐标为(0,4),故选B.5.已知20192018a x =+,20192019b x =+,20192020c x =+,则代数式222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3 【答案】D【解析】通过已知条件可求得a-b,b-c,a-c 的值,将代数式适当变形,将a-b,b-c,a-c 的值代入即可求解.【详解】∵20192018a x =+,20192019b x =+,20192020c x =+,∴20192018201920191a b x x -=+--=-, 20192018201920202a c x x -=+--=-,20192019201920201b c x x -=+--=-,∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221[(2)(2)(2)]2a ab b a ac c b bc c =-++-++-+ 2221[()()()]2a b a c b c =-+-+- 2221[(1)(2)(1)]2=-+-+-162=⨯3=故选D.【点睛】本题考查利用完全平方公式因式分解,解决本题时①将原代数式分三部分,每一部分利用完全平方公式因式分解,②再根据已知条件计算出a-b,b-c,a-c的值,整体代入.6.如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S n=()A.2n B.22n-C.12n+D.12n-【答案】B【解析】根据已知的条件求出S1、S2的值,然后通过这两个面积的求解过程得出一般化规律,进而可得出S n的表达式.【详解】解:根据直角三角形的面积公式,得S1=12=2-1;根据勾股定理,得:2S2=1=20;A1B=2,则S3=21,依此类推,发现:S n=2n-2,故选B.【点睛】本题考查了等腰直角三角形的判定与性质,关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.7.若∠1与∠2互补,∠1=26°30′,则∠2的度数为()A.153°30′B.163°30′C.173°30′D.183°30′【答案】A【解析】直接利用两角互补的定义进而求出即可.【详解】∵∠1=26°30′,∠1与∠2互补,∴∠2=180°-26°30′=153°30′.故选A.【点睛】此题主要考查了两角互补的定义,正确掌握互补的定义是解题关键.8.一个四边形,截一刀后得到的新多边形的内角和将A .增加 180°B .减少 180°C .不变D .不变或增加 180°或减少 180°【答案】D【解析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形, ∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 9.下列说法正确的有( )①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点可以向一条射线或线段所在的直线作垂线;⑥若12l l ⊥,则1l 是2l 的垂线,2l 不是1l 的垂线.A .2个B .3个C .4个D .5个 【答案】B【解析】根据垂线定义依次进行判断.【详解】①两条直线相交,交点叫垂足,应当为两直线互相垂直时交点为垂足,故错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③在同一平面内,一条直线有无数条垂线,故错误;④在同一平面内,一条线段有无数条垂线,正确;⑤过一点可以向一条射线或线段所在的直线作垂线,正确;⑥若12l l ⊥,则1l 是2l 的垂线,2l 也是1l 的垂线,故错误;所以②④⑤正确,共计3个.故选B.【点睛】考查了垂线的定义,解题关键是理解和熟记垂线的定义.10.到△ABC 的三条边距离相等的点是△ABC 的( ).A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点【答案】D【解析】根据角平分线的性质求解即可. 【详解】到△ABC 的三条边距离相等的点是△ABC 的三条角平分线的交点故答案为:D .【点睛】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.二、填空题题11.如图,在四边形 ABCD 中,AC 是对角线,AB=CD ,∠DAC+∠BCA=180°,∠BAC+∠ACD=90°,四边形 ABCD 的面积是 18,则 CD 的长是__________.【答案】6.【解析】分析: 延长BC 至点E,使CE=AD,再连接AE, 证△ACD ≌△CAE 得ACD CAE SS =,再证△BAE 是等腰直角三角形,得212ABCD S CD =四边形,最后根据18ABCD S =四边形即可求出CD 的长. 详解:如图,延长BC 至点E,使CE=AD,再连接AE.∵∠DAC+∠BCA=180°,∠ECA+∠BCA=180°∴∠DAC=∠ECA在△ACD 和△CAE 中 AD CE DAC ECA AC CA =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CAE(SAS)∴∠ACD=∠CAE,CD=AE,ACD CAE SS =∵∠BAC+∠ACD=90°∴∠BAC+∠CAE=90°∴∠BAE=90°∵AB=CD,CD=AE∴AB=AE∴△BAE 是等腰直角三角形 ∴21122BAE S AB AE CD =⋅= ∵ABC ACD ABCD S SS =+四边形,ACD CAE S S = ∴212ABC CAE ABCD S S S CD 四边形=+= ∵四边形 ABCD 的面积是 18∴212CD =18 ∵CD>0,∴CD=6故答案为:6.点睛: 本题考查四边形综合题、全等三角形的判定、四边形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助线,构造等腰直角三角形解决问题,属于中等题.12.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为____________.【答案】4.32×10-6;【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n - ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题解析:将0.00000432用科学记数法表示为4.32×610- .故答案为4.32×610-. 点睛:本题考查了用科学计数法表示较小的数,一般形式为10n a -⨯ ,其中110a ≤< ,n 为由原数左边起第一个不为零的数字前面的0的个数决定.13__________0.1.(填“>”“<”或“=”) 【答案】>【解析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.12∵5-2>2,∴522->2. 故512->2.1. 故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等. 14.若多项式()219x m x -++是一个完全平方式,则m =________(写出-一个答案即可). 【答案】5或7-(写出一个答案即可)【解析】形如222a ab b ±+的式子称为完全平方式,则结合题目分情况讨论1m +,即可得到答案.【详解】当10m +≥时,因为多项式()219x m x -++是一个完全平方式,所以16m +=,则5m =;当10+<m 时,因为多项式()219x m x -++是一个完全平方式,所以16m +=-,则7m =-.故答案为5或7-.【点睛】本题考查完全平方式,解题的关键是分情况讨论1m +.15.妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,于是妈妈取了一点儿品尝,这应该属于___________. (填“全面调查”或“抽样调査”)【答案】抽样调查;【解析】根据普查和抽样调查的定义,显然此题属于抽样调查.【详解】由于只是取了一点品尝,所以应该是抽样调查.故答案为抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.16.如图,AD 是△ABC 的角平分线,∠C =90°,CD =3cm ,点P 在AB 上,连接DP ,则DP 的最小值为_____cm .【答案】1.【解析】作DP′⊥AB 于P′,根据角平分线的性质及垂线段最短,即可得到答案.【详解】作DP′⊥AB 于P′,∵AD 是△ABC 的角平分线,∠C =90°,DP′⊥AB∴DP′=DC =1cm ,则DP 的最小值为1cm ,故答案为:1.【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质.17.三个连续的正整数的和大于333,则满足条件的最小的三个正整数是_______.【答案】111,112,113【解析】设出三个连续的正整数中间一个为x ,表示另外两个,列出不等式求解即可.【详解】解:设这个三连整数是1x -,x ,1x +,则11333x x x -+++>,解得111x >.112x ∴=,故最小的三个正整数是111,112,113.故答案为:111,112,113【点睛】本题考查的是不等式的简单应用,根据题意列出正确的不等式是解题关键.三、解答题18.先化简,再求值:()()()()22533,x y x x y x y x y -+---+其中1, 1.56x y ==. 【答案】229y xy -;94【解析】根据整式的混合运算法则,先化简,再代入求值,即可求解.【详解】原式2222244559x xy y x xy x y =-++--+ 229y xy =-, 当1 1.56x y ==,时,原式212(1.5)9 1.56=⨯-⨯⨯94=. 【点睛】本题主要考查整式的化简求值,掌握完全平方公式,平方差公式以及单项式乘多项式法则,是解题的关键. 19.观察下列等式,并探究①20123111⨯⨯⨯+==②212341255⨯⨯⨯+==③22345112111⨯⨯⨯+==……(1)写出第④个等式:______;(2)某同学发现,四个连续自然数的积加上1后,结果都将是某一个整数的平方.当这四个数较大时可以进行简便计算,如:22267891(78)(71)(81)156(562)1562561(561)55⨯⨯⨯+=⨯⨯-++=⨯-+=-⨯+=-=.请你猜想写出第n 个等式,用含有n 的代数式表示,并通过计算验证你的猜想.(3)任何实数的平方都是非负数(即20a ≥),一个非负数与一个正数的和必定是一个正数(即0k >时,20a k +>).根据以上的规律和方法试说明:无论x 为什么实数,多项式()21(3)(5)17x x x ---+的值永远都是正数.【答案】(1)23456136119⨯⨯⨯+==;(2)见解析; (3)见解析.【解析】(1)根据给出①②③规律即可得出;(2)根据①②③④中因式的规律得出()22(1)(1)(2)11n n n n n n -+++=+-,再验证; (3)根据前面的结论,将()21(3)(5)17x x x ---+化简成()22411x x --+的形式,从而得出结论. 【详解】(1)23456136119⨯⨯⨯+==;(2)()22(1)(1)(2)11n n n n n n -+++=+-, 左边()()()()()222222221211n n n n n n n n n n =++-+=+-++=+-=右边 (3)()()()2221(3)(5)17(1)(1)(3)(5)17434517x x x x x x x x x x x ---+=+---+=-+--+ ()()()()()2222222434381743843161411x x x x x x x x x x ⎡⎤=-+-+-+=-+--+++=--+⎣⎦ 所以,无论x 为什么实数,多项式()21(3)(5)17x x x ---+的值永远都是正数. 【点睛】考查了数字的变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法.20.计算或化简(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4) 【答案】6(2)3222-x【解析】解:原式.6511)5()5()2.0(1200920092009=⨯+=+⨯+⨯++=(2)根据平方差公式去括号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下列解不等式22135x x+-的过程中,出现错误的一步是()①去分母,得5(x+2)>3(2x-1).②去括号,得5x+10>6x-3.③移项,得5x-6x>-10-3.④系数化为1,得x>13.A.①B.②C.③D.④2.不等式组5234xx-≤-⎧⎨-+<⎩的解集表示在数轴上为()A.B.C.D.3.代数式2a-在实数范围内有意义,则a的取值范围是()A.a≥2B.a>2 C.a≥-2 D.a≤24.若a>b,则下列结论错误的是()A.a﹣3>b﹣3 B.3﹣a>3﹣b C.a+3>b+3 D.﹣3a<﹣3b 5.下列图形中,由∠1=∠2≠90°,能得到AB∥CD的是()A. B. C. D.6.要反映某市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.以上均可7.如图所示,点E在AB的延长线上,下列条件中不能判断AB//CD的是( )A .391人中至少有两人的生日在同一天B .抛掷一次硬币反面一定朝上C .任意买一张“周杰伦”的演唱会门票,座位号都会是2的倍数D .某种彩票的中奖率为0.1%,购买1000张彩票一定能中奖9.(-3)2的计算结果是 ( )A .9B .6C .-9D .-610.关于x 的方程3x+2a=x ﹣5的解是负数,则a 的取值范围是( )A .a <52B .a >52C .a <﹣52D .a >﹣52二、填空题题11.规定:当0ab ≠时,a b a b ab ⊗=+-,下面给出了关于这种运算的四个结论:①()339⊗-=-;②若0a b ⊗=,则110a b +=;③若111a b⊗=,则1a b +=;④若()40a a ⊗-=,则2a =.其中正确结论的序号是________(填上你认为所有正确结论的序号)12.如图,如果AB BC ⊥垂足为B ,5AB =,4BC =,那么点C 到AB 的距离为_______.13.不等式122123x x ++>-的正整数解为___________. 14.有一个数值转换器,原理如图:当输入x 为81时,输出的y 的值是_____.15.不等式5(2)62x x -≤+的正整数解共有_____个.1613a ,小数部分为b ,求a 2+b 13_____.17.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n (n 是正整数)个等式为_____________________________.三、解答题18.把弹簧的上端固定,在其下端挂物体,下表是测得的弹簧长度()y cm 与所挂物体的质量()x g 的一组对应值:/x g 0 1 2 3 4 5 …/y cm 1 1.5 2 2.5 3 3.5 …(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)弹簧的原长是_______cm ,物体每增加1g ,弹簧的长度增加_________cm .(3)请你估测一下当所挂物体为8g 时,弹簧的长度是______cm .19.(6分)若一个三角形的三边长分别是a ,b ,c ,其中a 和b 满足方程421804380a b b a +-=⎧⎨-+=⎩,若这个三角形的周长为整数,求这个三角形的周长.20.(6分)解不等式或不等式组,并把它的解集表示在数轴上:(1) 41(2)(2)3x x -->-; (2) 24543x x x -<⎧⎨+⎩①②21.(6分)如图,AD ∥BC ,∠BAD =90°,以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 点作CF ⊥BE .垂足为F .(1)线段BF = (填写图中现有的一条线段);(2)证明你的结论.22.(8分)如图,∠1=70°,∠2 =70°. 说明:AB ∥CD .23.(8分)已知平面直角坐标系中有一点M (23m -,1m +)(1)若点M 到x 轴的距离为2,求点M 的坐标;(2)点N (5,-1)且MN ∥x 轴时,求点M 的坐标.24.(10分)如图,点、、分别在、、上,且,,下面写出了说明“”的过程,请填空:∵, ∴_______,________.(________________________) ∵ ∴___________,(________________________) ∵ ∴___________,(________________________) ∴.(等量代换) ∵(平角定义) ∴(等量代换)25.(10分)因式分解(1)()()2294a x y b y x -+-; (2)()222416a a +-.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】去分母:5(x+2)>3(2x-1);去括号:5x+10>6x-3;移项:5x-6x >-10-3;系数化为1得:x <1.故选D .【点睛】.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变2.B【解析】【分析】根据题意先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【详解】解:解不等式52x -≤-,得x ≤3,解不等式34x -+<,得x >-1,∴原不等式组的解集是-1<x ≤3.故选B .【点睛】本题考查不等式组的解法和解集在数轴上的表示法,注意掌握如果是表>或<号的点要用空心,如果是表示>等于或<等于号的点用实心.3.A【解析】【分析】根据根式有意义的条件,列出不等式求解即可.【详解】则必须20a -≥ 即:2a ≥故选A.【点睛】本题主要考查根式有意义的条件,这是重要的知识点,应当熟练掌握.4.B【解析】根据不等式的性质判断即可.【详解】解:A、∵a>b,∴a﹣3>b﹣3,故本选项不合题意;B、∵a>b,3﹣a<3﹣b,故本选项符合题意;C、∵a>b,∴a+3>b+3,故本选项不合题意;D、∵a>b,∴﹣3a<﹣3b,故本选项不合题意.故选:B.【点睛】本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.5.B【解析】试题分析:根据平行线的判定定理分别进行分析即可.解:A、∠1和∠2互补时,可得到AB∥CD,故此选项错误;B、∠1=∠2,可得∠1=∠2的对顶角,根据同位角相等两直线平行可得AB∥CD,故此选项正确;C、∠1=∠2,根据内错角相等两直线平行可得AD∥CB,故此选项错误;D、∠1=∠2不能判定AB∥CD,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.6.C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.7.B【解析】【分析】根据平行线的判定分别进行分析可得答案.【详解】A、根据内错角相等,两直线平行可得AB∥CD,故此选项不合题意;B、根据内错角相等,两直线平行可得AD∥BC,故此选项符合题意;C、根据内错角相等,两直线平行可得AB∥CD,故此选项不合题意;D、根据同旁内角互补,两直线平行可得AB∥CD,故此选项不合题意;故选B.【点睛】此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.8.A【解析】【分析】必然事件就是一定发生的事件,根据定义即可作出判断.【详解】解:A、是必然事件,故本选项正确,B、不一定发生,是随机事件,故本选项错误;C、不一定发生,是随机事件,故本选项错误;D、不一定发生,是随机事件,故本选项错误,故选:A.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,用到的知识点为:确定事件包括必然事件和不可能事件,必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.A【解析】【分析】根据乘方的定义即可求解.【详解】(-3)2=(-3)×(-3)=1.本题考查了有理数的乘方,理解乘方的定义是关键.10.D【解析】【分析】先解方程求出x ,再根据解是负数得到关于a 的不等式,解不等式即可得.【详解】解方程3x+2a=x ﹣5得 x=522a --, 因为方程的解为负数, 所以522a --<0, 解得:a >﹣52. 【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.二、填空题题11.②③④【解析】【分析】直接利用新定义求解即可判断选项的正误.【详解】解:运算a b a b ab ⊗=+-,3(3)333(3)9⊗-=--⨯-=;①错误;∵0,0,a b ab a b a b ab ⊗=≠⊗=+-,∴0a b ab +-=,∴a b ab +=, ∴111a b a abb ++==,②正确; ∵1111110,0b a ab a b a b ab ab+-⊗=+-==≠, ∴-10b a +=即1a b +=,③正确;∵(4)0a a ⊗-=,∴4(4)0a a a a +---=,故答案为:②③④.【点睛】本题考查命题的真假的判断与应用,新定义的连结与应用,基本知识的考查.12.4【解析】【分析】根据AB⊥BC,BC=1,可知点C到AB的距离为1.【详解】∵AB⊥BC,BC=1,∴可知点C到AB的距离为1,故答案是:1.【点睛】本题运用了点到直线的距离定义,关键是理解好定义.13.1、2、3、1【解析】【分析】先根据不等式的基本性质求出不等式的解集,再求出不等式的正整数解即可.【详解】解:去分母,得:3(x+1)>2(2x+2)﹣6,去括号,得:3x+3>1x+1﹣6,移项,得:3x﹣1x>1﹣6﹣3,合并同类项,得:﹣x>﹣5,系数化为1,得:x<5,则不等式得整数解为1、2、3、1,故答案为:1、2、3、1.【点睛】本题考查了解一元一次不等式,不等式的整数解的应用,解此题的关键是能根据不等式的性质求出不等式的解集,难度适中.14【解析】【分析】将x的值代入数值转化器计算即可得到结果.将x=81,将x=9,再将x=3y 15.1【解析】【分析】先解不等式,再找不等式的正整数解即可.【详解】去括号得,1x-10≤6+2x,移项得,1x-2x≤6+10,合并同类项得,3x≤16,系数化为1得,x≤163,∴正整数解有:1,4,3,2,1,共1个数.故答案为1.【点睛】本题考查了正确求不等式的正整数解,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.1【解析】【分析】a,b的值,即可代入求出即可.【详解】∴34,a=3,小数部分为:,∴a22.故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出无理数接近的有理数是解题关键.17.(n+3)2-n2=3(2n+3)【解析】试题解析:观察分析可得:1式可化为(1+3)2-12=3×(2×1+3);2式可化为(2+3)2-22=3×(2×2+3);…故则第n个等式为(n+3)2-n2=3(2n+3).。

相关文档
最新文档