kriging(克里金方法_克里金插值)[1]

合集下载

克里金插值法

克里金插值法

克里金插值法及其适用范围克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国着名统计学家G . Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点xi ∈A (i=1,2,……,n )处属性值为Z (xi ),则待插点x0∈A 处的属性值Z (x0)的克里金插值结果Z*(x0)是已知采样点属性值Z (xi )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ(i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3)式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。

python克里金法

python克里金法

python克里金法Python克里金法克里金法(Kriging)是一种空间插值方法,常用于地质、地理、环境等领域的数据分析和预测。

Python作为一种广泛应用于科学计算和数据分析的编程语言,提供了丰富的库和工具来实现克里金法。

克里金法的基本原理是根据已知的离散数据点,通过建立一个数学模型来插值未知位置的数值。

它基于两个核心假设:空间自相关性和最小方差原则。

空间自相关性意味着离得越近的点之间的相关性越高,最小方差原则则保证插值结果的最优性。

在Python中,使用克里金法进行插值和预测可以借助一些常用的库,如scipy和sklearn。

首先,需要准备好离散的数据点,包括其位置坐标和对应的数值。

然后,可以使用scipy库中的interpolate 模块来进行插值操作。

具体步骤如下:1. 导入必要的库和模块:```pythonimport numpy as npfrom scipy.interpolate import KrigingInterpolator```2. 准备数据点:```python# 假设已知的数据点和数值X_known = np.array([[x1, y1], [x2, y2], ...])Z_known = np.array([z1, z2, ...])```3. 创建克里金插值器:```python# 创建插值器对象kriging = KrigingInterpolator(X_known, Z_known)```4. 插值预测:```python# 预测未知位置的数值X_unknown = np.array([[x3, y3], [x4, y4], ...])Z_pred = kriging(X_unknown)```除了使用scipy库,还可以使用sklearn库中的KrigingRegressor 模块来实现克里金法的插值和预测。

这个模块提供了更多的参数和选项,可以进行更灵活的配置。

克里金插值法的详细介绍。kriging。

克里金插值法的详细介绍。kriging。

kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。

在充分考虑观测资料之间的相互关系后,对每一个观测资料赋予一定的权重系数,加权平均得到估计值。

这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,其计算公式为:h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。

2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。

半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。

利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状模型、指数模型、圆形模型。

----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。

3.用拟合的模型计算出三个参数。

例如球状模型中nugget为c0,range为a,sill为c。

4.利用拟合的模型估算未知点的属性值,方程为:,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的已知点的数目。

假如用三个点来估算,则有这样权重就可以求出,然后估算未知点。

(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。

do ii=1,nxif(tgrid(ii,1)==0.)thendo i=1,dsite(ii)!首先寻找距离最近的五个已知点位置do j=1,nhif(d(mm(ii),j).ne.0.or.j==1)thenhmie(j)=d(mm(ii),j)-dgrid(i)elsehmie(j)=9999end ifhmid(j)=abs(hmie(j))end dodo j=1,nhdo k=j,nhif(hmid(j)<hmid(k))thenelsem1=hmid(j)hmid(j)=hmid(k)hmid(k)=m1end ifend doend dodo j=1,5do k=1,nhif(abs(hmie(k))==hmid(j))thenlocat(j)=kend ifend doend dodo j=1,4do k=j+1,5if(locat(j)==locat(k))thendo i3=1,nhif(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))thenlocat(j)=i3exitend ifenddoendifenddoenddo!然后求各点间距离,并求半方差do j=1,5do k=1,5hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.end doend dodo j=1,5hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5* $ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.end dodo j=1,5do k=1,5if(hij(j,k).eq.0.)thenrleft(j,k)=0.elserleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)end ifif(hio(j).eq.0.)thenrrig(1,j)=0.elserrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)end ifend doend dorrig(1,6)=1.rleft(6,6)=0.do j=1,5rleft(6,j)=1.rleft(j,6)=1.end dotry=rleftcall brinv(rleft,nnn,lll,is,js)ty1=matmul(try,rleft)!求权重wq=matmul(rrig,rleft)!插值所有格点上t,sdo j=1,5tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j))end doenddoendifenddo。

克里金插值(kriging)

克里金插值(kriging)
其简算公式为 Cov(ξ,η) = E (ξη)-E(ξ) ·E(η)
2021/6/16
12
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P
2021/6/16
13
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
2021/6/16
14
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
方差的平方根为标准差,记为σξ
σξ=
D ()E [-E ()]2 E (2 )-[E ()]2
•从矩的角度说,方差是ξ的二阶中心矩。
2021/6/16
10
2. 随机函数
研究范围内的一组随机变量。
{Z(u),u研究范}围 简记为 Z (u )
条件累积分布函数(ccdf)
F ( u 1 , , u K ; z 1 , , z K |( n ) P ) o { Z ( u r 1 ) b z 1 , , Z ( u K ) z K |( n )}
2021/6/16
2
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”

(最新整理)克里金插值法

(最新整理)克里金插值法

(完整)克里金插值法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)克里金插值法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)克里金插值法的全部内容。

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D 。

Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法.1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1].因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z(x),在点x i ∈A (i=1,2,……,n )处属性值为Z(x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n)的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

克里金

克里金

克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige 的名字命名的一种最优内插法。

克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法。

它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。

该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。

它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋予一定的系数,最后进行加权平均来估计块段品位的方法。

但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高、
缓冲区分析是指以点、线、面实体为基础,自动建立其周围一定宽度范围内的缓冲区多边形图层,然后建立该图层与目标图层的叠加,进行分析而得到所需结果。

它是用来解决邻近度问题的空间分析工具之一。

邻近度描述了地理空间中两个地物距离相近的程度。

克里金插值(kriging)(推荐完整)

克里金插值(kriging)(推荐完整)
P (ξ=xk)= pk, k=1,2,….

则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。

E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分

xp(x)dx
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P

考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”
G. Materon(1962)
提出了“地质统计学”概念 (法文Geostatistique)

克里金插值(kriging)

克里金插值(kriging)

二、统计推断与平稳要求
任何统计推断(cdf,数学期望等)均要求重复取样。 但在储层预测中,一个位置只能有一个样品。 同一位置重复取样,得到cdf,不现实
P

考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
空间一点处的观测值可解释为一个随机变量在该点
P

F(u; z) F(u h; z)

可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
为相应的观测值。区域化变量在 x0处的值 z* x0 可
采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 i 选取的标准
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。

E(ξ) =
xp( x)dx

数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(h) C(0) C(h)
(二阶平稳假设条件下边查函数与写防查的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
Z*(x0)
(1)无偏条件
从本征假设出发, 可知 EZx为常数,有
EZ * x0 Zx0
E n i Z xi Z x0
i1

n i m m 0 i1
(在搜寻邻域内为 常数,不同邻域可 以有差别)
可出现E[Z(u)]不存在, 但E[Z(u)-Z(u+h)]存在并为零的情况
E[Z(u)]可以变化,但E[Z(u)-Z(u+h)]=0
② 增量[Z(u)-Z(u+h)]的方差函数 (变差函数,Variogram)
存在且平稳 (即不依赖于u),即:
Var[Z(u)-Z(u+h)] = E[Z(u)-Z(u+h)]2-{E[Z(u)-Z(u+h)]}2 = E[Z(u)-Z(u+h)]2 = 2γ(u,h) = 2γ(h),
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
1977年我国开始引入
区域化变量理论 克里金估计 随机模拟
克里金插值方法
n
z* x0 i zxi i 1 (普通克里金)
•不仅考虑待估点位置与
已知数据位置的相互关 系,而且还考虑变量的 空间相关性。
2. 随机函数
研究范围内的一组随机变量。
{Z(u),u 研究范围} 简记为 Z(u)
条件累积分布函数(ccdf)
F(u1,,uK ; z1,, zK | (n)) Prob{Z(u1) z1,, Z(uK ) zK | (n)}
随机场:
P
当随机函数依赖于多个
自变量时,称为随机场。
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。

E(ξ) = xp(x)dx
•数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
•从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P

考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
基台值(Sill):代表变量在空间上的总变异性大小。即为变 差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅 度大小。当块金值等于0时,基台值即为拱高。
当随机函数不满足二阶平稳,而满足内蕴(本征)假设时, 可用变差函数来表示克里金方程组如下:


i
n 1

xi x j
i
x0 x j
n

i 1
i 1
j 1, , n
Z*(x0)
最小的估计方差,即克里金方差可用以下公式求解:
可得到关系式:
n
i 1
i 1
Z*(x0)
(2)估计方差最小
k 2 E Z *x0 Zx0 EZ *x0 Zx0 2 E Z *x0 Zx0 2
min
应用拉格朗日乘数法求条件极值

变差函数= A ·|h|,且随着|h|线性地增大。
2
准二阶平稳假设及准本征假设
若区域化变量Z(x)在整个区域内不满足二阶平 稳(或本征假设) ,但在有限大小的邻域内是二阶平 稳(或本征)的,则称Z(x)是准二阶平稳的(或准本征 的)。
三、克里金估计(基本思路
----以普通克里金为例
设 x1, , xn 为区域上的一系列观测点,zx1 , , zxn
跃迁现象
一维情况下的定义:
假设空间点x只在一维的x轴上变化,则将区域化 变量Z(x)在x,x+h两点处的值之差的方差之半定义
为Z(x)在x轴方向上的变差函数,记为 (x,h)
(x,h)
=
1 2
Var[Z(x)-Z(x+h)]
=
1 2
E[Z(x)-Z(x+h)]2-{E[Z(x)-Z(x+h)]}2
j
E
Z *x0 Zx0 2
2
n

j


0,
i1
j 1, , n
Z*(x0)
进一步推导,可得到n+1阶的线性方程组, 即克里金方程组
n

i 1
C
xi
xj
i

C
x0
n
xj

i 1
i 1
j 1, , n
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
严格平稳
F(u1,,uK ; z1,, zK ) F(u1 h,,uK h; z1,, zK )
对于单变量而言:
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
第二讲
克里金插值
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。
地质统计学
由法国巴黎国立高等矿业学院G.马特隆教授于 1962年所创立。 主要是为解决矿床储量计算和误差估计问题而 发展起来的
块金效应的尺度效应
如果品位完全是典型的随机变量,则不论 观测尺度大小,所得到的实验变差函数曲线总 是接近于纯块金效应模型。
当采样网格过大时,将掩盖小尺度的结构, 而将采样尺度内的变化均视为块金常数。这种 现象即为块金效应的尺度效应。
1
3
3
3
1
2
3
1
1
(h) = C(0) – C(h)
F(u; z) Pr ob{Z(u) z}
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
F(u; z | (n)) Pr ob{Z(u) z | (n)}

离散变量(类型变量):
P
F(u;k | (n)) Prob{Z(u) k | (n)}
(应用随机函数理论)
井眼 地震
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 随机变量Z的一个实现。
P

连续变量:
累积分布函数(cdf)
Z (u)
cumulative distribution function
为相应的观测值。区域化变量在 x0处的值 z* x0 可
采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 i 选取的标准
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
相当于要求:Z(u)的变差函数存在且平稳。
可出现协方差函数不存在,但变差函数存在的情况。
例:物理学上的著名的布朗运动是一种呈现出无限 离散性的物理现象,其随机函数的理论模型就是维 纳-勒维(Wiener-Levy)过程(或随机游走过程)。
布朗运动:
•既不能确定验前方差,也不能确定协方差函数。
•但是其增量却具有有限的方差: Var[Z(x)-Z(x+h)] = 2 (h)= A·|h| (其中,A是个常数),
n

2 k

Cx0

x0


iCxi x0
i 1
n

2 k

i xi x0 x0 x0
i 1
Z*(x0)
四、变差函数及其结构分析
1. 变差函数的概念与参数 变差函数(或叫变程方差函数,或变异函数)是 地质统计学所特有的基本工具。它既能描述区域化 变量的空间结构性变化,又能描述其随机性变化。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
相关文档
最新文档