最新苏科版2015-2016学年八年级册第二学期期末测试题及答案

合集下载

[首发]江苏省邳州市2015-2016学年八年级下学期期末质量检测语文试题(图片版)

[首发]江苏省邳州市2015-2016学年八年级下学期期末质量检测语文试题(图片版)

2015—2016学年度第二学期期末测试七年级语文参考答案一(22分)1.(12分)⑴野渡无人舟自横⑵峨眉山月半轮秋⑶落花时节又逢君⑷此夜曲中闻折柳⑸闲敲棋子落灯花⑹脱我战时袍,著我旧时裳,当窗理云鬓,对镜帖花黄。

⑺弹琴复长啸,深林人不知。

明月来相照。

2.(3分)B (庇(bì)荫锲(qiè)而不舍戛(jiá)然而止)3.(3分)C (妄下断语杂乱无章筹划略胜一筹)4.(4分)⑴(2分)外祖母指挥大家救火。

(只答“救火”得1分)⑵(2分)从选段中可见外祖母在危难面前能果断勇敢、沉着冷静、舍己为人。

二(16分)5.(4分)⑴属于⑵通“攀”,牵、引、拉⑶相当⑷消失6.(3分)C7.(6分,每句3分)⑴从此,指定物品让他作诗,(他就)立即写好,诗的文采和道理都有值得看的地方。

⑵同乡人对他感到惊奇,渐渐地把他的父亲看做宾客。

(请他的父亲去做客)8.(3分)父异焉,借旁近与之,即书诗四句,并自为其名。

自是指物作诗立就,其文理皆有可观者。

父利其然也,日扳仲永环谒于邑人,不使学。

三(27分)(一)(12分)9. (2分)我冤枉了一只没有吃芙蓉鸟的猫,留下了深深的悔恨。

10. (2分)凝望否定了猫是畏罪潜逃的11. (3分)强调我的判断的正确性,为下文揭示我对猫的冤屈做铺垫,更加突出了我的悔意和内疚。

12. (3分)用了比喻的修辞手法,把我的暴怒、我的虐待比成针、刺我良心的针,生动形象的表达了作者自己悔恨与自责的心理。

13. (2分)结构上,照应文章开头;内容上,是写因为“我”亲手制造了第三只猫的悲剧,心中负罪感永远无法消除,见了猫就会触及灵魂的伤痛,所以“永久”不养猫。

表达了“我”的深深的内疚和自责。

(二)(15分)14.(2分)一位老人买蝈蝈然后又放了蝈蝈。

15.(2分)开头对蝈蝈“不安”、“可怜巴巴”、“呼唤、祈求”的描写,形象贴切地写出了蝈蝈对飞出笼子的渴望,为下文做铺垫。

【最新】苏科版八年级数学下册期末试卷及答案

【最新】苏科版八年级数学下册期末试卷及答案

2015~ 学年第二学期初二数学期末试卷试卷分值130;知识涵盖:八下全部内容;一、选择题(本题共10小题,每小题3分,共30分) 1.(2015•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是…………( ) 2.(2015•济宁)要使二次根式2x -有意义,x 必须满足……………………( ) A .x ≤2 ;B .x ≥2; C .x >2; D .x <2;3.下列运算错误的是………………………………………………( ) A .236⨯=;B .1222=; C .222355+=; D .()244-=;4. (2015•盐城)下列事件中,是必然事件的为………………………………………( )A .3天内会下雨;B .打开电视机,正在播放广告;C .367人中至少有2人公历生日相同;D .某妇产医院里,下一个出生的婴儿是女孩; 5.如图,□ABCD 的周长是22㎝,△ABC 的周长是17㎝,则AC 的长为…………………( ) A .5cm ; B .6cm ; C .7cm ; D .8cm ;6. 为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是…( )A .全面调查;26 ;B .全面调查;24;C .抽样调查;26;D .抽样调查;24 ;7. (2015•营口)若关于x 的分式方程2233x mx x++=--有增根,则m 的值是………( ) A .m=-1; B .m=0;C .m=3 ;D .m=0或m=3;8. 如果点A (-2,1y ),B (-1,2y ),C (2,3y )都在反比例函数ky x=(k >0)的图象上,那么1y ,2y ,3y 的大小关系是………………………………………………( )A. B. C. D. 第5题图 第6题图 第9题图A .1y <3y <2yB .2y <1y <3yC .1y <2y <3yD .3y <2y <1y ; 9. (2015春•南长区期末)如图,点P 是反比例函数6y x=(x >0)的图象上的任意一点,过点P 分别作两坐标轴的垂线,与坐标轴构成矩形OAPB ,点D 是矩形OAPB 内任意一点,连接DA 、DB 、DP 、DO ,则图中阴影部分的面积是……………………………………( ) A .1; B .2; C .3; D .4. 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为1B ,2B ,3B ,…,则2015B 的坐标为……………………………………………………………( )A .(1343,0);B .(1342,0);C .31343.5,2⎛⎫ ⎪ ⎪⎝⎭D .31342.5,2⎛⎫ ⎪ ⎪⎝⎭;二、填空题:(本题共8小题,每小题3分,共24分)11.了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是 . 12.当x = 时,分式3x x-的值为零. 13. 如图,在△ABC 中,点D 在BC 上,BD=AB ,BM ⊥AD 于点M ,N 是AC 的中点,连接MN .若AB=5,BC=8,则MN= .14. 已知在同一坐标系中,某正比例函数与某反比例函数的图象交于A ,B 两点,若点A 的坐标为(-1,4),则点B 的坐标为 . 15. 已知最简二次根式21a +与7可以合并,则a 的值是 . 16. 关于x 的方程112ax x +=--的解是正数,则a 的取值范围是 .17.如图,菱形ABCD 中,AB=4,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 .第10题图 第13题图第17题图 第18题图18. 如图,双曲线ky x=(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为 . 三、解答题:(本大题76分) 19.计算:(本题满分16分)(11+-; (2)22931694x x x x x -+-÷-++;(3-+; (41÷⨯;20. (本题满分5分) 解方程:31111x x-=--;21. (本题满分5分)先化简,再求值:35222a a a a -⎛⎫÷+- ⎪--⎝⎭;其中3a =;22.(本题满分7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由. 23.(本题满分5分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m= ,n= ,并补全条形统计图; (2)扇形统计图中“C 组”所对应的圆心角的度数是 ;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.24. (本题满分7分)已知12y y y =-,1y 与x 成反比例,2y 与(x-2)成正比例,并且当x=3时,y=5,当x=1时,y=-1.(1)求y 关于x 的函数关系式; (2)当x=14时,求y 的值.25.(本题满分6分)(2015.泉州)如图,在平面直角坐标系中,已知A )3,1,B (2,0),O (0,0),反比例函数ky x=的图象经过点A . (1)求k 的值; (2)将△AOB 绕点O 逆时针旋转60°,得到△COD ,其中点A 与点C 对应,点B 与点D 对应,试判断点D 是否在该反比例函数的图象上.26.(本题满分6分)某水果店的老板用1200元购进一批杨梅,很快售完,老板又用2500元购进第二批杨梅,所购件数是第一批的二倍,但进价比第一批每件多5元. (1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售完至少打几折?27.(本题满分9分)(2014•巴中) 如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1k y x=(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+.(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式120k k x b x+->的解集.28. (本题满分9分)如图,在菱形ABCD 中,AB=4cm ,∠BAD=60°.动点E 、F 分别从点B 、D 同时出发,以1cm/s 的速度向点A 、C 运动,连接AF 、CE ,取AF 、CE 的中点G 、H ,连接GE 、FH .设运动的时间为ts (0<t <4). (1)求证:AF ∥CE ;(2)当t 为何值时,四边形EHFG 为菱形;(3)试探究:是否存在某个时刻t ,使四边形EHFG 为矩形,若存在,求出t 的值,若不存在,请说明理由.2015~ 学年第二学期初二数学期末综合试卷参考答案 一、 选择题:1.A ;2.B ;3.C ;4.C ;5.B ;6.D ;7.A ;8.B ;9.C ;10.D ; 二、填空题:11.1000名中学生的视力情况;12.3;13. 32;14.(1,-4);15.3;16. 1a >-且12a ≠-;17. 18. 2y x=;三、解答题:19.(1)1;(2)73x --;(3)0;(4)2+20. 5x =;21.132a =+; 22. (1)证明:∵四边形ABCD 是菱形,∴ND ∥AM ,∴∠NDE=∠MAE ,∠DNE=∠AME , ∵点E 是AD 中点,∴DE=AE , 在△NDE 和△MAE 中,∠NDE =∠MAE ,∠DNE =∠AME ,DE =AE , ∴△NDE ≌△MAE (AAS ),∴ND=MA ,∴四边形AMDN 是平行四边形; (2)AM=1.理由如下:∵四边形ABCD 是菱形,∴AD=AB=2,∵平行四边形AMDN 是矩形,∴DM ⊥AB ,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM= 12AD=1.23.(1)30,20;(2)90°;(3)450;24.(1)()342y x x =+-;(2)5;25.(1(2)(D 在该反比例函数的图像上;26. 解:(1)设第一批杨梅每件进价x 元,则 1200250025x x ⨯=+,解得 x=120. 经检验,x=120是原方程的根.答:第一批杨梅每件进价为120元; (2)设剩余的杨梅每件售价打y 折.则:2500125×150×80%+2500125×150×(1-80%)×0.1y-2500≥320,解得 y ≥7.答:剩余的杨梅每件售价至少打7折. 27.(1)解:(1)∵四边形DOBC 是矩形,且D (0,4),B (6,0), ∴C 点坐标为(6,4),∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为6y x=;把x=6代入6y x =得y=1,则F 点的坐标为(6,1); 把y=4代入6y x =得x=32,则E 点坐标为(32,4),把F (6,1)、E (32,4)代入y=k2x+b 得 2261342k b k b +=⎧⎪⎨+=⎪⎩,解得2235k b ⎧=-⎪⎨⎪=⎩,∴直线EF 的解析式为253y x =-+; (2)△OEF 的面积=S 矩形BCDO-S △ODE-S △OBF-S △CEF=454; (3)由图象得:362x <<; 28. (1)证明:∵动点E 、F 同时运动且速度相等, ∴DF=BE ,∵四边形ABCD 是菱形,∴∠B=∠D ,AD=BC ,AB ∥DC ,在△ADF 与△CBE 中,DF =BE ,∠B =∠D ,AD =BC ,∴△ADF ≌△CBE ,∴∠DFA=∠BEC , ∵AB ∥DC ,∴∠DFA=∠FAB ,∴∠FAB=∠BEC ,∴AF ∥CE ; (2)过D 作DM ⊥AB 于M ,连接GH ,EF ,∴DF=BE=t , ∵AF ∥CE ,AB ∥CD ,∴四边形AECF 是平行四边形,∵G 、H 是AF 、CE 的中点,∴GH ∥AB ,∵四边形EGFH 是菱形, ∴GH ⊥EF ,∴EF ⊥AB ,∠FEM=90°,∵DM ⊥AB ,∴DM ∥EF ,∴四边形DMEF 是矩形,∴ME=DF=t ,∵AD=4,∠DAB=60°,DM ⊥AB ,∴AM=12AD=2,∴BE=4-2-t=t ,∴t=1,(3)不存在,假设存在某个时刻t ,使四边形EHFG 为矩形, ∵四边形EHFG 为矩形,∴EF=GH , ∴22EF GH =,即()(()2222234t t -+=-,解得t=0,0<t <4,∴与原题设矛盾,∴不存在某个时刻t ,使四边形EHFG 为矩形.。

江苏省海门市2015~2016学年度八年级下期末考试数学试卷含答案

江苏省海门市2015~2016学年度八年级下期末考试数学试卷含答案

y=- 2x2+ 8x-6 的最大值是 【 ▲】A
2
A .- 10.5
B. 2
C.- 2.5
B′ C
B
(第 7 题)
D .- 6
9.小刚以 400 米 /分的速度匀速骑车 5 分,在原地休息了 6 分,然后以 500 米 /分的速度
骑回出发地.下列函数图象能表达这-过程的是【
▲】
v(千米 /分)
s(千米)
v(千米 /分)
0.5 0.4
2
0.5
0.4
s(千米) 3
2
O 5 11 15 t(分) O 5 11 15 t(分) O 5 1115 t(分)O 5 1115 t(分)
A
B
C
D
10.若二次函数 y= ax2+ bx+c(a> 0)图象与 x 轴的两交点坐标为( x1,0)、( x2, 0),
且 0<x1<x2,且图象上有一点 M( x0, y0)在 x 轴下方,则下列判断错误的是【 ▲】
12.在平面直角坐标系中,点 A(- 2,1)与点 B 关于原点对称, 则点 B 的坐标为 ▲ .
13.甲、乙、丙、丁四位同学最近五次数学成绩统计如表,如果从这四位同学中,选出一
位成绩较好且状态稳定的同学参加即将举行的中学生数学竞赛,那么应选
▲ .




平均数
80
85
85
80
方差
42
42
54
59
A .3
B. 3.5
C.4
D. 4.5
6.某运动服经过两次降价,每件零售价由
560 元降为 315 元,已知两次降价的百分率相
同.设每次降价的百分率为 x,则下面所列的方程中正确的是【 ▲ 】

2015-2016学年八年级下学期期末质量检测数学试题带答案

2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。

江苏省苏州市吴中区八年级数学下学期期末试卷(含解析) 苏科版-苏科版初中八年级全册数学试题

江苏省苏州市吴中区八年级数学下学期期末试卷(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市吴中区2015-2016学年八年级(下)期末数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题纸上作答.)1.下列各项调查,属于抽样调查的是()A.调查你班学生每位同学穿鞋的尺码B.调查一批洗衣机的使用寿命,从中抽取5台C.调查一个社区所有家庭的年收入D.调查你所在年级同学的业余爱好2.分式有意义,x的取值X围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣23.下列根式中,与是同类二次根式的是()A. B. C.D.4.转动转盘,当转盘停止转动时,指针落在红色区域的可能性最大的是()A.B.C.D.5.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于()A.20 B.18 C.16 D.146.若=,则的值为()A.1 B.C.D.7.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形B.矩形 C.菱形 D.正方形8.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C. D.9.反比例函数y=图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1<y2,则m的取值X围是()A.m>B.m<C.m≥D.m≤10.如图,在矩形ABCD中,AB=1,BC=,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为()A.1 B.C.D.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形中,不是必然事件的是______ (填写序号).12.当x=______时,分式的值为0.13.约分:﹣ =______.14.如图,在△ABC中,若DE∥BC, =,且S△ADE=4cm2,则四边形BCED的面积为______.15.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100 400 800 1 000 2 000 4 000发芽的频数85 300 652 793 1 604 3204发芽的频率根据以上数据可以估计,该玉米种子发芽的概率为______(精确到0.1).16.已知反比例函数y=(b为常数,b≠0)的图象经过点(a,),则2a﹣b+1的值是______.17.如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为20cm,在墙上悬挂凉衣架的两个铁钉A、B之间的距离为20cm,则∠1=______度.18.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值X围是______.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:(1)÷×;(2)﹣(15﹣2)(x>0)20.解分式方程:.21.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55~70;第二组70~85;第三组85~100;第四组100~115;第五组115~130,统计后得到如图所示的频数分布直方图(2016春•吴中区期末)如图,E、F是▱ABCD对角线AC 上的两点,AF=CE.(1)求证:BE=DF;(2)若DF的延长线交BC于G,且点E、F是线段AC的三等分点,则=______.24.吴中区是闻名遐迩的“鱼米之乡”,可谓“月月有花、季季有果、天天有鱼虾”.今年五月枇杷上市后,某超市用20 000元以相同的进价购进质量相同的枇杷.超市的销售方案是:将枇杷按分类包装销售,其中挑出优质的枇杷400千克,以进价的2倍价格销售,剩下的批把以高于进价30%销售.结果超市将枇杷全部售完后获利17 200元(其它成本不计).问:枇杷进价为每千克多少元?(获利=售价一进价)25.如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.(1)求证:CD2=DE•AD;(2)求证:∠BED=∠ABC.26.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简: ==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.(1)请任用其中一种方法化简:①;②(n为正整数);(2)化简: +++….27.(10分)(2016春•吴中区期末)如图1,在梯形ABCD中,AB∥CD,AD⊥AB,AB=12,CD=9,点M从点A出发,以每秒2个单位长度的速度向点B运动,同时,点N从点C出发,以每秒1个单位长度的速度向点D运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AB于点P,连接BD交NP于点Q,连接MQ.设运动时间为t秒.(1)BM=______,BP=______;(用含t的代数式表示)(2)若t=3,试判断四边形BNDP的形状;(3)如图2,将△BQM沿AB翻折,得△BKM.①是否存在某时刻t,使四边形BQMK为菱形,若存在,求出t的值,若不存在,请说明理由;②在①的条件下,要使四边形BQMK为正方形,则BD=______.28.(15分)(2016春•吴中区期末)己知点A(a,b)是反比例函数y=(x>0)图象上的动点,AB∥x轴,AC∥y轴,分别交反比例函数y=(x>0)的图象于点B、C,交坐标轴于D、E,且AC=3CD,连接BC.(1)求k的值;(2)在点A运动过程中,设△ABC的面积为S,则S是否变化?若不变,请求出S的值;若改变,请写出S关于a的函数关系式;(3)探究:△ABC与以点O、D、E为顶点的三角形是否相似.2015-2016学年某某省某某市吴中区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题纸上作答.)1.下列各项调查,属于抽样调查的是()A.调查你班学生每位同学穿鞋的尺码B.调查一批洗衣机的使用寿命,从中抽取5台C.调查一个社区所有家庭的年收入D.调查你所在年级同学的业余爱好【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查你班学生每位同学穿鞋的尺码属于全面调查;调查一批洗衣机的使用寿命,从中抽取5台属于抽样调查;调查一个社区所有家庭的年收入属于全面调查;调查你所在年级同学的业余爱好属于全面调查;故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.分式有意义,x的取值X围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故选B.【点评】本题主要考查了分式有意义的条件,正确理解条件是解题的关键.3.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.【点评】本题主要考查了同类二次根式,解题的关键是熟记化简根式的方法.4.转动转盘,当转盘停止转动时,指针落在红色区域的可能性最大的是()A.B.C.D.【考点】可能性的大小.【分析】根据几何概率的定义,面积越大,指针指向该区域的可能性越大.【解答】解:因为四个选项中的转盘均被均分为4份,所以哪个选项中红色区域份数最多,指针落在红色区域的可能性就越大,四个选项中D中共有3份,故指针落在红色区域的可能性最大,故选D.【点评】考查了可能性的大小的知识,用到的知识点为:在总面积相等的情况下,哪部分的面积较大,相应的概率就大.5.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于()A.20 B.18 C.16 D.14【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线可求得AE=AB,则可求得四边形ABCD的周长.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵BC=6,DE=2,∴AB=AE=AD﹣DE=BC﹣DE=6﹣2=4,∴▱ABCD的周长=2(AB+BC)=2×(4+6)=20,故选A.【点评】本题主要考查平行四边形的性质,根据平行四边形的性质求得AB=AE是解题的关键.6.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【分析】根据合分比性质求解.【解答】解:∵ =,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.7.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】中点四边形.【分析】连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.【解答】解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选:A.【点评】本题考查了中点四边形,此题实际上是平行四边形的判定和三角形的中位线定理的应用,通过做此题培养了学生的推理能力,题目比较好,难度适中.8.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C. D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n同号确定答案即可.【解答】解:∵mn>0,∴m、n同号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m>0时则n>0,∴A正确,故选A.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.9.反比例函数y=图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1<y2,则m的取值X围是()A.m>B.m<C.m≥D.m≤【考点】反比例函数图象上点的坐标特征.【分析】先根据题意列出关于m的不等式,求出m的取值X围即可.【解答】解:∵反比例函数y=图象上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,∴点A在第三象限,点B在第一象限,∴1﹣5m>0,解得m<.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如图,在矩形ABCD中,AB=1,BC=,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为()A.1 B.C.D.【考点】相似三角形的判定与性质;矩形的性质.【分析】先求出△ADE的面积是矩形面积的一半,再用勾股定理求出AM,最后用面积公式求解即可.【解答】解:如图,连结DM,在矩形ABCD中,AB=1,BC=,∴S矩形ABCD=AB×BC=1×=,∵M为BC中点,∴S△ADM=S矩形ABCD=,在RT△ABM中,AB=1,BM=BC=,根据勾股定理得,AM==,∴S△ADM=AM×DE=××DE=,∴DE=,故选C【点评】本题考查了矩形的性质,三角形的面积的计算,勾股定理,解本题的关键是判断△ADE的面积是矩形面积的一半.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形中,不是必然事件的是③(填写序号).【考点】随机事件.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:①对顶角相等是必然事件;②矩形的对角线相等是必然事件;③同位角相等是随机事件;④平行四边形是中心对称图形是必然事件.故答案是:③【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.当x= 5 时,分式的值为0.【考点】分式的值为零的条件.【分析】由分式的值为0可得出x﹣5=0且x≠0,解方程即可得出结论.【解答】解:∵分式的值为0,∴,解得:x=5.故答案为:5.【点评】本题考查了分式的值为零的条件,解题的关键是得出x﹣5=0且x≠0.本题属于基础题,难度不大,解决该题型题目时牢记分式值为零的条件是分子等于零且分母不等于零.13.约分:﹣ =.【考点】约分.【分析】先提取出分子分母中的公因式,再消去公因式,即得最后结果.【解答】解:,故答案为:【点评】本题主要考查分式的约分,找到分子分母公因式是解题的关键.14.如图,在△ABC中,若DE∥BC, =,且S△ADE=4cm2,则四边形BCED的面积为32cm2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ABC的面积,再与△ADE的面积作差即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∵S△ADE=4cm2,∴S△ABC=36cm2,∴四边形BCED的面积为:32cm2,故答案为:32cm2.【点评】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.15.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100 400 800 1 000 2 000 4 000发芽的频数85 300 652 793 1 604 3204发芽的频率根据以上数据可以估计,该玉米种子发芽的概率为0.8 (精确到0.1).【考点】利用频率估计概率.【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该玉米种子发芽的概率为0.8,故答案为:0.8.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16.已知反比例函数y=(b为常数,b≠0)的图象经过点(a,),则2a﹣b+1的值是 1 .【考点】反比例函数图象上点的坐标特征.【分析】由点在反比例函数图象上可得出b=a,将其代入2a﹣b+1中即可得出结论.【解答】解:∵反比例函数y=(b为常数,b≠0)的图象经过点(a,),∴=,即b=a,∴2a﹣b+1=2a﹣×a+1=1.故答案为:1.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是得出b=a.本题属于基础题,难度不大,解决该题型题目时,根据点在反比例函数图象上得出a、b之间的关系是关键.17.如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为20cm,在墙上悬挂凉衣架的两个铁钉A、B之间的距离为20cm,则∠1= 60 度.【考点】菱形的性质.【分析】根据题意可得已知菱形的一对角线的长和其边长,则可根据三角函数求得的度数,从而不难求得∠1的度数.【解答】解:由题意可得,菱形较长的对角线为20cm,∵菱形的对角线互相垂直平分,根据勾股定理可得,另一对角线的一半等于10cm,则=30°,∴∠1=60°.故答案为60.【点评】此题主要考查菱形的性质和勾股定理,综合利用了直角三角形的性质.18.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值X围是1≤k≤16 .【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据题意求出点A的坐标,根据正方形的性质求出点C的坐标,根据反比例函数图象上点的坐标特征解答即可.【解答】解:∵点A在直线y=x上,横坐标为1,∴点A的坐标为(1,1),∵正方形ABCD的边长为3,∴点C的坐标为(4,4),当双曲线y=经过点A时,k=1×1=1,当双曲线y=经过点C时,k=4×4=16,∴双曲线y=与正方形ABCD公共点,则k的取值X围是1≤k≤16,故答案为:1≤k≤16.【点评】本题考查的是反比例函数与一次函数的交点问题以及正方形的性质,掌握反比例函数图象上点的坐标特征、以及正方形的性质是解题的关键.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:(1)÷×;(2)﹣(15﹣2)(x>0)【考点】二次根式的混合运算.【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再进行计算即可.【解答】解:(1)原式=3××=;(2)原式=3﹣(3﹣2x)=2x.【点评】本题考查了二次根式的混合运算,把二次根式化为最简二次根式是解题的关键.20.解分式方程:.【考点】解分式方程.【分析】左右两边同乘以最简公分母是x2﹣4,以下步骤可按解整式方程的步骤计算即可解答,注意最后一定要验根.【解答】解:方程两边同乘以最简公分母(x+2)(x﹣2),得(x﹣2)x﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,﹣6x=12,x=﹣2,经检验:x=﹣2不是原方程的根,∴原方程无解.【点评】本题主要考查分式方程的解法.注意:解分式方程时确定最简公分母很关键,解分式方程必须检验.21.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=,当a=+1,b=﹣1时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55~70;第二组70~85;第三组85~100;第四组100~115;第五组115~130,统计后得到如图所示的频数分布直方图(2016春•吴中区期末)如图,E、F是▱ABCD对角线AC 上的两点,AF=CE.(1)求证:BE=DF;(2)若DF的延长线交BC于G,且点E、F是线段AC的三等分点,则=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由AF=CE可得AE=CF,再结合平行四边形的性质证明△ABE≌△CDF,从而得出BE=DF;(2)先证明BE∥GF,由已知条件得出BG=CG=BC=AD,由平行线得出△CGF∽△ADF,得出对应边成比例,即可得出结果【解答】(1)证明:∵AF=CE,∴AF﹣EF=CE﹣EF.∴AE=CF.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.AD∥BC,AD=BC,∴∠BAE=∠DCF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).∴BE=DF;(2)解:如图所示:由(1)得:△ABE≌△CDF,∴∠AEB=∠DFC,∴∠BEC=∠GFC,∴BE∥GF,∵点E、F是线段AC的三等分点,∴AE=EF=FC,∴BG=CG=BC=AD,∵AD∥BC,∴△CGF∽△ADF,∴=;故答案为:.【点评】此题主要考查了相似三角形的判定与性质、全等三角形的性质与判定、平行四边形的性质等知识;熟练掌握平行四边形的性质,由平行线证明三角形相似是解决问题的关键.24.吴中区是闻名遐迩的“鱼米之乡”,可谓“月月有花、季季有果、天天有鱼虾”.今年五月枇杷上市后,某超市用20 000元以相同的进价购进质量相同的枇杷.超市的销售方案是:将枇杷按分类包装销售,其中挑出优质的枇杷400千克,以进价的2倍价格销售,剩下的批把以高于进价30%销售.结果超市将枇杷全部售完后获利17 200元(其它成本不计).问:枇杷进价为每千克多少元?(获利=售价一进价)【考点】分式方程的应用.【分析】设枇杷进价为每千克x元,根据超市将枇杷全部售完后获利17 200元列出分式方程,求出方程的解即可得到结果;【解答】解:设枇杷进价为每千克x元,根据题意得:400×(2x﹣x)+(﹣400)×30%x=17200,解得:x=40,经检验x=40是分式方程的解,且符合题意,则枇杷进价为每千克40元.【点评】此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.25.如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.(1)求证:CD2=DE•AD;(2)求证:∠BED=∠ABC.【考点】相似三角形的判定与性质.【分析】(1)证明∠CED=∠ACB=90°,∠CDE=∠ADC,得到△CDE∽△ADC,列出比例式,化为等积式即可解决问题.(2)运用(1)中的结论,证明△BDE∽△ADB,即可解决问题.【解答】证明(1)∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD:AD=DE:CD,∴CD2=DE•AD.(2)∵D是BC的中点,∴BD=CD;∵CD2=DE•AD,∴BD2=DE•AD∴BD:AD=DE:BD;又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC.【点评】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是深入把握题意、大胆猜测推理、科学求解论证.26.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简: ==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.(1)请任用其中一种方法化简:①;②(n为正整数);(2)化简: +++….【考点】分母有理化.【分析】(1)根据阅读材料中的方法将各式化简即可;(2)原式分母有理化后,合并即可得到结果.【解答】解:(1)①原式====+;②原式====﹣;(2)原式=++…+=﹣1+﹣+…+﹣=﹣1.【点评】此题考查了分母有理化,弄清阅读材料中的解题方法是解本题的关键.27.(10分)(2016春•吴中区期末)如图1,在梯形ABCD中,AB∥CD,AD⊥AB,AB=12,CD=9,点M从点A出发,以每秒2个单位长度的速度向点B运动,同时,点N从点C出发,以每秒1个单位长度的速度向点D运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AB于点P,连接BD交NP于点Q,连接MQ.设运动时间为t秒.(1)BM= 12﹣2t ,BP= 3+t ;(用含t的代数式表示)(2)若t=3,试判断四边形BNDP的形状;(3)如图2,将△BQM沿AB翻折,得△BKM.①是否存在某时刻t,使四边形BQMK为菱形,若存在,求出t的值,若不存在,请说明理由;②在①的条件下,要使四边形BQMK为正方形,则BD= 12.【考点】四边形综合题.【分析】(1)先用t表示出,AM,再通过线段和差关系表示出MB、BP;(2)把t=3代入DN、BP中,若DN=BP,则四边形满足一组对边平行且相等,是平行四边形,否则就是梯形;(3)①由于△BQM沿AB翻折成△MKB,只要QM=QB,四边形BQMK就是菱形,因为QP⊥AB,MP、BP可由t表示出来,可通过MP=PB计算出t;②若四边形BQMK为正方形,则∠MQB是直角,∠QBA=45°,可通过等腰直角三角形间的三边关系,先求出t,再分别计算出BQ、DQ.【解答】解:(1)∵AB∥CD,AD⊥AB,AB=12,CD=9,过点N作NP⊥AB于点P,∴四边形APND是矩形,∴DN=AP.∵AB=12,CD=9,AM=2t,=t,∴DN=9﹣t,∴BM=AB﹣AM=12﹣2t,BP=AB﹣AP=AB﹣DN=12﹣(9﹣t)=3+t.答案:12﹣2t,3+t;(2)当t=3时,DN=9﹣t=6,BP=3+t=6,∴DN=PB,又∵DN∥BP,∴四边形BNDP是平行四边形.(3)①当t=1.5时,四边形BQMK为菱形.理由如下:∵△BQM沿AB翻折,得△BKM,∴BQ=BK,QM=MK,当QM=QB时,四边形MQBK是菱形.∵QP⊥AB,∴MP=BP.∵MP=AP﹣AM=DN﹣AM=(9﹣t)﹣2t=9﹣3t,BP=AB﹣AP=AB﹣DN=3+t,当9﹣3t=3+t时,t=1.5.即当t=1.5时,四边形BQMK为菱形.②当菱形BQMK为正方形时,∠MQB=90°,BM=12﹣2t,BP=3+t,∴∠QBM=45°.∵cos∠MBQ=cos45°===,∴BQ=6﹣t.∵cos∠MBQ=cos45°===,即6+2t=12﹣2t,解得t=1.5.∴BQ=6.∵DC∥AB,∴∠NDB=∠DBM=45°,在RT△DNQ中,DQ=DN=(9﹣t),∴BD=BQ++=12.答案:12.【点评】点评:本题是一个直角梯形与动点的结合题目,考察了矩形的性质和判定、平行四边形的判定、菱形的性质及正方形的性质.等腰直角三角形的三边1:1:间关系或者特殊角的三角函数是解决本题的关键.28.(15分)(2016春•吴中区期末)己知点A(a,b)是反比例函数y=(x>0)图象上的动点,AB∥x轴,AC∥y轴,分别交反比例函数y=(x>0)的图象于点B、C,交坐标轴于D、E,且AC=3CD,连接BC.(1)求k的值;(2)在点A运动过程中,设△ABC的面积为S,则S是否变化?若不变,请求出S的值;若改变,请写出S关于a的函数关系式;(3)探究:△ABC与以点O、D、E为顶点的三角形是否相似.【考点】反比例函数综合题.【分析】(1)由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,并找出点C 坐标,根据AC=3CD,即可得出关于k的一元一次方程,解方程即可得出结论;(2)根据(1)得出A、C的坐标,由AB∥x轴找出B点的坐标,由此即可得出AB、AC的长度,利用三角形的面积公式即可得出结论;(3)由已知可得出∠BAC=∠DOE=90°,因此分两种情况来讨论.①△ABC∽△ODE是否成立?根据相似三角形的性质验证对应线段是否成比例,从而得出结论;②△ABC∽△OED是否成立?根据相似三角形的性质验证对应线段是否成比例,从而得出结论.【解答】解:(1)∵A(a,b),且A在反比例函数y=(x>0)的图象上,∴b=,∵AC∥y轴,且C在反比例函数y=(x>0)的图象上,∴C(a,).又∵AC=3CD,∴AD=4CD,即=4•,∴k=2.(2)由(1)可知:A(a,),C(a,).∵AB∥x轴,∴B点的纵坐标为,∵点B在反比例函数y=的函数图象上,∴=,解得:x=,∴点B(,),∴AB=a﹣=,AC=﹣=,∴S=AB•AC=••=,∴在点A运动过程中,△ABC面积不变,始终等于.(3)连接DE,如图所示.∵由已知可知:∠BAC=∠DOE=90°,∴△ABC与以点O、D、E为顶点的三角形如果相似,那么点A与点O一定是对应顶点.下面分两种情况进行探究:①△ABC∽△ODE是否成立?∵==, ==,∴=.又∵∠BAC=∠DOE=90°,∴△ABC∽△ODE.∴在点A的运动过程中,△ABC∽△ODE始终成立;②△ABC∽△OED是否成立?==, ==,当=时,即=,∴a=2.∴在点A的运动过程中,当a=2时,△ABC∽△OED.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及相似三角形的判定及性质,解题的关键是:(1)根据线段间的关系找出关于k的一元一次方程;(2)用含a的代数式表示出线段AB、AC;(3)根据线段间的关系找出三角形是否相似.本题属于中档题,难度不大,解决该题型题目时,根据对应线段成比例来证出三角形相似是难点,在日常练习中应加强该方面的练习.。

苏州市2015-2016学年八年级下期末数学模拟试卷(二)含解析

苏州市2015-2016学年八年级下期末数学模拟试卷(二)含解析

江苏省苏州市2015-2016学年八年级(下)期末数学模拟试卷(二)(解析版)

一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案写在答题纸相应的位置上. 1.函数y=的自变量x的取值范围是( ) A.x≠0 B.x≠1 C.x≥1 D.x≤1 2.下列约分结果正确的是( )

A. B. =x﹣y

C. =﹣m+1 D. 3.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰

梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A. B. C. D.1 4.函数y=的图象与直线y=x没有交点,那么k的取值范围是( ) A.k>1 B.k<1 C.k>﹣1 D.k<﹣1 5.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长

是( )

A.12 B.16 C.20 D.24 6.已知下列命题,其中真命题的个数是( ) ①若a2=b2,则a=b;

②对角线互相垂直平分的四边形是菱形; ③两组对角分别相等的四边形是平行四边形;

④在反比例函数中,如果函数值y<1时,那么自变量x>2.

A.4个 B.3个 C.2个 D.1个 7.函数的自变量x的取值范围在数轴上表示为( ) A. B. C.

D. 8.如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函

数y=(x>0)的图象经过顶点B,则k的值为( )

A.12 B.20 C.24 D.32 9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥

堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得( ) A. B. C. D. 10.如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,

苏州市2015-2016学年度第二学期八年级数学期末模拟试卷(四)及答案

苏州市2015—2016学年度第二学期初二数学期末模拟四一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.x 取值范围是( )A.1x ≥B. 1x >C. 2x ≠D.1x ≥且2x ≠,沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A .2cm B .3cm C .4cm D .5cm4某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组A . 15,15 D . 15,20 5.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD 。

从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .3种;B .4种;C .5种;D .6种第3题6下列命题是假命题的是( )比赛的得分,则这8场比赛得分的众数与中位数分别为( )EF 、AF ,则△AEF 的周长为( )A .B .C .D .3cm9.如图所示,四边形OABC 是正方形,边长为6,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为(2,0),P 是OB 上一动点,则PA +PD 的最小值为( )A .;B ;C .4;D .62P第10题10.(2014•襄阳)如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.) 11.有一组数据:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .12.如图,菱形ABCD 中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为(第12题) (第13题) (第15题)13.实数P =________.14.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是15.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是 。

新苏科版八年级下册第二学期数学期末试卷及答案全

新苏科版八年级下册第二学期数学期末试卷及答案全一、解答题1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.2.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.3.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证:△ABE≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.4.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平形四边形的第四个顶点D的坐标.5.如图,在正方形ABCD 内有一点P 满足AP AB =,PB PC =.连接AC 、PD .(1)求证:APB DPC ∆∆≌;(2)求PAC ∠的度数.6.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F ,连接CF .(1)求证:AF=BD .(2)求证:四边形ADCF 是菱形.7.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.8.用适当的方法解方程:(1)x 2﹣4x ﹣5=0;(2)y (y ﹣7)=14﹣2y ;(3)2x 2﹣3x ﹣1=0.9.已知:如图,AC 、BD 相交于点O ,且点O 是AC 、BD 的中点,点E 在四边形ABCD 的形外,且∠AEC =∠BED =90°.求证:四边形ABCD 是矩形.10.如图,在△ABC 中,AB =AC ,点D 是边AB 的点,DE ∥BC 交AC 于点E ,连接BE ,点F 、G 、H 分别为BE 、DE 、BC 的中点.(1)求证:FG =FH ;(2)当∠A 为多少度时,FG ⊥FH ?并说明理由.11.计算:242933x x x x x ----- 12.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.(1)求证:BG =DE ;(2)若E 为AD 中点,FH =2,求菱形ABCD 的周长.13.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?14.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.15.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3P m ⎛ ⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?【参考答案】***试卷处理标记,请不要删除一、解答题1.解:(1)如图所示:点A 1的坐标(2,﹣4).(2)如图所示,点A 2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.2.(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质得到AB//CD,AB=CD,然后根据CE=DC,得到AB=EC,AB//EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC =∠BAF ,∴FA =FB ,∴FA =FE =FB =FC ,∴AE =BC ,∴四边形ABEC 是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.3.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.4.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】---,根据关于原点对称的点解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)--,描点连线,的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:---,则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---.故答案为:(1,1),(5,3),(3,1)【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.5.(1)见解析;(2)15°【分析】(1)根据PB=PC 得∠PBC=∠PCB ,从而可得∠ABP=∠DCP ,再利用SAS 证明即可;(2)由(1)得△PAD 为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD ,因此可得结果.【详解】解:(1)∵四边形ABCD 为正方形,∴∠ABC=∠DCB=90°,AB=CD ,∵BP=PC ,∴∠PBC=∠PCB ,∴∠ABP=∠DCP ,又∵AB=CD ,BP=CP ,在△APB 和△DPC 中,AB CD ABP DCP BP CP =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△DPC (SAS );(2)由(1)得AP=DP=AB=AD ,∴△PAD 为等边三角形,∴∠PAD=60°,∠PAB=30°,在正方形ABCD 中,∠BAC=∠DAC=45°,∴∠PAC=∠PAD-∠CAD=60°-45°=15°.【点睛】本题考查了全等三角形的判定定理,正方形的性质,以及等腰三角形的性质,熟练掌握全等三角形的几种判定方法是解答的关键.6.(1)见解析;(2)见解析.【分析】(1)由“AAS”可证△AFE ≌△DBE ,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质的AD =DC ,即可证明四边形ADCF 是菱形.【详解】(1)∵AF ∥BC ,∴∠AFE=∠DBE∵△ABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点,∴AE=DE ,BD=CD在△AFE 和△DBE 中,AFE DBE AEF BED AE DE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFE ≌△DBE (AAS ))∴AF=BD(2)由(1)知,AF=BD ,且BD=CD ,∴AF=CD ,且AF ∥BC ,∴四边形ADCF 是平行四边形∵∠BAC=90°,D 是BC 的中点,∴AD =12BC =DC ∴四边形ADCF 是菱形【点睛】本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质.证明AD =DC 是解题的关键.7.当点O 运动到AC 的中点(或OA=OC )时,四边形AECF 是矩形.证明见解析.【分析】当点O 运动到AC 的中点(或OA=OC )时,四边形AECF 是矩形.由于CE 平分∠BCA ,那么有∠1=∠2,而MN ∥BC ,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC ,同理OC=OF ,于是OE=OF ,而OA=OC ,那么可证四边形AECF 是平行四边形,又CE 、CF 分别是∠BCA 及其外角的角平分线,易证∠ECF 是90°,从而可证四边形AECF 是矩形.【详解】当点O 运动到AC 的中点(或OA=OC )时,四边形AECF 是矩形.证明:如图,∵CE 平分∠BCA ,∴∠1=∠2,又∵MN ∥BC ,∴∠1=∠3,∴∠3=∠2,∴EO=CO ,同理,FO=CO ,∴EO=FO ,又∵OA=OC ,∴四边形AECF 是平行四边形,∵CF 是∠BCA 的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF 是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF 是平行四边形,并证明∠ECF 是90°.8.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317x x +-== 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y(y﹣7)-14+2y=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.(3)2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x1=3174+,x2=3174-.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.9.见解析【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到AC=BD,即可得出结论.【详解】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=12 BD,在Rt△AEC中,∵O为AC的中点,∴EO=12 AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.10.(1)见解析;(2)当∠A=90°时,FG⊥FH.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.【详解】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=12BD,FH=12CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.3x【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】解:原式22242969(3)3333x x x x x x x x x x --+-+-====----; 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.12.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.13.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x 千克,则第二次购进这种商品(x +5)千克, 由题意,得5007505x x =+, 解得x =10.经检验:x =10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.14.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点,∴12PM AC =, NE 为Rt AEC ∆斜边上的中线,∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.15.(12332)存在.(0,23Q 或()32或(0,3-或3⎛ ⎝⎭;(2)PHOB S 梯形334m =,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形334m =,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 33=,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()(11,0,3A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a = 11223232233ABC S AC AB ∆∴==⨯=; ()2存在设()0,Q a ,则()2224,3AB BQ a ==-,221AQ a =+,①当AB BQ =时,即22AB BQ =,()243a ∴=-,解得:123a =+或232a =-, ()()120,23,0,32Q Q ∴=+=-;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =-或3a =(舍去,与B 重合),()30,3Q ∴-;③当BQ AQ =时,即22BQ AQ =, ()2231,232a a a ∴-=+=,解得:3a =, 430,Q ⎛⎫∴= ⎪ ⎪⎝⎭,综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,3⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,2P m ⎛ ⎝⎭, (),0H m ∴,,12OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形,()12m =⨯⨯-⎭=,1113222AOB S OA OB ∆==⨯⨯=,()111222APH S AH PH m ∆==⨯-⨯)14m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)1m =-42=-, ABP ABC S S ∆∆=,24∴-+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.。

苏州市工业园区2015-2016年八年级下期末数学试卷含答案.docx

苏州市工业园区 2015-2016 年八年级下期末数学试卷含答案一、选择题:本大题共 10 小题,每小题 2 分,共 20 分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.下列图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列调查中,适合普查的是( )A .一批手机电池的使用寿命B .中国公民保护环境的意识C .你所在学校的男、女同学的人数D .端午节期间苏州市场上粽子的质量3.若正方形的面积是 12cm 2,则边长 a 满足( )A . 2cm < a <3cmB . 3cm < a < 4cmC . 4cm < a < 5cmD . 5cm < a < 6cm4.下列运算正确的是()A . ﹣ =B . ÷=4 C . =﹣2 D .(﹣ 2) =25.已知 ? ABCD 中, AC 、 BD 交于点 O .下列结论中,不一定成立的是( )A . ? ABCD 关于点 O 对称B . OA=OC C . AC=BDD .∠ B= ∠ D6.一个不透明的袋子中装有 2 个红球、 3 个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A .至少有 1 个球是红球B .至少有 1 个球是白球C .至少有 2 个球是红球D .至少有 2 个球是白球7.若点 P 、 Q 都在函数 y=的图象上,则下列结论中正确的是( )A . a > bB . a=bC . a < bD . a 、 b 的大小关系无法确定8.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A .点 AB .点 BC .点 CD .点 D9.将矩形 OABC 如图放置, O 为原点.若点A (﹣ 1,2),点B 的纵坐标是,则点 C 的坐标是( )A .( 4, 2)B .( 2, 4)C .(,3)D.( 3,)10.如图,正方形纸片ABCD 的边长为4cm,点 M 、N 分别在边AB 、 CD 上.将该纸片沿MN 折叠,使点 D 落在边 BC 上,落点为E,MN 与 DE 相交于点Q.随着点 M 的移动,点Q 移动路线长度的最大值是()A . 4cm B. 2cm C.cm D .1cm二、填空题:本大题共8 小题,每小题 2 分,共 16 分.把答案直接填在答题卡相应位置上.11.若 3a=2b,则 a: b=.1212=.计算:(+).13.若式子在实数范围内有意义,则x 的取值范围是.14.若点P 是线段 AB 的黄金分割点( PA> PB),且 AB=10cm ,则 PA≈cm.(精确到 0.01cm)15.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.16.如图,小明站在距离灯杆6m 的点 B 处.若小明的身高AB=1.5m ,灯杆 CD=6m ,则在灯 C 的照射下,小明的影长BE=m.17.如图,点 A 在函数 y=(x>0)的图象上,点 B 在函数 y=(x>0)的图象上,点C 在 x 轴上.若 AB ∥ x 轴,则△ ABC 的面积为.18.已知菱形ABCD 中,AC=6cm ,BD=4cm .若以 BD 为边作正方形BDEF ,则 AF=cm.三、解答题:本大题共11 小题,共64 分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19+×)×..计算:(20+=1..解方程:21÷(1+)的值,其中x=1.求代数式+ .22.某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100 分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:(1) a=,n=;(2)补全频数分布直方图;(3)该校共有 2 000 名学生.若成绩在 80 分以上的为优秀,请你估计该校成绩优秀的学生人数.23.一个不透明的袋子中装有 2 个白球, 1 个红球, 1 个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出 1 个球,恰好摸到白球的概率是;(2)先从中任意摸出 1 个球,再从余下的 3 个球中任意摸出 1 个球,求两次都摸到白球的概率.(用树状图或列表法求解).24.如图,已知四边形ABCD 是平行四边形.(1)用直尺和圆规作出∠ABC 的平分线BE, BE 交 CD 的延长线于点E,交 AD 于点 F;(保留作图痕迹,不写作法)(2)若 AB=2cm ,BC=3cm , BE=5cm ,求 BF 的长.25.在“爱心捐款”活动中,甲班共捐款 300 元,乙班共捐款 225 元.已知甲班的人均捐款额是乙班的 1.2 倍,且甲班人数比乙班多 5 人.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.26.如图,在△ ABC 中,∠ BAC=50°,将△ ABC 绕点 A 按逆时针方向旋转后得△AB 1C1.当B1B ∥AC 时,求∠ BAC 1的度数.27.如图,△ ABC 的中线 AD 、 BE 、 CF 相交于点G, H 、I 分别是 BG、 CG 的中点.(1)求证:四边形EFHI 是平行四边形;(2)①当 AD 与 BC 满足条件时,四边形EFHI 是矩形;②当 AD 与 BC 满足条件时,四边形EFHI 是菱形.28.如图,点 A ( 1, 4)、 B( 2, a)在函数y=(x>0)的图象上,直线AB 与 x 轴相交于点 C,AD ⊥ x 轴于点 D.(1) m=;(2)求点 C 的坐标;(3)在 x 轴上是否存在点E,使以 A 、 B、 E 为顶点的三角形与△ACD 相似?若存在,求出点 E 的坐标;若不存在,说明理由.29.如图,已知直线 a∥ b, a、b 之间的距离为 4cm. A 、 B 是直线 a 上的两个定点, C、 D是直线 b 上的两个动点(点 C 在点 D 的左侧),且AB=CD=10cm ,连接 AC 、 BD 、BC ,将△ ABC 沿 BC 翻折得△ A 1BC .(1)当 A1、 D 两点重合时,AC=cm;(2)当 A1、 D 两点不重合时,①连接 A 1D ,求证: A 1D∥ BC;②若以点 A 1、 C、 B、D 为顶点的四边形是矩形,求AC 的长.2015-2016 学年江苏省苏州市工业园区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共 10 小题,每小题 2 分,共 20 分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.下列图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【考点】 中心对称图形;轴对称图形.【分析】 根据轴对称图形与中心对称图形的概念求解. 【解答】 解: A 、是轴对称图形,也是中心对称图形; B 、不是轴对称图形,也不是中心对称图形; C 、不是轴对称图形,也不是中心对称图形; D 、是轴对称图形,不是中心对称图形. 故选 A .2.下列调查中,适合普查的是( )A .一批手机电池的使用寿命B .中国公民保护环境的意识C .你所在学校的男、女同学的人数D .端午节期间苏州市场上粽子的质量 【考点】 全面调查与抽样调查.【分析】 根据普查得到的调查结果比较准确, 但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】 解:一批手机电池的使用寿命适合抽样调查; 中国公民保护环境的意识适合抽样调查; 你所在学校的男、女同学的人数适合普查;端午节期间苏州市场上粽子的质量适合抽样调查, 故选: C .3.若正方形的面积是12cm 2,则边长 a 满足()A . 2cm < a <3cmB . 3cm < a < 4cmC . 4cm < a < 5cmD . 5cm < a < 6cm 【考点】 估算无理数的大小.【分析】 设正方形的边长为acm ,根据正方形的面积公式求出a 的值即可.【解答】 解:设正方形的边长为 acm ,( a > 0),∵正方形的面积是 12cm 2,∴a 2=12 ,A.2 < a <3,所以 4< a 2< 9,故 A 错,B.3< a < 4,所以 9< a 2< 16,故 B 正确,2C.4< a < 5,所以 16< a < 25,故 C 错,D.5 < a <6,所以 25< a 2< 36,故 D 错, 故选: B4.下列运算正确的是()A .﹣ = B .÷=4C .=﹣2D .(﹣) 2=2【考点】 二次根式的混合运算.【分析】 根据二次根式的化简、二次根式的除法进行计算即可. 【解答】 解: A 、 ﹣=,故本选项错误;B 、÷=2,故本选项错误;C 、=2,故本选项错误; 2D 、(﹣ ) =2,故本选项正确;故选 D .5.已知 ? ABCD 中, AC 、 BD 交于点 O .下列结论中,不一定成立的是( )A . ? ABCD 关于点 O 对称B . OA=OC C . AC=BDD .∠ B= ∠ D【考点】 平行四边形的性质.【分析】 根据平行四边形的性质:平行四边形的对边相等,对角线互相平分即可作出判断. 【解答】 解: A 、? ABCD 关于点 O 对称,正确,不合题意; B 、根据平行四边形的对角线互相平分可得 AO=CO ,正确,不合题意;C 、平行四边形的对角线不一定相等,则 AC=BD 错误,符合题意;D 、根据平行四边形的对角相等可得∠ B= ∠ D ,正确,不合题意.故选: C .6.一个不透明的袋子中装有 2 个红球、 3 个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A .至少有 1 个球是红球B .至少有 1 个球是白球C .至少有 2 个球是红球D .至少有 2 个球是白球【考点】 随机事件.【分析】 必然事件就是一定发生的事件,根据定义即可判断. 【解答】 解: A 、至少有 1 个球是红球是随机事件,选项错误; B 、至少有 1 个球是白球是必然事件,选项正确; C 、至少有 2 个球是红球是随机事件,选项错误; D 、至少有 2 个球是白球是随机事件,选项错误. 故选 B .7.若点 P、 Q 都在函数 y=的图象上,则下列结论中正确的是()A . a> bB . a=bC. a< b D. a、 b 的大小关系无法确定【考点】反比例函数图象上点的坐标特征.【分析】分别把各点代入反比例函数y=,求出a、b的值,再比较大小即可.【解答】解:∵点 P、 Q 都在函数y=的图象上,∴a=,b=,∴a> b.故选 A .8.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A .点 AB .点 B C.点C D.点 D【考点】位似变换.【分析】利用对应点的连线都经过同一点进行判断.【解答】解:如图,位似中心为点 A .故选 A .9.将矩形 OABC 如图放置, O 为原点.若点 A (﹣ 1,2),点 B 的纵坐标是,则点C的坐标是()A .( 4, 2)B .( 2, 4)C .(,3)D.( 3,)【考点】矩形的性质;坐标与图形性质.【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出 CM= , MO=3 ,进而得出答案.【解答】解:过点 A 作 AE ⊥ x 轴于点 E,过点 B 作 BF ⊥⊥ x 轴于点 F,过点 A 作 AN ⊥ BF 于点 N ,过点 C 作 CM ⊥ x 轴于点 M ,∵∠ EAO +∠ AOE=90°,∠ AOE +∠ MOC=90°,∴∠ EAO= ∠ COM ,又∵∠ AEO= ∠ CMO ,∴∠ AEO ∽△ COM ,∴=,∵∠ BAN +∠ OAN=90°,∠ EAO +∠ OAN=90°,∴∠ BAN= ∠ EAO= ∠ COM ,在△ ABN 和△ OCM 中,∴△ ABN ≌△ OCM (AAS ),∴BN=CM ,∵点 A (﹣ 1, 2),点 B 的纵坐标是,∴B N= ,∴CM=,∴MO=3 ,∴点 C 的坐标是:( 3,).故选: D.10.如图,正方形纸片ABCD 的边长为4cm,点 M 、N 分别在边AB 、 CD 上.将该纸片沿MN 折叠,使点 D 落在边 BC 上,落点为E,MN 与 DE 相交于点Q.随着点 M 的移动,点Q 移动路线长度的最大值是()A . 4cm B. 2cm C.cm D .1cm【考点】轨迹;翻折变换(折叠问题).【分析】如图,取 AB 、 CD 中点 K 、 G,连接 KG 、 BD 交于点 O,根据点Q 运动的路线就是线段 OG 即可解决问题.【解答】解:如图,取AB 、 CD 中点 K 、 G,连接 KG 、 BD 交于点 O.由题意可知点Q 运动的路线就是线段OG ,∵DO=OB , DG=GC ,∴OG= BC=× 4=2.∴点 Q 移动路线长度的最大值是2.故选 B .二、填空题:本大题共8 小题,每小题 2 分,共 16 分.把答案直接填在答题卡相应位置上.11.若 3a=2b,则 a: b= 2: 3.【考点】比例的性质.【分析】利用比例的性质内项之积等于外项之积求解.【解答】解:∵ 3a=2b,∴a: b=2 : 3.故答案为 2: 3.12.计算:(+1)2=3+2.【考点】二次根式的混合运算.【分析】利用完全平方公式计算.【解答】解:原式 =2+2+1=32.+故答案为3+2.13.若式子在实数范围内有意义,则x 的取值范围是x≥﹣ 1 且 x≠0.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:∵式子在实数范围内有意义,∴x+1≥ 0,且 x≠ 0,解得: x≥﹣ 1 且 x≠0,故答案为: x≥﹣ 1 且 x≠ 014.若点 P 是线段 AB 的黄金分割点( PA> PB),且 AB=10cm ,则 PA≈ 6.18 cm.(精确到0.01cm)【考点】黄金分割.【分析】根据黄金分割点的定义,知AP 是较长线段,那么AP=AB ≈ 0.618AB ,代入计算即可.【解答】解:∵点 P 是线段 AB 的黄金分割点(PA> PB),且 AB=10cm ,∴AP=AB ≈ 0.618×10≈ 6.18( cm).故答案为 6.18.15.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为0.600.【考点】利用频率估计概率.【分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【解答】解:依题意得击中靶心频率逐渐稳定在0.600 附近,估计这名射手射击一次,击中靶心的概率约为0.600.故答案为: 0.600.16.如图,小明站在距离灯杆 6m 的点 B 处.若小明的身高 AB=1.5m ,灯杆 CD=6m ,则在灯 C 的照射下,小明的影长 BE= 2 m.【考点】相似三角形的应用;中心投影.【分析】首先判定△ ABE ∽△ CDE ,根据相似三角形的性质可得=,然后代入数值进行计算即可.【解答】解:∵ AB ⊥ED , CD⊥ ED ,∴AB ∥ DC ,∴△ ABE ∽△ CDE ,∴=,∵A B=1.5m , CD=6m ,BD=6m ,∴=,解得: EB=2 ,故答案为: 2.17.如图,点 A 在函数 y=(x>0)的图象上,点 B 在函数 y=(x>0)的图象上,点C 在 x 轴上.若 AB ∥ x 轴,则△ ABC 的面积为2.【考点】反比例函数系数k 的几何意义.【分析】由 AB ∥ x 轴,设点 A (, m), B (, m),根据三角形的面积公式即可得出结论.【解答】解:设点 A (,m),B(,m),∴S△ABC = ?(﹣)?m=2.故答案为: 2.18.已知菱形ABCD 中, AC=6cm ,BD=4cm .若以 BD 为边作正方形BDEF ,则 AF=或cm.【考点】正方形的性质;菱形的性质.【分析】作出图形,根据菱形的对角线互相垂直平分求出AO 、BO ,然后分正方形在 A 、C 的两边两种情况延长CA(或 AC )交 EF 于点 M(或点 N ),根据勾股定理求出AF 的长度即可得出结论.【解答】解:以 BD 为边作正方形BDEF 分两种情况:①如图 1,正方形BDEF 在点 A 一侧时,延长CA 交 EF 于点 M .∵四边形 ABCD 为菱形, AC=6cm , BD=4cm ,∴O B=2cm , OA=3cm .∵四边形 BDEF 为正方形,∴F M=BO=2cm , AM=DE ﹣ OA=1cm ,∴AF==cm;②如图 2,正方形BDEF 在点 C 一侧时,延长AC 交 EF 于点 N ,∵四边形 ABCD 为菱形, AC=6cm , BD=4cm ,∴O B=2cm , OA=3cm .∵四边形 BDEF 为正方形,∴F N=BO=2cm , AN=DE +OA=7cm ,∴AF==cm.故答案为:或.三、解答题:本大题共11 小题,共64 分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19×)×..计算:(+【考点】二次根式的混合运算.【分析】直接利用二次根式的性质化简求出答案.【解答】解:原式 =3+=3+15=18.20.解方程:+=1 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣1=x﹣ 2,解得: x=3 ,经检验 x=3 是分式方程的解.211x=1【考点】二次根式的化简求值;分式的化简求值.【分析】先算括号里面的,再把分式的分母因式分解,再约分即可.【解答】解:原式 =÷=?=,当 x=+1 时,原式 ==.22.某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为 100 分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:(1) a= 60 , n= 54 ;(2)补全频数分布直方图;(3)该校共有 2 000 名学生.若成绩在 80 分以上的为优秀,请你估计该校成绩优秀的学生人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据 A 组的人数是30 人,所占的百分比是10%,据此即可求得抽取的总人数,然后利用百分比的计算方法求得 B 组的人数,进而求得 a 和 E 组的人数,利用360 乘以 E 组对应的比例求得n 的值;(2)利用( 1)的结果可以补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:( 1)抽取的总人数是30÷ 10%=300 (人),则B 组的人数是 300× 20%=60 (人),a=300× 25%=75 ,E 组的人数是300﹣30﹣ 60﹣ 75﹣ 90=45(人)n=360×=54 .故答案是: 75, 54;(2);(3)估计该校成绩优秀的学生人数是:2000 ×=900 (人).答:估计该校成绩优秀的学生人数是900 人.23.一个不透明的袋子中装有 2 个白球, 1 个红球, 1 个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出 1 个球,恰好摸到白球的概率是;(2)先从中任意摸出 1 个球,再从余下的 3 个球中任意摸出 1 个球,求两次都摸到白球的概率.(用树状图或列表法求解).【考点】列表法与树状图法;概率公式.【分析】(1)根据 4 个小球中白球的个数,即可确定出从中任意摸出 1 个球,恰好摸到白球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到白球的情况数,即可求出所求的概率.【解答】解:( 1)4 个小球中有 2 个白球,则任意摸出 1 个球,恰好摸到白球的概率,故答案为:;(2)列表如下:白白红黑白﹣﹣﹣(白,白)(白,红)(黑,白)白(白,白)﹣﹣﹣(白,红)(黑,白)红(红,白)(红,白)﹣﹣﹣(黑,红)黑(白,黑)(白,黑)(红,黑)﹣﹣﹣所有等可能的情况有12 种,其中两次都摸到白球有 2 种可能,则 P(两次摸到白球)==.24.如图,已知四边形ABCD 是平行四边形.(1)用直尺和圆规作出∠ABC 的平分线BE, BE 交 CD 的延长线于点E,交 AD 于点 F;(保留作图痕迹,不写作法)(2)若 AB=2cm ,BC=3cm , BE=5cm ,求 BF 的长.【考点】平行四边形的性质;作图—基本作图.【分析】(1)利用尺规作出∠ABC 的平分线即可.(2)先证明 AB=AF=2 ,BC=CE=3 ,再根据 AB ∥ DE ,推出=,列出方程即可解决问题.【解答】解:( 1)答案如图所示.(2)∵四边形ABCD 是平行四边形,∴A B=CD=2 , BC=AD=3 , AD ∥ BC, AB ∥ CD ,∵BE 平分∠ ABC ,∴∠ ABF= ∠ CBE ,∠ CBE= ∠ AFB ,∴∠ ABF= ∠ AFB ,∴A B=AF=2 ,同理 BC=CE=3 ,设 BF=x ,∵AB ∥ DE ,∴= ,∴=,∴x=.25.在“爱心捐款”活动中,甲班共捐款 300 元,乙班共捐款 225 元.已知甲班的人均捐款额是乙班的 1.2 倍,且甲班人数比乙班多 5 人.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【考点】分式方程的应用.【分析】首先把应用题补充完整,可以求甲班的人数;然后设甲班有x 人,则乙班有(x﹣ 5)人,再根据甲班的人均捐款额是乙班的 1.2倍列出方程,再解即可.【解答】在“爱心捐款”活动中,甲班共捐款300 元,乙班共捐款225 元.已知甲班的人均捐款额是乙班的 1.2 倍,且甲班人数比乙班多 5 人,求甲班的人数.解:设甲班有x 人,则乙班有( x﹣ 5)人,由题意得:=×1.2,解得: x=50,经检验: x=50 是分式方程的解,答:甲班有50 人.26.如图,在△ ABC 中,∠ BAC=50°,将△ ABC 绕点 A 按逆时针方向旋转后得△ AB 1C1.当B1B ∥AC 时,求∠ BAC 1的度数.【考点】旋转的性质;平行线的性质.【分析】先依据平行的性质可求得∠ABB 1的度数,然后再由旋转的性质得到△AB 1B 为等腰三角形,∠ B AC =50 °BAB1的度数,最后依据∠BAC=∠BAB﹣∠ C AB111,再求得∠111求解即可.【解答】解:∵ B1B∥ AC ,∴∠ ABB 1=∠ BAC=50°.∵由旋转的性质可知:∠B1AC 1=∠ BAC=50°, AB=AB 1.∴∠ ABB 1=∠ AB 1B=50°.∴∠ BAB 1=80 °∴∠ BAC 1=∠ BAB 1﹣∠ C1AB 1=80 °﹣ 50°=30 °.27.如图,△ ABC 的中线 AD 、 BE 、 CF 相交于点G, H 、I 分别是 BG、 CG 的中点.(1)求证:四边形EFHI 是平行四边形;(2)①当 AD 与 BC 满足条件AD ⊥ BC时,四边形EFHI 是矩形;②当 AD 与 BC 满足条件BC= AD时,四边形EFHI 是菱形.【考点】矩形的判定;三角形中位线定理;平行四边形的判定与性质;菱形的判定.【分析】(1)证出 EF、 HI 分别是△ ABC 、△ BCG 的中位线,根据三角形中位线定理可得EF∥ BC 且 EF= BC ,HI ∥BC 且 PQ= BC ,进而可得EF∥HI 且 EF=HI .根据一组对边平行且相等的四边形是平行四边形可得结论;(2)①由三角形中位线定理得出FH ∥ AD ,再证出 EF ⊥ FH 即可;②与三角形重心定理得出AG= AD ,证出 AG=BC ,由三角形中位线定理和添加条件得出FH=EF ,即可得出结论.【解答】(1)证明:∵ BE , CF 是△ ABC 的中线,∴EF 是△ ABC 的中位线,∴E F ∥BC 且 EF= BC .∵H 、 I 分别是 BG、 CG 的中点.,∴HI 是△ BCG 的中位线,∴HI ∥ BC 且 HI= BC,∴E F ∥HI 且 EF=HI .∴四边形 EFHI 是平行四边形.(2)解:①当 AD 与 BC 满足条件 AD ⊥ BC 时,四边形 EFHI 是矩形;理由如下:同( 1)得: FH 是△ ABG 的中位线,∴FH ∥ AG , FH=AG ,∴F H ∥ AD ,∵E F ∥BC,AD ⊥ BC ,∴EF ⊥ FH,∴∠ EFH=90°,∵四边形 EFHI 是平行四边形,∴四边形 EFHI 是矩形;故答案为: AD ⊥ BC;②当 AD 与 BC 满足条件BC= AD 时,四边形EFHI 是菱形;理由如下:∵△ ABC 的中线 AD 、 BE、 CF 相交于点G,∴AG=AD ,∵BC=AD ,∴AG=BC ,∵F H= AG ,EF= BC ,∴F H=EF ,又∵四边形EFHI 是平行四边形,∴四边形 EFHI 是菱形;故答案为: BC=AD .28.如图,点 A ( 1, 4)、 B( 2, a)在函数y=(x>0)的图象上,直线AB 与 x 轴相交于点 C,AD ⊥ x 轴于点 D.(1) m= 4 ;(2)求点 C 的坐标;(3)在 x 轴上是否存在点E,使以 A 、 B、 E 为顶点的三角形与△ACD 相似?若存在,求出点 E 的坐标;若不存在,说明理由.【考点】反比例函数综合题.【分析】(1)有点 A 的坐标结合反比例函数图象上点的坐标特征,即可得出m 的值;(2)由反比例函数的解析式结合反比例函数图象上点的坐标特征即可得出点 B 的坐标,利用待定系数法即可求出直线AB 的解析式,再领y=0 求出 x 值即可得出点 C 的坐标;(3)假设存在,设点 E 的坐标为( n, 0),分∠ ABE=90°、∠ BAE=90°以及∠ AEB=90°三种情况考虑:①当∠ ABE=90°时,根据等腰三角形的性质,利用勾股定理即可找出关于n 的一元二次方程,解方程即可得出结论;② 当∠ BAE=90° 时,根据∠ ABE>∠ ACD可得出两三角形不可能相似;③当∠ AEB=90°时,根据 A、 B 的坐标可得出 AB 的长度,以 AB 为直径作圆可知圆与 x 轴无交点,故该情况不存在.综上即可得出结论.【解答】解:( 1)∵点 A( 1, 4)在反比例函数y=(x>0)的图象上,∴m=1 × 4=4 ,故答案为: 4.(2)∵点 B ( 2,a)在反比例函数y=的图象上,∴a= =2,∴B ( 2,2).设过点 A 、 B 的直线的解析式为y=kx +b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x6+.当y=0 时,有﹣ 2x +6=0,解得: x=3 ,∴点 C 的坐标为( 3, 0).(3)假设存在,设点 E 的坐标为( n, 0).①当∠ ABE=90°时(如图 1 所示),∵ A ( 1, 4), B (2, 2), C( 3, 0),∴B 是 AC 的中点,∴EB 垂直平分 AC , EA=EC=n +3.2 2 2 2 2 2 由勾股定理得: AD +DE =AE ,即 4 +(x+1) =(x+3),此时点 E 的坐标为(﹣2, 0);②当∠ BAE=90°时,∠ ABE >∠ ACD ,故△ EBA 与△ ACD 不可能相似;③当∠ AEB=90°时,∵ A ( 1,4), B( 2, 2),∴AB=,2>,∴以 AB 为直径作圆与x 轴无交点(如图3),∴不存在∠ AEB=90° .综上可知:在x 轴上存在点E,使以 A、 B、E 为顶点的三角形与△ACD 相似,点 E 的坐标为(﹣ 2, 0).29.如图,已知直线 a∥ b, a、b 之间的距离为4cm. A 、 B 是直线 a 上的两个定点, C、 D是直线 b 上的两个动点(点 C 在点 D 的左侧),且AB=CD=10cm ,连接 AC 、 BD 、BC ,将△ ABC 沿 BC 翻折得△ A 1BC .(1)当 A1、 D 两点重合时, AC= 10 cm;(2)当 A1、 D 两点不重合时,①连接 A 1D ,求证: A 1D∥ BC;②若以点 A 1、 C、 B、D 为顶点的四边形是矩形,求AC 的长.【考点】四边形综合题.【分析】( 1)当 A 1、D 两点重合时,可以证到四边形ACDB 是菱形,从而得到第 20 页(共 24 页)(2)①过点 A 1作 A 1E⊥BC,垂足为 E,过点 D 作 DF ⊥ BC,垂足为 F,如图 2,可以证到S△DBC=S△ABC =S△A1BC,从而得到DF=A1E,由 A 1E⊥ BC ,DF⊥BC 可以证到 A 1E∥ DF,从而得到四边形 A 1DFE 是平行四边形,就可得到 A 1D∥ BC .②若以 A 1、 C、B 、D 为顶点的四边形是矩形,则有三个位置,分别是图3①、图 3②、图 3③ .对于图 3①、图 3②,过点C 作 CH⊥AB ,垂足为 H,运用相似三角形的性质建立方程就可求出AH ,然后运用勾股定理就可求出 AC 的长;对于图 3③,直接运用勾股定理就可求出AC 的长【解答】解:( 1)当 A 1、D 两点重合时,如图1①和图 1②,∵CD ∥ AB , CD=AB ,∴四边形 ACDB 是平行四边形.∵△ ABC 沿 BC 折叠得△ A 1BC ,A 1、D 两点重合,∴A C=A 1C=DC .∴平行四边形 ACDB 是菱形.∴A C=AB=10(cm ).故答案为: 10.(2)当 A1、 D 两点不重合时,①A 1D∥ BC.证明:过点 A 1作 A 1E⊥ BC ,垂足为 E,过点 D 作 DF⊥ BC ,垂足为F,如图 2,∵CD ∥ AB , CD=AB ,∴四边形 ACDB 是平行四边形.∴S△ABC =S△DBC.∵△ ABC 沿 BC 折叠得△ A 1BC ,∴S△ ABC =S△A1BC .∴S△DBC =S△A1BC.第 21 页(共 24 页)∴BC?DF= BC?A1E.∴D F=A 1E.∵A 1E⊥ BC, DF ⊥ BC,∴∠ A 1EB= ∠ DFB=90°.∴A 1E∥ DF.∴四边形 A 1DFE 是平行四边形.∴A 1D∥ EF.∴A 1D∥ BC.②Ⅰ .如图 3①,过点 C 作 CH ⊥ AB ,垂足为H,此时 AH < BH .∵四边形 A 1DBC 是矩形,∴∠ A 1CB=90°.∵△ ABC 沿 BC 折叠得△ A 1BC ,∴∠ ACB= ∠ A 1CB .∴∠ ACB=90° .∵CH ⊥ AB ,∴∠ AHC= ∠ CHB=90° .∴∠ ACH=90° ﹣∠ HCB= ∠ CBH .∴△ AHC ∽△ CHB .∴.2∴CH =AH?BH .∵A B=10 , CH=4 ,∴3=AH? ( 10﹣AH ).解得: AH=2 或AH=8 .∵A H <BH ,∴AH=2 .222∴AC =CH +AH =16+4=20 .Ⅱ.如图 3②,第 22 页(共 24 页)过点 C 作 CH ⊥ AB ,垂足为 H ,此时 AH > BH .同理可得: AH=8 .222∴AC =CH +AH =16+64=80.Ⅲ.如图 3③ ,∵四边形 A 1DCB 是矩形, ∴∠ A 1BC=90°.∵△ ABC 沿 BC 折叠得△ A 1BC , ∴∠ ABC= ∠ A 1BC .∴∠ ABC=90° .∴AC 2 2+AB 2=BC=16 100=116.+∴AC=2.综上所述; 当以 A 1 、C 、B 、D 为顶点的四边形是矩形时, AC 的长为 2或 24 或 2.第 23 页(共 24 页)2016 年 11 月 21 日第 24 页(共 24 页)。

新苏科版八年级苏科初二下册第二学期数学期末考试卷及答案

新苏科版八年级苏科初二下册第二学期数学期末考试卷及答案一、选择题1.平行四边形的一条边长为8,则它的两条对角线可以是( )A .6和12B .6和10C .6和8D .6和62.两个反比例函数3y x =,6y x =在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x =图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .40393.下列调查中,适合普查方式的是( )A .调查某市初中生的睡眠情况B .调查某班级学生的身高情况C .调查南京秦淮河的水质情况D .调查某品牌钢笔的使用寿命4.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( )A .1000B .1500C .2000D .2500 5.若分式5x x -的值为0,则( ) A .x =0 B .x =5 C .x ≠0 D .x ≠56.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D . 7.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件8.如图,正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于G ,连接AG 、HG ,下列结论:①CE ⊥DF ;②AG=AD ;③∠CHG=∠DAG ;④HG=12AD .其中正确的有( )A .① ②B .① ② ④C .① ③ ④D .① ② ③ ④9.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A .15°B .22.5°C .30°D .45°10.已知关于x 的分式方程22x m x +-=3的解是5,则m 的值为( ) A .3 B .﹣2 C .﹣1 D .8二、填空题11.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 是AB 上的任意一点,作PD ⊥AC 于点D ,PE ⊥CB 于点E ,连结DE ,则DE 的最小值为_____.12.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.13.若分式x 3x 3--的值为零,则x=______.14.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠=_________.15.在一次数学测试中 ,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2 ,则第六组的频数是_______.16.当a <0时,化简2a 2a |结果是_____.17.若关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,则k的取值范围是_____.18.如图是某市连续5天的天气情况,最大的日温差是________℃.19.若关于x的一元二次方程2410++=有实数根,则k的取值范围是_______.kx x20.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.三、解答题21.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.22.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.23.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)直接写出:以A 、B 、C 为顶点的平形四边形的第四个顶点D 的坐标 .24.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.25.如图,在平面直角坐标系中,点O 为坐标原点,AB // OC,点B,C 的坐标分别为(15,8),(21,0),动点M 从点A 沿A→B 以每秒1个单位的速度运动;动点N 从点C 沿C→O 以每秒2个单位的速度运动.M,N 同时出发,设运动时间为t 秒.(1)在t =3时,M 点坐标 ,N 点坐标 ;(2)当t 为何值时,四边形OAMN 是矩形?(3)运动过程中,四边形MNCB 能否为菱形?若能,求出t 的值;若不能,说明理由.26.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF是平行四边形27.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.28.如图,在平面直角坐标系中,△ABC和△A'B'C'的顶点都在格点上.(1)将△ABC绕点B顺时针旋转90°后得到△A1BC1;(2)若△A'B'C'是由△ABC绕某一点旋转某一角度得到,则旋转中心的坐标是.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OB与OC的长,然后根据三角形的三边关系,即可求得答案.【详解】解:如图:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,若BC=8,根据三角形三边关系可得:|OB-OC|<8<OB+OC .A 、6和12,则OB+OC=3+6=9>8,OB-OC=6-3=3<8,能组成三角形,故本选项符合题意;B 、6和10,则OB+OC=3+5=8,不能组成三角形,故本选项不符合题意;C 、6和8,则OB+OC=3+4=7<8,不能组成三角形,故本选项不符合题意;D 、6和6,则OB+OC=3+3=6<8,不能组成三角形,故本选项不符合题意;故选:A .【点睛】此题考查了平行线的性质与三角形三边关系,解题的关键是注意掌握平行四边形的对角线互相平分,注意三角形三边关系知识的应用.2.A解析:A【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x =中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x …2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x =, 得:1y 、2y 、3y …2020y 202040392019.52y ==, 故选:A .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k ≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 3.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A 、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B 、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C 、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D 、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.4.B解析:B【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次,故选:B.【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.5.B解析:B【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案.【详解】解:∵分式5xx的值为0,∴x﹣5=0且x≠0,解得:x=5.故选:B.【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.6.A解析:A【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是中心对称图形,也是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.7.B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.8.D解析:D【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=12CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选D.【点睛】运用了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.10.C解析:C【分析】将x=5代入分式方程中进行求解即可.【详解】把x=5代入关于x的分式方程22x mx+-=3得:25352m⨯+=-,解得:m=﹣1,故选:C.【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解.二、填空题11.4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP 的长.【详解】∵Rt△ABC中解析:4连接CP ,根据矩形的性质可知:DE=CP ,当DE 最小时,则CP 最小,根据垂线段最短可知当CP ⊥AB 时,则CP 最小,再根据三角形的面积为定值即可求出CP 的长.【详解】∵Rt △ABC 中,∠C =90°,AC =4,BC =3,∴AB =22BC AC +=2234+=5,连接CP ,如图所示:∵PD ⊥AC 于点D ,PE ⊥CB 于点E ,∴四边形DPEC 是矩形,∴DE =CP ,当DE 最小时,则CP 最小,根据垂线段最短可知当CP ⊥AB 时,则CP 最小,∵1122BC AC AB CP ⋅=⋅, ∴DE =CP =345⨯=2.4, 故答案为:2.4.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE 的最小值转化为其相等线段CP 的最小值.12.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元,则购买到这种练习本的本数为(本),故答案为.解析:1a b - 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为1ab -(本), 故答案为1ab -.【点睛】本题考查的是列代数式,掌握列代数式的方法是解题的关键.13.-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零解析:-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.40°【详解】因为OA=OB,所以.故答案为:解析:40°【详解】因为OA=OB ,所以180402AOBOAB︒-∠∠==︒.故答案为:40︒15.5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-解析:5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率16.﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根解析:﹣3a【分析】首先利用a的取值范围化简,进而去绝对值求出答案.【详解】∵a<0,∴2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.故答案为:﹣3a.【点睛】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.17.k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<解析:k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<0,解得k<﹣1.故答案为:k<﹣1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.18.10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的解析:10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的实际应用,根据图象找出温差最大的一天是解题关键.19.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 20.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x3,x4, ∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.三、解答题21.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.22.(1)(3,2),12y x;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x ;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E在直线OM上,设点E的坐标为(e,e),∴F(e,e﹣3),G(e+5,e﹣3),∵点G在直线ON上,∴e﹣3=12(e+5),解得e=11,∴H(16,11).(3)s1:s2的值是一个常数,理由如下:如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),∵点G在直线y=12x上,∴a﹣3m=12(a+5m),∴a=11m,∴E(11m,11m),H(16m,11m),F(11m,8m),G(16m,8m)J(11m,0),K (16m,0),∴S△OEG=S△OEJ+S梯形EJKG﹣S△OKG=12×11m×11m+12(8m+11m)•5m•12﹣12×16m×8m =44m2,S矩形EFGH=EF•FG=15m2,∴12SS=224415mm=4415.∴s1:s2的值是一个常数,这个常数是4415.【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.23.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)---,根据关于原点对称的点的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)--,描点连线,△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---,故答案为:(1,1),(5,3),(3,1)---.【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.24.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.25.(1)(3,8);(15,0);(2)t=7;(3)能,t=5.【分析】(1)根据点B、C的坐标求出AB、OA、OC,然后根据路程=速度×时间求出AM、CN,再求出ON,然后写出点M、N的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM=ON时,四边形OAMN是矩形,然后列出方程求解即可;(3)先求出四边形MNCB是平行四边形的t值,并求出CN的长度,然后过点B作BC⊥OC于D,得到四边形OABD是矩形,根据矩形的对边相等可得OD=AB,BD=OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.【详解】解:(1)∵B(15,8),C(21,0),∴AB=15,OA=8,OC=21,当t=3时,AM=1×3=3,CN=2×3=6,∴ON=OC-CN=21﹣6=15,∴点M(3,8),N(15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN是矩形时,AM=ON,∴t=21-2t,解得t=7秒,故t=7秒时,四边形OAMN是矩形;(3)存在t=5秒时,四边形MNCB能否为菱形.理由如下:四边形MNCB是平行四边形时,BM=CN,∴15-t=2t,解得:t=5秒,此时CN=5×2=10,过点B作BD⊥OC于D,则四边形OABD是矩形,∴OD=AB=15,BD=OA=8,CD=OC-OD=21-15=6,在Rt△BCD中,BC=10,∴BC=CN,∴平行四边形MNCB是菱形,故,存在t=5秒时,四边形MNCB为菱形.【点睛】本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.26.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE ≌△CDF 即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.27.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE ∥DF ,∴∠BEO =∠DFO ,在△BEO 与△DFO 中,BEO DFO BO DO BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO ≌△DFO (ASA ),∴EO =FO ,∵AE =CF ,∴AE +EO =CF +FO ,即AO =CO ,∵BO =DO ,∴四边形ABCD 为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.28.(1)见解析 (2)(3,4)【分析】(1)根据网格结构找出点A 、C 绕点B 顺时针旋转90°后的对应点A 1、C 1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015~2016学年度第二学期期末 八年级数学

(满分:100分 考试时间:100分钟)

一、选择题(每小题2分,共12分,每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入下表相应的括号内) 1.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法: ①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1000名考生是总体的一个样本;④样本容量是1000. 其中说法正确的有 【 】 A. 4个 B. 3个 C. 2个 D.1个

2.若1a,则31a化简后为 【 】

A11aa B.11aa C.11aa D.11aa 3.下列事件中必然事件有 【 】 ①当x是非负实数时,x≥0 ; ②打开数学课本时刚好翻到第12页; ③13个人中至少有2人的生日是同一个月; ④在一个只装有白球和绿球的袋中摸球,摸出黑球. A.1个 B.2个 C.3个 D.4个

4.若0414xxxm有增根,则m的值是 【 】

A.-2 B.2 C.3 D.-3 5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件: ①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC. 其中一定能判定这个四边形是平行四边形的条件有 【 】 A.4组 B.3组 C.2组 D.1组

6.已知点)3,()2,()2,(321xRxQxP、、三点都在反比例函数xay12的图象上,则下列关系正确的是 【 】

A.231xxx B.321xxx C.123xxx D.132xxx

二、填空题(每题2分,共20分,请将正确答案填写在相应的横线上) 7.若分式51x有意义,则x的取值范围是__________________.

8.计算(508)2的结果是 . 9. 一个反比例函数y=kx(k≠0)的图象经过点P(-2,-1),则该反比例函数的解析式是

学校

班级 姓名 考试号 ----------------------------------------------密---------------------------------封-------------------------------

-

--

线--------------------------------------------------- . 10.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机 坐到其他三个座位上,则学生B坐在2号座位的概率是 .

11.如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点A逆时针旋转50º到 △CBA的位置,则∠BCA= _________度.

12.在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件, 这个条件可以是 .(只要填写一种情况)

13.如图正方形ABCD中,点E在边DC上,DE=2,EC=1 ,把线段AE绕点A旋转,使 点E落在直线..BC上的点F处,则F、C两点的距离为 .

14.函数1(0)yxx , xy92(0)x的图象如图所示,则结论: ① 两函数图象的交点 A的坐标为(3 ,3 ); ② 当x>3时,y2>y1 ; ③ 当 x=1时, BC = 8; ④当 x逐 渐增大时,y1随着x的增大而增大,y2随着x 的增大而减小.其中正确结论的序号是 .

15.已知a、b为有理数,m、n分别表示77的整数部分和小数部分,且24amnbn, 则2ab .

第10题图 第11题图 第13题图

第16题图 9x第14题图 16.如图,双曲线)0(3xxy经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是 .

三、解答题(本大题8小题,共68分.把解答过程写在试卷相对应的位置上.解答时应写出必要的计算过程,推演步骤或文字说明) 17.计算: (每小题4分,共8分)

(1)1(4875)13;

(2)21452025150.

18.(本题8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个. 从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3. (1)试求出纸箱中蓝色球的个数; (2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数. 19.(每小题4分,共8分) (1)已知212===242xABCxxx,,.将他们组合成(A-B)÷C或 A-B÷C的形式,请你从中任选一种进行计算.先化简,再求值,其中x=3.

(2)解分式方程:.163104245xxxx 20.(本小题7分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表: 数据段 频数 频率 30﹣40 10 0.05 40﹣50 36 c 50﹣60 a 0.39 60﹣70 b d 70﹣80 20 0.10 总计 200 1

(1) 表中a、b、c、d分别为:a= ; b= ; c= ; d= . (2) 补全频数分布直方图; (3) 如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?

21.(本小题8分)若0a,M=21aa ,N=32aa, ⑴当3a时,计算M与N的值; ⑵猜想M与N的大小关系,并证明你的猜想.

学校 班级

姓名

考试号

----------------------------------------------密---------------------------------封-------------------------------

-

--

线---------------------------------------------------

相关文档
最新文档