高三文科数学导数专题复习
人教版高中数学文科选修1-1同步练习题、期中、期末复习资料、补习资料:35提高导数的应用一---函数的单调性

导数的应用一---函数的单调性【学习目标】1. 理解函数的单调性与其导数的关系。
2. 掌握通过函数导数的符号来判断函数的单调性。
3. 会利用导数求函数的单调区间。
【要点梳理】要点一、函数的单调性与导数的关系我们知道,如果函数()f x 在某个区间是增函数或减函数,那么就说()f x 在这一区间具有单调性,先看下面的例子:函数2()43y f x x x ==-+的图象如图所示。
考虑到曲线()y f x =的切线的斜率就是函数()f x 的导数,从图象可以看到:在区间(2,+∞)内,切线的斜率为正,即'()0f x >时,()f x 为增函数;在区间(-∞,2)内,切线的斜率为负,即'()0f x <时,()f x 为减函数。
导数的符号与函数的单调性:一般地,设函数)(x f y =在某个区间内有导数,则在这个区间上, ①若()0f x '>,则()f x 在这个区间上为增函数; ②若()0f x '<,则()f x 在这个区间上为减函数; ③若恒有0)(='x f ,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).要点诠释:1.因为导数的几何意义是曲线切线的斜率,故当在某区间上()0f x '>,即切线斜率为正时,函数()f x 在这个区间上为增函数;当在某区间上()0f x '<,即切线斜率为负时,函数()f x 在这个区间上为减函数;即导函数的正负决定了原函数的增减。
2.若在某区间上有有限个点使'()0f x =,在其余点恒有'()0f x >,则()f x 仍为增函数(减函数的情形完全类似)。
高考复习文科数学之导数(1)

各地解析分类汇编:导数(1)1 【山东省师大附中2013届高三上学期期中考试数学文】方程3269100x x x -+-=的实根个数是A.3B.2C.1D.0【答案】C【解析】设32()6910f x x x x =-+-,2'()31293(1)(3)f x x x x x =-+=--,由此可知函数的极大值为(1)60f =-<,极小值为(3)100f =-<,所以方程3269100x x x -+-=的实根个数为1个.选C.2 【山东省实验中学2013届高三第二次诊断性测试数学文】曲线x x y +=331在点⎪⎭⎫ ⎝⎛341,处的切线与坐标轴围成的三角形面积为 A.92 B.91 C.31 D.32【答案】B【解析】2''()+1y f x x ==,在点⎪⎭⎫⎝⎛341,的切线斜率为'(1)2k f ==。
所以切线方程为42(1)3y x -=-,即223y x =-,与坐标轴的交点坐标为21(0,),(,0)33-,所以三角形的面积为11212339⨯⨯-=,选B. 3 【山东省实验中学2013届高三第二次诊断性测试数学文】若)2ln(21)(2++-=x b x x f 在),(∞+-1上是减函数,则b 的取值范围是 A.[]∞+-,1 B.),(∞+-1 C.]1-∞-,( D.),(1-∞- 【答案】C【解析】函数的导数'()2bf x x x =-++,要是函数在),(∞+-1上是减函数,则'()02b f x x x =-+≤+,在),(∞+-1恒成立,即2bx x ≤+,因为1x >-,所以210x +>>,即(2)b x x ≤+成立。
设(2)y x x =+,则222(1)1y x x x =+=+-,因为1x >-,所以1y >-,所以要使(2)b x x ≤+成立,则有1b ≤-,选C.4 【山东省聊城市东阿一中2013届高三上学期期初考试 】若函数(1)4a xy ex -=+(x ∈R )有大于零的极值点,则实数a 范围是 ( )A .3a >-B .3a <-C .13a >-D .13a <- 【答案】B【解析】解:因为函数y=e (a-1)x+4x ,所以y ′=(a-1)e(a-1)x+4(a <1),所以函数的零点为x 0=14ln a 1a 1--+,因为函数y=e (a-1)x+4x (x ∈R )有大于零的极值点,故14lna 1a 1--+=0,得到a<-3,选B5 【山东省临沂市2013届高三上学期期中考试 数学文】已知32(),f x ax bx c =++其导函数()f x '的图象如右图,则函数()f x 的极小值是A .a b c ++B .84a b c ++C .32a b +D .c【答案】D【解析】由导函数()f x '的图象知当0x <时,()0f x '<,当02x <<时,()0f x '>,所以函数()f x 的极小值为(0)f c =,选D.6 【山东省青岛市2013届高三上学期期中考试数学(文)】已知1()cos ,f x x x=则()()2f f ππ'+=A .2π-B .3πC .1π-D .3π-【答案】D【解析】因为1()cos ,f x x x =所以211'()cos sin f x x x x x =--,所以1()f ππ=-,2'()2f ππ=-,所以3()()2f f πππ'+=-,选D. 7 【山东省济南外国语学校2013届高三上学期期中考试 文科】 若a>0,b>0,且函数224)(23---=bx ax x x f 在x=1处有极值,则ab 的最大值()A.2B.3C.6D.9 【答案】D【解析】函数的导数为2'()1222f x x ax b =--,函数在1x =处有极值,则有'(1)12220f a b =--=,即6a b +=,所以6a b =+≥即9ab ≤,当且仅当3a b ==时取等号,选D.8 【山东省济南外国语学校2013届高三上学期期中考试 文科】 函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,2)(/>x f ,则()24f x x >+的解集为( )A.(-1,1)B.(-1,+∞)C.(-∞,-l)D.(-∞,+∞) 【答案】B【解析】设()()(24)F x f x x =-+,则(1)(1)(24)220F f -=---+=-=,'()'()2F x f x =-,对任意x R ∈,有'()'()20F x f x =->,即函数()F x 在R 上单调递增,则()0F x >的解集为(1,)-+∞,即()24f x x >+的解集为(1,)-+∞,选B.9 【山东省实验中学2013届高三第三次诊断性测试文】已知)1('2)(2xf x x f +=,则=)0('f .【答案】-4【解析】函数的导数为'()22'(1)f x x f =+,所以'(1)22'(1)f f =+,解得'(1)2f =-,所以2()4f x x x =-,所以'()24f x x =-,所以'(0)4f =-。
高中数学 文科 导数 第1课时 导数与函数的单调性文科(含答案)

第2节导数在研究函数中的应用一、选择题1.函数f(x)=x-ln x的单调递减区间为()A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).答案 A2.已知f(x)=1+x-sin x,则f(2),f(3),f(π)的大小关系正确的是()A.f(2)>f(3)>f(π)B.f(3)>f(2)>f(π)C.f(2)>f(π)>f(3)D.f(π)>f(3)>f(2)解析因为f(x)=1+x-sin x,所以f′(x)=1-cos x,当x∈(0,π]时,f′(x)>0,所以f(x)在(0,π]上是增函数,所以f(π)>f(3)>f(2).答案 D3.(2014·课标全国Ⅱ卷)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)解析∵f′(x)=k-1 x,依题意f′(x)≥0在(1,+∞)上恒成立,∴k≥1x在x∈(1,+∞)上恒成立,由x>1,得0<1x<1,所以k≥1.答案 D4.(2017·山东卷)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是( )A.f (x )=2-xB.f (x )=x 2C.f (x )=3-xD.f (x )=cos x 解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x ,在定义域R 上为增函数,A 正确;对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确;对于C ,g (x )=e x ·3-x=⎝ ⎛⎭⎪⎫e 3x 在定义域R 上是减函数,C 不正确;对于D ,g (x )=e x ·cos x ,则g ′(x )=2e xcos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确.答案 A5.(2018·保定一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞) 解析 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2, 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1.答案 B二、填空题6.已知函数f (x )=(-x 2+2x )e x (x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.解析 因为f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2,所以函数f (x )的单调递增区间为(-2,2).答案 (-2,2)7.(2018·安徽江南十校联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.解析 易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x .由f ′(x )=x -9x <0,解得0<x <3.因为f (x )=12x 2-9ln x 在[a -1,a +1]上单调递减,∴⎩⎨⎧a -1>0,a +1≤3,解得1<a ≤2. 答案 (1,2]8.(2018·银川诊断)若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________.解析 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案 (-3,0)∪(0,+∞)三、解答题9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23. (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1), 令f ′(x )>0,解得x >1或x <-13;令f ′(x )<0,解得-13<x <1.所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1. 10.已知a ∈R ,若函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数)在(-1,1)上单调递增,求a 的取值范围.解 因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x >0,所以-x 2+(a -2)x +a ≥0,则a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令g (x )=(x +1)-1x +1,则g ′(x )=1+1(x +1)2>0, 所以g (x )=(x +1)-1x +1在(-1,1)上单调递增, 所以g (x )<g (1)=(1+1)-11+1=32, 所以a ≥32,又当a =32时,当且仅当x =0时,f ′(x )=0,所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. 能力提升题组(建议用时:20分钟)11.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a的取值范围是( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0.在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13. 答案 C12.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系是________(由小到大). 解析 依题意得,当x <1时,f ′(x )>0,则f (x )在(-∞,1)上为增函数;又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12, 即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b . 答案 c <a <b13.(2016·四川卷节选)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.(1)解 由题意得f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a, 当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,1 x-ee x=e(e x-1-x)x e x>0.从而g(x)=。
专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题04 导数及其应用(解答题)(文科专用) 1.【2022年全国甲卷】已知函数f(x)=x 3−x,g(x)=x 2+a ,曲线y =f(x)在点(x 1,f (x 1))处的切线也是曲线y =g(x)的切线.(1)若x 1=−1,求a ;(2)求a 的取值范围.2.【2022年全国乙卷】已知函数f(x)=ax −1x −(a +1)lnx . (1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.3.【2021年甲卷文科】设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围. 4.【2021年乙卷文科】已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 5.【2020年新课标1卷文科】已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.6.【2020年新课标2卷文科】已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性. 7.【2020年新课标3卷文科】已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.8.【2019年新课标2卷文科】已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.9.【2019年新课标3卷文科】已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.10.【2018年新课标1卷文科】【2018年新课标I 卷文】已知函数()e 1x f x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥. 11.【2018年新课标2卷文科】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.12.【2018年新课标3卷文科】已知函数()21x ax x f x e +-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.。
专题一 函数与导数 文科数学

文科数学专题一 函数与导数1.若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a 10,b+1) (D)(a2,2b)2.(安徽文10) 函数()()n f x ax x 2=1-g 在区间〔0,1〕上的图像如图所示,则n 可能是(A )1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 3.(北京文8)已知点()0,2A ,()2,0B ,若点C 在函数2y x =的图象上,则使得ABC ∆的面积为2的点C 的个数为 A. 4B. 3C. 2D. 1【答案】A4.(福建文6)若关于x 的方程x2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞) 【答案】C5.(福建文8)已知函数f(x)=⎩⎨⎧2x , x >0x +1,x≤0,若f(a)+f(1)=0,则实数a 的值等于A .-3B .-1C .1D .3 【答案】A6.(福建文10)若a >0,b >0,且函数f(x)=4x3-ax2-2bx +2在x =1处有极值,则ab 的最大值等于A .2B .3C .6D .9 【答案】D7.(广东文4)函数1()lg(1)1f x x x =++-的定义域是 ( )A .(,1)-∞-B .(1,)+∞C .(1,1)(1,)-+∞D .(,)-∞+∞ 【答案】C8.(广东文10)设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f ∙;对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =∙.则下列等式恒成立的是( )A .()()()()()())(x h g h f x h g f ∙∙=∙B .()()()()()())(x h g h f x h g f ∙=∙C .()()()()()())(x h g h f x h g f =D .()()()()()())(x h g h f x h g f ∙∙∙=∙∙【答案】B9.(湖南文7)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C. D.【答案】B【解析】22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以2411'|2(sincos )44x y πππ===+。
高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
高中数学函数与导数_高中数学函数与导数知识点汇总

高中数学函数与导数_高中数学函数与导数知识点汇总第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。
函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。
复合函数要注意外层函数的定义域由内层函数的值域决定。
第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。
函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。
对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。
第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。
在用定义进行判断时,要注意自变量在定义域区间内的任意性。
第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。
多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。
高考文科数学命题热点名师解密专题:导数有关的构造函数方法

专题07 导数有关的构造函数方法一.知识点基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________;④⎝⎛⎭⎫1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式①(x n )′=________;②(sin x )′=__________; ③(cos x )′=________;④(e x )′=________; ⑤(a x )′=___________;⑥(ln x )′=________; ⑦(log a x )′=__________. 5.导数的运算法则(1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________;(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________________________. 6.复合函数的导数(1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型 3.构造x e 形式的函数 4.构造成积的形式 5.与ln x 有关的构造 6.构造成商的形式 7.对称问题(一)构造多项式函数例1.已知函数满足,且的导函数,则的解集为() ()()f x x R ∈()1f l =()f x ()1'2f x <()122x f x <+A. B. C. D.【答案】D【解析】令,则,所以函数在定义域上为单调递减函数,因为,所以,即,根据函数在定义域上单调递减,可知,故选D.考点:函数的单调性与导数的关系.【方法点晴】本题主要考查了函数的单调性与函数的导数之间的关系,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题设条件,构造新函数,利用新函数的性质是解答问题的关键,属于中档试题.练习 1.设函数在上存在导函数,对于任意的实数,都有,当时,.若,则实数的取值范围是()A .B .C .D . 【答案】 A考点:导数在函数单调性中的应用. 【思路点睛】因为,设,则,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果. 练习2.设奇函数在上存在导数,且在上,若,则实数的取值范围为(){}|x 1x <-{}|1x x >()F x ()122x f x <+()F x 1x >()F x ()f x R '()f x x (,0)x ∈-∞m 1[,)2-+∞3[,)2-+∞[1,)-+∞[2,)-+∞()g x ()g x (,0)-∞RA .B .C .D .【答案】B 【解析】令,因为,所以函数的奇函数,因为时,,所以函数在为减函数,又题意可知,,所以函数在上为减函数,所以,即,所以,所以,故选B.考点:函数的奇偶性及其应用.【方法点晴】本题主要考查了函数的奇偶性及其应用,其中解答中涉及到利用导数求函数的单调性、利用导数研究函数的极值、以及函数的奇偶性的判定等知识点的综合考查,着重考查了转化与化归的思想方法,以及学生的推理与运算能力,属于中档试题,解答中得出函数的奇函数和函数的单调性是解答的关键. 练习 3.设函数在上存在导函数,对任意,都有,且时,,若,则实数的取值范围是()A .B .C .D . 【答案】B【解析】令,则,则,得为上的奇函数.∵时,,故在单调递增,再结合及为奇函数,知在为增函数,又则,即.故选B .考点:函数的单调性及导数的应用.【方法点晴】本题考查了利用导数研究函数的单调性,然后构造函数,通过新函数的性质把已知条件转化为关于的不等式来求解.本题解答的关键是由已知条件进行联想,构造出新函数,然后结合来研究函数的奇偶性和单调性,再通过要解的不等式构造,最终得到关于的不等式,解得答案.()f x R ()f x 'x R ∈(0,)x ∈+∞()f x x '>a [)1,+∞(],1-∞(],2-∞[)2,+∞()g x R 0x >()g x (0,)+∞(0)0g =()g x ()g x (,)-∞+∞(],1a ∈-∞a ()f x x '>()g x a(二)构造三角函数型例2.已知函数的定义域为,为函数的导函数,当时,且,.则下列说法一定正确的是()A. B.C. D.【答案】B 【解析】令,则.因为当时,,即,所以,所以在上单调递增.又,,所以,所以,故为奇函数,所以在上单调递增,所以.即,故选B.考点:(1)利用导数研究函数的单调性;(2)函数的综合应用.练习1.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A .B .C .D .【答案】A【解析】构造函数,则,即函数g (x )在单调递增,则,,即,故A()f x R ()'f x ()f x [)0,x ∈+∞x R ∀∈[)0,x ∈+∞[)0,x ∈+∞x R ∀∈R )(x f y =)('x f )(x f正确.,即考点:利用导数研究函数的单调性 练习2.定义在上的函数,是它的导函数,且恒有成立,则()A. B.C . D.【答案】D【解析】在区间上,有,即令,则,故在区间上单调递增. 令,则有,D 选项正确.考点:1、函数导数;2、构造函数法.【思路点晴】本题有两个要点,第一个要点是“切化弦”,在不少题目中,如果遇到,往往转化为来思考;第二个要点是构造函数法,题目中,可以化简为,这样我们就可以构造一个除法的函数,而选项正好是判断单调性的问题,顺势而为.(三)构造x e 形式的函数例3.已知函数的导数为,且对恒成立,则下列函数在实数集内一定是增函数的为()A. B. C. D.)2,0(π)(x f ()'f x 0,2π⎛⎫⎪⎝⎭()F x 0,2π⎛⎫⎪⎝⎭tan x sin cos xx()f x ()f x ′x R ∈()f x ()xf x ()xe f x ()xxe f x【答案】D 【解析】设,则.对恒成立,且.在上递增,故选D.考点:1、函数的求导法则;2、利用导数研究函数的单调性. 练习1. 设函数是函数的导函数,,且,则的解集为() A. B. C. D. 【答案】B 【解析】依题意,构造函数,由,得, 考点:函数导数,构造函数法.【思路点晴】本题考查导函数的概念,基本初等函数和复合函数的求导,对数的运算及对数函数的单调性.构造函数法是在导数题目中一个常用的解法.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.练习2.已知定义在上的函数,是的导函数,若,且,则不等式(其中为自然对数的底数)的解集是() A . B . C . D .【答案】C考点:利用导数研究函数的单调性.【方法点晴】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.结合已知条件中的以及所求结论可知应构造函数R x ∈0x e >R )(x f '1)0(=f ),34ln (+∞),32ln (+∞),23(+∞),3(+∞e ln 23x >()f x R ()f x '()f x ()02f =e ()1,-+∞()0,+∞,利用导数研究的单调性,结合原函数的性质和函数值,即可求解.练习3.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集是()A .B .CD 【答案】B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集.练习4.已知定义在上的可导函数的导函数,满足,且为偶函数,,则不等式的解集为()A .B .C .D . 【答案】D【解析】设,则∴函数是上的减函数, ∵函数是偶函数, ∴函数∴函数关于对称,()x g y =R ()f x ()f x 'x ()1f x +(),0-∞()0,+∞()g x R ()1f x +()01f =-()1xf x e <-()g x 0x >()0,+∞0R x ∈()0<'x g ()x g y =R ()f x ()'f x ()2+f x ()41=f ()<x f x e ()2,-+∞()4,+∞()1,+∞()0,+∞g x ()R ()2+f x 2x =∴原不等式等价为∴不等式等价即∵是上的减函数,∴.∴不等式式的解集为.选D考点:利用导数研究函数的性质【名师点睛】本题考查了利用导数研究函数的单调性、利用函数的单调性求解不等式,体现了数学转化思想方法,属于中档题.解题时根据题意构造函数是解题的关键练习5.设函数是函数的导函数,,且,则的解集是()【答案】B【解析】设,则,所以(为常数),则,由,,所以,又由,所以即,即,解得.故选B .(四)构造成积的形式例4.已知定义在上的函数满足:函数的图象关于直线对称,且当时,(是函数的导函数)成立.若,,,则,,的大小关系是()A.B.C.D.【答案】A【解析】易知关于轴对称,设,当时,, 在上为递减函数,且为奇函数,在上是递减函数.1g x()<,()<xf x e1g x()<,g x()Rx>()<xf x e()0,+∞()f x'1)0(=fc2c=()3f x>3213xe->ln23x>R()y f x=()1y f x=+1x=-(),0x∈-∞()f x'()f xa b ca b c>>b a c>>c a b>>a c b>>()x f y()0,∞-∈x()xF∴()0,∞-()xF()xF∴R,即,故选A.考点:函数的性质.【方法点睛】本题考查学生的是函数的性质,属于中档题目.从选项可以看出,要想比较的大小关系,需要构造新函数,通过已知函数的奇偶性,对称性和单调性,判断的各种性质,可得在上是递减函数.因此只需比较自变量的大小关系,通过分别对各个自变量与临界值作比较,判断出三者的关系,即可得到函数值得大小关系.练习1.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为()A .B .C .D . 【答案】B 【解析】构造函数,,由于,故,为减函数.原不等式即,故.考点:函数导数与不等式,构造函数.【思路点晴】本题考查函数导数与不等式,构造函数法.是一个常见的题型,题目给定一个含有导数的条件,这样我们就可以构造函数,它的导数恰好包含这个已知条件,由此可以求出的单调性,即函数为减函数.注意到原不等式可以看成,利用函数的单调性就可以解出来.练习2.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为()A .B .C .D . 【答案】D【解析】∵函数是定义在上的可导函数,,∴函数在上是增函数,c b a >>c b a ,,()x f ()x F ()x F R 1,0()f x (,0)-∞'()f x (2018,0)-(2016,0)-()F x ()F x ()F x ()f x ()0,+∞()f x '()2012,+∞()0,2012()0,2016()2016,+∞()f x ()0,+∞2y x f x =()()0,+∞∴不等式的解集为.练习3.函数是定义在区间上可导函数,其导函数为,且满足,则不等式的解集为()A .B .C .D .【答案】C 【解析】由,则当时,,即,所以函数为单调递增函数,由,即,所以,所以不等式的解集为,故选C.(五)与ln x 有关的构造例5.已知定义在实数集R的函数满足(1)=4,且导函数,则不等式的解集为()A. B. C. D.【答案】D【解析】设t=lnx,则不等式化为,设g(x)=f(x)-3x-1,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学导数专题复习
1.已知函数)(,3,sin)(xfxxbaxxf时当取得极小值33.
(Ⅰ)求a,b的值;
(Ⅱ)设直线)(:),(:xFySxgyl曲线. 若直线l与曲线S同时满足下列两个条件:
(1)直线l与曲线S相切且至少有两个切点;
(2)对任意x∈R都有)()(xFxg. 则称直线l为曲线S的“上夹线”.
试证明:直线2:xyl是曲线xbaxySsin:的“上夹线”.
2.设函数
322
1
()231,01.3fxxaxaxa
(1)求函数)(xf的极大值;
(2)若1,1xaa时,恒有()afxa成立(其中fx是函数fx的导函数),试确定实数a的取值范围.
3.如图所示,A、B为函数)11(32xxy图象上两点,且AB//x轴,点M(1,m)(m>3)是△ABC边AC的中点.
(1)设点B的横坐标为t,△ABC的面积为S,求S关于t的函数关系式)(tfS;
(2)求函数)(tfS的最大值,并求出相应的点C的坐标.
4. 已知函数
xaxxfln)(2在]2,1(是增函数,xaxxg)(
在(0,1)为减函数.
(I)求)(xf、)(xg的表达式;
(II)求证:当0x时,方程2)()(xgxf有唯一解;
(III)当1b时,若
2
1
2)(xbxxf在x∈]1,0(
内恒成立,求b的取值范围
5. 已知函数
32
()fxxaxbxc在2x处有极值,曲线()yfx在1x处的切线平行于直线32yx,试求函数()fx
的极大值与极小
值的差。
6.函数
x
a
xxf2)(的定义域为]1,0((a
为实数).
(1)当1a时,求函数)(xfy的值域;
(2)若函数)(xfy在定义域上是减函数,求a的取值范围;
(3)求函数)(xfy在x]1,0(上的最大值及最小值,并求出函数取最值时x的值.
7.设x=0是函数
2()()()x
fxxaxbexR
的一个极值点.
(Ⅰ)求a与b的关系式(用a表示b),并求)(xf的单调区间;
(Ⅱ)设
]2,2[,,)1()(,02122问是否存在xeaaxga
,使得|
1|)()(21gf
成立?若存在,求a的取值范围;若不存在,说明理由.
8. 设函数
()2lnqfxpxxx,且()2pfeqe
e
,其中e是自然对数的底数.
(1)求p与q的关系;
(2)若()fx在其定义域内为单调函数,求p的取值范围;
(3)设
2()e
gxx,若在1,e上至少存在一点0x,使得0()fx>0()gx成立,求实数p
的取值范围.
9.已知函数
xxaxxfln221)(
2
(1)当a=0时,求)(xf的极值.
(2)当a≠0时,若)(xf是减函数,求a的取值范围;
10.设M是由满足下列条件的函数)(xf构成的集合:“①方程0)(xxf有实数根;②函数)(xf的导数)(xf满足1)(0xf.”
(1)判断函数
4sin2
)(xxxf
是否是集合M中的元素,并说明理由;
(2)集合M中的元素)(xf具有下面的性质:若)(xf的定义域为D,则对于任意Dnm,,都存在nmx,
0,使得等式)()()()(0
xfmnmfnf
成立”,试用这一性质证明:方程0)(xxf只有一个实数根;
(3)设
1x是方程0)(xxf的实数根,求证:对于)(xf定义域中任意的32,xx,当112xx,且113xx时,2)()(23
xfxf
.
11.设函数
xexxf2
2
1
)(
.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.
12.设函数
22
()21(0)fxtxtxtxtR,
。
(Ⅰ)求()fx的最小值()ht;
(Ⅱ)若()2httm对(02)t,恒成立,求实数m的取值范围
13.已知函数bxaxxf26)(的图象在点M(-1,f(x))处的切线方程为x+2y+5=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
14.设函数f(x)= -cos2x-4tsin2xcos2x+4t3+t
2
-3t+4,x∈R,
其中t≤1,将f(x)的最小值记为g(t).
(Ⅰ)求g(t)的表达式;
(Ⅱ)讨论g(t)在区间(-1,1)内的单调性并求极值.
15.某商品每件成本9元,售价为30元,每星期卖出432件. 如果降低价格,销售量可以增加,
且每星期多卖出的商品件数与商品单价的降低值x(单位:元,030x≤≤)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.
(I)将一个星期的商品销售利润表示成x的函数;
(II)如何定价才能使一个星期的商品销售利润最大?
16.已知函数
2
2
21()(1axa
fxx
x
R),其中aR.
(I)当1a时,求曲线()yfx在点(2,(2))f处的切线方程;
(II)当0a时,求函数()fx的单调区间与极值.