2014年四川省高考数学试卷(文科)(含解析版)
2014年全国统一高考数学试卷(文科)(新课标ⅰ)最新修正版

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
(完整word版)2014年高考数学文科(高考真题+模拟新题)分类汇编:三角函数(解析版),推荐文档

数 学C 单元 三角函数C1 角的概念及任意角的三角函数 2.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-452.D [解析] 根据题意,cos α=-4(-4)2+32=-45.C2 同角三角函数的基本关系式与诱导公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13.因此△ABC 的面积S =12ab sin C =12×3×32×13=322.C3 三角函数的图象与性质 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12×3×1·sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.7.[2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称7.D [解析] 将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f (x )=sin ⎝⎛⎭⎫x +π2的图像,即f (x )=cos x .由余弦函数的图像与性质知,f (x )是偶函数,其最小正周期为2π,且图像关于直线x =k π(k ∈Z )对称,关于点⎝⎛⎭⎫π2+k π,0(k ∈Z )对称,故选D.图1-25.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2×π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.C4 函数sin()y A x ωϕ=+的图象与性质8.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π8.C [解析] ∵f (x )=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx 1+π6=π6+2k 1π(k 1∈Z )或 ωx 2+π6=5π6+2k 2π(k 2∈Z ),则ω(x 2-x 1)=2π3+2(k 2-k 1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.7.[2014·安徽卷] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π47.C [解析] 方法一:将f (x )=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.13.[2014·重庆卷] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.13.22[解析] 函数f (x )=sin(ωx +φ)图像上每一点的横坐标缩短为原来的一半,得到y=sin(2ωx +φ)的图像,再向右平移π6个单位长度,得到y =sin2ωx -π6+φ=sin ⎝⎛⎭⎫2ωx -ωπ3+φ的图像.由题意知sin ⎝⎛⎭⎫2ωx -ωπ3+φ=sin x ,所以2ω=1,-ωπ3+φ=2k π(k ∈Z ),又-π2≤φ≤π2,所以ω=12,φ=π6,所以f (x )=sin ⎝⎛⎭⎫12x +π6,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12×π6+π6=sin π4=22.16.[2014·北京卷] 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.16.解:(1)f (x )的最小正周期为π. x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.11.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增11.B [解析] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .2.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 2.B [解析] T =2π2=π.4.[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.A [解析] y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.3.[2014·四川卷] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度3.A [解析] 由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C5 两角和与差的正弦、余弦、正切 9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217. (2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13. 因此△ABC 的面积S =12ab sin C =12×3×32×13=322.8.、[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m8.C [解析] 由题意可知,AC =60sin 30°=120.∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,所以sin ∠ABC =sin105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24.在△ABC 中,由正弦定理得AC sin ∠ABC =BC∠BAC,于是BC =120×222+64=240 22+6=120(3-1)(m).故选C.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.18.、[2014·重庆卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.18.解:(1)由题意可知c =8-(a +b )=72.由余弦定理得cos C =a 2+b 2-c 22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15. (2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得sin A ·1+cos B 2+sin B ·1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知a +b =3c .又a +b +c =8,所以a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,所以b =3.C6 二倍角公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sinx =12时函数y =cos 2x +2sin x 取得最大值,最大值为32. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z .(2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C7 三角函数的求值、化简与证明16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 5.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2×π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.15.[2014·江苏卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55.(1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 15.解: (1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎫-2 55+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55× ⎝⎛⎭⎫-2 55=-45,cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α= ⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45=-4+3 310.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13×79+2 23×4 29=2327.21.、[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x1+sin x+2xπ-1.证明: (1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ).由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎭⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎭⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 a -c =66b ,sin B =6sin C . (1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值.16.解:(1)在△ABC 中,由b sin B =csin C,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.(2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.C8 解三角形18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 18.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22, 所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12×3×1·sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.12.[2014·北京卷] 在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.12.2158 [解析] 由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2×2×1×14=4,即c =2;cos A =b 2+c 2-a 22bc =4+4-12×2×2=78,∴sin A =1-⎝⎛⎭⎫782=158.14.[2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________.14.1 [解析] 由BC sin A =ACsin B ,得sin B =2sin 60°3=1,即B =90°,所以△ABC 为以AB ,BC 为直角边的直角三角形, 则AB =AC 2-BC 2=22-(3)2=1,即AB 等于1.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .13.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.13.π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.14.、[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是______.14.6-24[解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab =34a 2+12b 22ab -24≥234a 2·12b 22ab -24=6-24,当且仅当3a 2=2b 2,即a b =23时等号成立.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 5.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19 B.13 C .1 D.725.D [解析] 由正弦定理得,原式=2b 2-a 2a 2=2⎝⎛⎭⎫b a 2-1=2×⎝⎛⎭⎫322-1=72. 17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13×79+2 23×4 29=2327. 18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 17.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. 17.解:(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3. 16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-316.150 [解析] 在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =ACsin ∠AMC ,即AM =sin 60°sin 45°×100 2=1003,于是在Rt △AMN 中,有MN =sin 60°×1003=150 .17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中,。
2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。
2014年高考数学试题及答案(全国卷文数3套)

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2014•新课标Ⅱ)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)(2014•新课标Ⅱ)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.(5分)(2014•新课标Ⅱ)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)(2014•新课标Ⅱ)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)(2014•新课标Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)(2014•新课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)(2014•新课标Ⅱ)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)(2014•新课标Ⅱ)执行如图所示的程序框图,若输入的x,t均为2,则输出的S =()A.4B.5C.6D.79.(5分)(2014•新课标Ⅱ)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)(2014•新课标Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)(2014•新课标Ⅱ)若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)(2014•新课标Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)(2014•新课标Ⅱ)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)(2014•新课标Ⅱ)函数f(x)=sin(x+φ)﹣2sinφcos x的最大值为.15.(5分)(2014•新课标Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)(2014•新课标Ⅱ)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•新课标Ⅱ)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)(2014•新课标Ⅱ)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)(2014•新课标Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)(2014•新课标Ⅱ)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)(2014•新课标Ⅱ)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)(2014•新课标Ⅱ)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC 与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.(2014•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.(2014•新课标Ⅱ)设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2014•新课标Ⅱ)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)(2014•新课标Ⅱ)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)(2014•新课标Ⅱ)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)(2014•新课标Ⅱ)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)(2014•新课标Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)(2014•新课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2014•新课标Ⅱ)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)(2014•新课标Ⅱ)执行如图所示的程序框图,若输入的x,t均为2,则输出的S =()A.4B.5C.6D.7【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)(2014•新课标Ⅱ)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)(2014•新课标Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6C.12D.7【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)(2014•新课标Ⅱ)若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)(2014•新课标Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)(2014•新课标Ⅱ)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)(2014•新课标Ⅱ)函数f(x)=sin(x+φ)﹣2sinφcos x的最大值为1.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcos x=sin x cosφ+sinφcos x﹣2sinφcos x=sin x cosφ﹣sinφcos x=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)(2014•新课标Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=3.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)(2014•新课标Ⅱ)数列{a n}满足a n+1=,a8=2,则a1=.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.【解答】解:由题意得,a n+1=,a8=2,令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•新课标Ⅱ)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cos C的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cos A 的值代入表示出BD2,两者相等求出cos C的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CD cos C=13﹣12cos C①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•AD cos A=5﹣4cos A=5+4cos C②,由①②得:cos C=,则C=60°,BD=;(2)∵cos C=,cos A=﹣,∴sin C=sin A=,则S =AB •DA sin A +BC •CD sin C =×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)(2014•新课标Ⅱ)如图,四棱锥P ﹣ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设AP =1,AD =,三棱锥P ﹣ABD 的体积V =,求A 到平面PBC 的距离.【分析】(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =,三棱锥P ﹣ABD 的体积V =,求出AB ,作AH ⊥PB 角PB 于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO ,∵ABCD 是矩形,∴O 为BD 的中点∵E 为PD 的中点,∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =,三棱锥P ﹣ABD 的体积V =,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)(2014•新课标Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)(2014•新课标Ⅱ)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)(2014•新课标Ⅱ)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)(2014•新课标Ⅱ)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC 与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.(2014•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l 的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.(2014•新课标Ⅱ)设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)(2014•大纲版)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ∩N中元素的个数为()A.2B.3C.5D.72.(5分)(2014•大纲版)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)(2014•大纲版)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1} 4.(5分)(2014•大纲版)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD 所成角的余弦值为()A.B.C.D.5.(5分)(2014•大纲版)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)(2014•大纲版)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)(2014•大纲版)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)(2014•大纲版)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)(2014•大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)(2014•大纲版)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)(2014•大纲版)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)(2014•大纲版)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(2014•大纲版)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)(2014•大纲版)函数y=cos2x+2sin x的最大值是.15.(5分)(2014•大纲版)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)(2014•大纲版)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)(2014•大纲版)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)(2014•大纲版)△ABC的内角A、B、C的对边分别为a、b、c,已知3a cos C =2c cos A,tan A=,求B.19.(12分)(2014•大纲版)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)(2014•大纲版)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)(2014•大纲版)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)(2014•大纲版)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N 两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)(2014•大纲版)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ∩N中元素的个数为()A.2B.3C.5D.7【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2014•大纲版)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)(2014•大纲版)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)(2014•大纲版)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD 所成角的余弦值为()A.B.C.D.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD 所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)(2014•大纲版)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)(2014•大纲版)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)(2014•大纲版)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)(2014•大纲版)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)(2014•大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)(2014•大纲版)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)(2014•大纲版)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,。
2014年全国统一招生考试文科数学试题及答案(新课标1卷)

2014年普通高等学校招生全国统一考试数学(文科)(课标I)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|-1<x <3},N={x|-2<x <1}则M∩N= ( ) A.)1,2(- B.)1,1(- C.)3,1( D.)3,2(-2.若0tan >α,则 ( ) A.0sin >α B.0cos >α C.02sin >α D.02cos >α3.设i iz ++=11,则=||z A.21B.22C.23D.24.已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A.2 B.26 C.25D.15.设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A.)()(x g x f 是偶函数 B.)(|)(|x g x f 是奇函数 C.|)(|)(x g x f 是奇函数 D.|)()(|x g x f 是奇函数6.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A.AD B .AD 21C.BCD.BC 217.在函数①|2|cos x y =,②|cos |x y =,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是 ( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = ( )A.203B.72 C.165 D.15810.已知抛物线C:x y =2的焦点为F,A(x 0,y 0)是C 上一点,x F A 045=,则x 0= ( )A.1B.2C.4D.811.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a = ( )A.-5B.3C.-5或3D.5或-312.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 ( )A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_ _. 14.甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__ _____.16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =_ ___m .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (1)求{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8(1)在答题卡上作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本题满分12分)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.20.(本小题满分12分)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积21.(本小题满分12分)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0. (1)求b 的值;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号. 22.(本小题满分10分)选修4-1,几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =. (1)证明:D E ∠=∠;(2)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ABC ∆为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=ty t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.24.(本小题满分10分)选修4-5;不等式选讲 若,0,0>>b a 且ab ba =+11 (1)求33b a +的最小值;(2)是否存在b a ,,使得632=+b a ?并说明理由.参考答案一、选择题1-5. BABDA 6-10. CCBDC 11-12. BA 二、填空题 13.2314. A 15.(,8]-∞ 16. 150 三、解答题 17. 解:(1)方程2560x x -+=的两个根为2,3,由题意得因为242,3a a ==设数列{}n a 的公差为d,则422a a d -=,故12d =,从而132a = 所以{}n a 的通项公式为112n a n =+ (2)设{}2n na 的前n 项和为n S ,由(1)知1222n n n a n ++=,则2313412...2222n n n n n S +++=++++ ① 341213412 (22222)n n n n n S ++++=++++ ② ①-②得3412131112...242222n n n n n S ++++=++++-123112(1)4422n n n -++=+--,所以,1422n n n S ++=- 18.解: (1)…………………………4分(2)质量指标值的样本平均数为806902610038110221208100100x ⨯+⨯+⨯+⨯+⨯==质量指标值的样本方差为所以,这种产品质量指标的平均数估计值为100,方差的估计值为104. ……10分 (3)依题意38228100++= 68% < 80%所以该企业生产的这种产品不符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.12分19.(1)证明:连接1BC ,则O 为1B C 与1BC 的交点,因为侧面11BB C C 为菱形, 所以11B C BC ⊥,又AO ⊥平面11BB C C ,所以1B C AO ⊥,故1B C ABO ⊥平面 由于AB ABO ⊂平面,故1B C AB ⊥…………………………6分 (2)作OD BC ⊥,垂足为D,连接AD,做OH AD ⊥,垂足为H. 由于,BC AO BC OD ⊥⊥,故BC AOD ⊥平面,所以OH BC ⊥,又OH AD ⊥,所以OH ABC ⊥平面因为160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得34OD =由于1AC AB ⊥,所以11122AO B C == 由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH = 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217,故三棱柱111ABC A B C -的高为217…12分20.(1)方法一:圆C 的方程可化为22(4)16x y +-=,所以,圆心为(0,4)C ,半径为4,设(,)M x y ,则(,4),(2,2)CM x y MP x y =-=--, 由题设知0CM MP ⋅=,故(2)(4)(2)0x x y y -+--=,即22(1)(3)2x y -+-=由于点P 在圆C 的内部,所以M 的轨迹方程是22(1)(3)2x y -+-=……………6分方法二:圆C 的方程可化为22(4)16x y +-=,所以,圆心为(0,4)C ,半径为4,设(,)M x y ,设24,2AB CM y y k k x x --==-,则24,2AB CM y y k k x x --==- 所以2412AB CM y y k k x x--==--化简得,222680x y x y +--+=,即22(1)(3)2x y -+-=所以M 的轨迹方程是22(1)(3)2x y -+-=.(2)方法一:由(1)可知M 的轨迹是以点(1,3)N 为圆心,2为半径的圆, 由于||||OP OM =,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON PM ⊥,因为ON 的斜率为3,所以l 的斜率为13-, 所以l 的方程为1833y x =-+,又||||22OM OP ==,O 到l 的距离为410410,||55PM =, 所以POM ∆的面积为165.方法二:依题意,||22OP =,因为||||22OM OP ==,所以,M 也在228x y +=上所以222282680x y x y x y ⎧+=⎪⎨+--+=⎪⎩,两式相减,得26160x y --+=,即1833y x =-+, 此方程也就是l 的方程,由(1)知,M 的轨迹方程是22(1)(3)2x y -+-=,设此方程的圆心为N ,则(1,3)N ,所以|198|10d +-=又22||(12)(32)2NP =-+-=所以2410||2255MP =-=,O 到l 的距离810h =,所以,184101625510POM S ∆=⨯⨯= 综上所述,l 的方程为1833y x =-+,POM ∆的面积为16521.(1)()(1)af x a x b x'=+--,由题设知(1)(1)0f a a b '=+--=,解得1b =……………………………………………………………………………4分(2)()f x 的定义域为(0,)+∞,由(1)知,21()ln 2a f x a x x x -=+-,1()(1)1()(1)1a a af x a x x x x x a -'=+--=---(ⅰ)若12a ≤,则11aa≤-,故当(1,)x ∈+∞时,()0,()f x f x '>在(1,)+∞单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1a f a <-,即1121a aa --<-, 解得2121a --<<-(ⅱ)若112a <<,则11a a >-,故当(1,)1a x a ∈-时,()0f x '<;当(,)1a x a ∈+∞-时,()0f x '>;所以()f x 在(1,)1a a -单调递减,在(,)1aa+∞-单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <-- 而21()ln 112(1)11a a a a f a a a a a a =++>-----,所以不合题意 (ⅲ)若1a >,则11(1)1221a a af a ---=-=<- 综上所述,a 的取值范围是(21,21)(1,)---⋃+∞……………………………12分 22.(1)证明:由题设得,A,B,C,D 四点共圆,所以,D CBE ∠=∠, 又CB CE =,CBE E ∴∠=∠所以D E ∠=∠………………………5分(2)证明:设BC 的中点为N ,连结MN ,则由MB MC =知MN BC ⊥, 故O 在直线MN 上.又AD 不是O 的直径,M 为AD 的中点, 故OM AD ⊥,即MN AD ⊥. 所以//AD BC ,故A CBE ∠=∠又CBE E ∠=∠,故A E ∠=∠,由(1)知,D E ∠=∠,所以ADE ∆为等边三角形.………………………………………………………10分23.(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=(2)曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为5|4cos 3sin 6|5d θθ=+- 则25|||5sin()6|sin 305d PA θα==+-,其中α为锐角,且4tan 3α= 当sin()1θα+=-时,||PA 取得最大值,最大值为2255.当sin()1θα+=时,||PA 取得最小值,. …………………………………10分24.(1)11a b =+≥,得2ab ≥,且当a b ==.故33a b +≥,且当a b ==.所以33a b +的最小值为. …………………………………………………………5分(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=. ………………………………10分。
2014年普通高等学校招生全国统一考试数学文试题(新课标Ⅰ卷,含解析)

2014年高招全国课标1(文科数学解析版)第Ⅰ卷选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}13M x x =-<<, {}21N x x =-<<,则M N =( ))1,2(- B. )1,1(- C. )3,1( D. )3,2(- 【答案】:B 【解析】: 在数轴上表示出对应的集合,可得MN = (-1,1),选B若0tan >α,则0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 【答案】:C【解析】:由tan0可得:kk2π(k Z ),故2k 2 2k(k Z ),正确的结论只有sin 20. 选C设i iz ++=11,则=||z A.21B. 22C. 23D. 2【答案】:B【解析】:11111222i z i i i i -=+=+=++,2z ==,选B(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1 【答案】:D【解析】:由双曲线的离心率可得2a=,解得1a =,选D.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是)()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数 【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBAD B.12AD C. 12BC D.【答案】:A【解析】:()()EB FC EC BC FB BC EC FB +=-++=+ =()111222AB AC AB AC AD +=+=, 选A.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③ 【答案】:A【解析】:由cos y x =是偶函数可知cos 2cos2y x x == ,最小正周期为π, 即①正确;y| cos x |的最小正周期也是,即②也正确;cos 26y x π⎛⎫=+⎪⎝⎭最小正周期为π,即③正确;tan(2)4y x π=-的最小正周期为2T π=,即④不正确.即正确答案为①②③,选A8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解析】:根据所给三视图易知,对应的几何体是一个横放着的三棱柱. 选B9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,xF A 045=,则=x( )A. 1B. 2C. 4D. 8 【答案】:A 【解析】:根据抛物线的定义可知001544AF x x =+=,解之得01x =. 选A.11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3 【答案】:B 【解析】:画出不等式组对应的平面区域, 如图所示. 在平面区域内,平移直线0x ay +=,可知在点 A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a 5或a3.但a5时,z 取得最大值,故舍去,答案为a3. 选B.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题(文科)解析版
2014年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题(文科)解析版D8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】:B【解析】:根据所给三视图易知,对应的几何体是一个横放着的三棱柱. 选B9.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A.203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===; 4n =时:输出158M = . 选D.10.已知抛物线C :xy=2的焦点为F ,()y x A 0,是C 上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 8 【答案】:A【解析】:根据抛物线的定义可知001544AF xx =+=,解之得01x =. 选A.11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a = (A )-5(B )3 (C)-5或3(D )5或-3 【答案】:B【解析】:画出不等式组对应的平面区域, 如图所示.在平面区域内,平移直线0x ay +=,可知在点 A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a = -5或a = 3.但a = -5时,z 取得最大值,故舍去,答案为a = 3. 选B.(12)已知函数32()31f x axx =-+,若()f x 存在唯一的零点0x ,且0x>,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞- 【答案】:C【解析1】:由已知0a ≠,2()36f x axx'=-,令()0f x '=,得0x =或2x a =,当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。
2014年高考(大纲全国卷)数学(文科) 详细答案解析
2014年普通高等学校招生全国统一考试(大纲全国卷)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为().A.2B.3C.5D.7【答案】B【解析】∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},∴M∩N中元素的个数为3,故选B.2.已知角α的终边经过点(-4,3),则cosα=().A.45B.35C.- 35D.- 45【答案】D【解析】设角α的终边上点(-4,3)到原点O的距离为r,则r=√(-4)2+32=5,∴由余弦函数的定义,得cosα=xr =-45,故选D.3.不等式组{x(x+2)>0,|x|<1的解集为().A.{x|-2<x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|x>1} 【答案】C【解析】{x(x+2)>0,①|x|<1,②由①得,x<-2或x>0,由②得,-1<x<1,因此原不等式组的解集为{x|0<x<1},故选C.4.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为().A.16B.√36C.13D.√33【答案】B【解析】如图所示,取AD的中点F,连EF,CF,则EF∥BD, ∴异面直线CE与BD所成的角即为CE与EF所成的角∠CEF.由题知,△ABC ,△ADC 为正三角形,设AB=2,则CE=CF=√3,EF=12BD=1.∴在△CEF 中,由余弦定理, 得cos ∠CEF=CE 2+EF 2-CF 22CE·EF=√3)22√3)22×√3×1=√36,故选B .5.函数y=ln(√x 3+1)(x>-1)的反函数是( ). A .y=(1-e x )3(x>-1) B .y=(e x -1)3(x>-1) C .y=(1-e x )3(x ∈R ) D .y=(e x -1)3(x ∈R ) 【答案】D【解析】由y=ln(√x 3+1),得e y =√x 3+1,∴√x 3=e y -1,x=(e y -1)3,∴f -1(x )=(e x -1)3. ∵x>-1,∴y ∈R ,即反函数的定义域为R . ∴反函数为y=(e x -1)3(x ∈R ),故选D .6.已知a ,b 为单位向量,其夹角为60°,则(2a -b )·b =( ). A .-1 B .0 C .1 D .2 【答案】B【解析】由已知得|a |=|b |=1,<a ,b >=60°,∴(2a -b )·b =2a ·b -b 2=2|a ||b |cos <a ,b >-|b |2 =2×1×1×cos 60°-12=0,故选B .7.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种 【答案】C【解析】从6名男医生中选出2名有C 62种选法,从5名女医生中选出1名有C 51种选法,故共有C 62·C 51=6×52×1×5=75种选法,选C .8.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ). A .31 B .32 C .63 D .64 【答案】C【解析】∵S 2=3,S 4=15,∴由等比数列前n 项和的性质,得S 2,S 4-S 2,S 6-S 4成等比数列, ∴(S 4-S 2)2=S 2(S 6-S 4),即(15-3)2=3(S 6-15),解得S 6=63,故选C .9.已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4√3,则C 的方程为( ). A .x 23+y 22=1 B .x 23+y 2=1 C .x 212+y 28=1 D .x 212+y 24=1【答案】A 【解析】∵x 2a2+y 2b2=1(a>b>0)的离心率为√33, ∴ca =√33,∴a ∶b ∶c=3∶√6∶√3.又∵过F 2的直线l 交椭圆于A ,B 两点, △AF 1B 的周长为4√3, ∴4a=4√3,∴a=√3. ∴b=√2,∴椭圆方程为x 23+y 22=1,选A .10.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ). A .81π4B .16πC .9πD .27π4【答案】A【解析】由图知,R 2=(4-R )2+2,∴R 2=16-8R+R 2+2,∴R=94,∴S 表=4πR 2=4π×8116=814π,选A .11.双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为√3,则C 的焦距等于( ).A .2B .2√2C .4D .4√2 【答案】C【解析】∵e=2,∴ca =2.设焦点F 2(c ,0)到渐近线y=ba x 的距离为√3, 渐近线方程为bx-ay=0,∴√b 2+a 2=√3.∵c 2=a 2+b 2,∴b=√3. 由ca =2,得√c 2-b 2=2,∴c 2c 2-3=4,解得c=2.∴焦距2c=4,故选C .12.奇函数f (x )的定义域为R .若f (x+2)为偶函数,且f (1)=1,则f (8)+f (9)=( ). A .-2 B .-1 C .0 D .1 【答案】D【解析】∵奇函数f (x )的定义域为R ,∴f (-x )=-f (x ),且f (0)=0.∵f (x+2)为偶函数,∴f (-x+2)=f (x+2).∴f [(x+2)+2]=f (-x-2+2)=f (-x )=-f (x ),即f (x+4)=-f (x ). ∴f (x+8)=f [(x+4)+4]=-f (x+4)=-(-f (x ))=f (x ). ∴f (x )是以8为周期的周期函数,∴f (8)=f (0)=0,f (9)=f (8+1)=f (1)=1. ∴f (8)+f (9)=0+1=1.故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(x-2)6的展开式中x 3的系数为 .(用数字作答) 【答案】-160【解析】由通项公式得T 4=C 63x 6-3(-2)3=-8C 63x 3,故展开式中x 3的系数为-8C 63=-8×6×5×43×2×1=-160.14.函数y=cos 2x+2sin x 的最大值为 . 【答案】32【解析】∵y=cos 2x+2sin x=1-2sin 2x+2sin x=-2(sinx -12)2+32,∴当sin x=12时,y max =32.15.设x ,y 满足约束条件{x -y ≥0,x +2y ≤3,x -2y ≤1,则z=x+4y 的最大值为 .【答案】5【解析】画出x , y 的可行域如图阴影区域.由z=x+4y ,得y= - 14x+z4.先画出直线y=-14x ,再平移直线y=-14x , 当经过点B (1,1)时,z=x+4y 取得最大值为5.16.直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 . 【答案】43【解析】如图所示,设l 1与圆O :x 2+y 2=2相切于点B ,l 2与圆O :x 2+y 2=2相切于点C , 则OB=√2,OA=√10,AB=2√2. ∴tan α=OB AB=√22√2=12.∴tan ∠BAC=tan 2α=2tanα1−tan 2α=2×121−14=43.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2. (1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.分析:本题主要考查等差数列的概念、通项公式以及累加法求数列通项公式.(1)可用定义证明b n+1-b n =2(常数)即可.(2)利用(1)的结果,求出{b n }的通项公式及a n+1-a n 的表达式,再用累加法可求数列{a n }的通项公式.(1)证明:由a n+2=2a n+1-a n +2得a n+2-a n+1=a n+1-a n +2, 即b n+1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)解:由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是∑k=1n(a k+1-a k )=∑k=1n(2k-1),所以a n+1-a 1=n 2,即a n+1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n+2.18.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos C=2c cos A , tan A=13,求B.分析:先由已知及正弦定理,将边的关系转化为角的关系,再由同角三角函数基本关系化弦为切,求出tan C.根据三角形内角和定理及两角和的正切公式求出tan B ,即可求角B. 解:由题设和正弦定理得3sin A cos C=2sin C cos A.故3tan A cos C=2sin C ,因为tan A=13,所以cos C=2sin C ,tan C=12. 所以tan B=tan[180°- (A+C )]= - tan(A+C ) =tanA+tanC tanAtanC -1=-1,即B=135°.19.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC 1=2. (1)证明:AC 1⊥A 1B ;(2)设直线AA 1与平面BCC 1B 1的距离为√3,求二面角A 1-AB-C 的大小.分析:解法一:(1)由已知可证平面AA 1C 1C ⊥平面ABC ,再由面面垂直证线面垂直,利用三垂线定理即得线线垂直.(2)为利用已知,先寻找并证明AA 1与平面BCC 1B 1的距离为A 1E.再由三垂线定理,确定二面角A 1-AB-C 的平面角为∠A 1FD.最后通过解直角三角形求出∠A 1FD 的正切值,即可得出二面角的大小.解法二:建立空间直角坐标系,利用向量知识求解.(1)设出A 1点坐标,确定点及向量坐标,利用数量积为0,证明线线垂直. (2)设法向量,由已知垂直关系,确定坐标.利用向量夹角公式求二面角大小.解法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC. 又BC ⊥AC ,所以BC ⊥平面AA 1C 1C.连结A 1C.因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C. 由三垂线定理得AC 1⊥A 1B.(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. 又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,A 1E=√3. 因为A 1C 为∠ACC 1的平分线,故A 1D=A 1E=√3.作DF ⊥AB ,F 为垂足,连结A 1F.由三垂线定理得A 1F ⊥AB , 故∠A 1FD 为二面角A 1-AB-C 的平面角.由AD=√AA 12-A 1D 2=1得D 为AC 中点,DF=12×AC×BC AB=√55,tan ∠A 1FD=A 1DDF =√15.所以二面角A 1-AB-C 的大小为arctan √15.解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-xyz. 由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)证明:设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0),B (0,1,0), 则AB ⃗⃗⃗⃗⃗ =(-2,1,0),AC ⃗⃗⃗⃗⃗ =(-2,0,0),AA 1⃗⃗⃗⃗⃗⃗⃗ =(a-2,0,c ), AC 1⃗⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =(a-4,0,c ),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,-1,c ). 由|AA 1⃗⃗⃗⃗⃗⃗⃗ |=2得√(a -2)2+c 2=2, 即a 2-4a+c 2=0.①于是AC 1⃗⃗⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =a 2-4a+c 2=0,所以AC 1⊥A 1B.(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB ⃗⃗⃗⃗⃗ ,m ⊥BB 1⃗⃗⃗⃗⃗⃗⃗ , 即m ·CB ⃗⃗⃗⃗⃗ =0,m ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0.因CB ⃗⃗⃗⃗⃗ =(0,1,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ =(a-2,0,c ), 故y=0,且(a-2)x+cz=0.令x=c ,则z=2-a ,m =(c ,0,2-a ),点A 到平面BCC 1B 1的距离为 |CA ⃗⃗⃗⃗⃗ |·|cos <m ,CA⃗⃗⃗⃗⃗ >|=|CA ⃗⃗⃗⃗⃗·m||m|=√c 2+(2−a)2= c.又依题设,A 到平面BCC 1B 1的距离为√3,所以c=√3. 代入①解得a=3(舍去)或a=1.于是AA 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√3). 设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1⃗⃗⃗⃗⃗⃗⃗ ,n ⊥AB ⃗⃗⃗⃗⃗ ,即n ·AA 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AB ⃗⃗⃗⃗⃗ =0, -p+√3r=0,且-2p+q=0.令p=√3,则q=2√3,r=1,n =(√3,2√3,1). 又p =(0,0,1)为平面ABC 的法向量, 故cos <n ,p >=n·p |n||p|=14.所以二面角A 1-AB-C 的大小为arccos 14.20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.分析:(1)先用字母表示各事件,再由互斥与独立事件的概率可求.(2)由(1)分析k 的可能取值情况,比较即得结果.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备,E 表示事件:同一工作日4人需使用设备,F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2·B ·C ,P (B )=0.6,P (C )=0.4,P (A i )=C 2i×0.52,i=0,1,2,所以P (D )=P (A 1·B ·C+A 2·B+A 2·B ·C )=P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C ) =0.31.(2)由(1)知,若k=2,则P (F )=0.31>0.1. 又E=B ·C ·A 2,P (E )=P (B ·C ·A 2)=P (B )P (C )P (A 2)=0.06. 若k=3,则P (F )=0.06<0.1. 所以k 的最小值为3.21.(本小题满分12分)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.分析:(1)由于导函数的判别式含参数a ,因此要根据导数值的正负判断单调性,需对a 进行分类讨论.当判别式为正时,导函数有两根,为比较两根的大小,需对a 进行二重讨论.(2)根据f (x )在(1,2)上是增函数可列出关于a 的不等式,注意对a>0或a<0进行讨论. 解:(1)f'(x )=3ax 2+6x+3,f'(x )=0的判别式Δ=36(1-a ).①若a ≥1,则f'(x )≥0,且f'(x )=0当且仅当a=1,x=-1. 故此时f (x )在R 上是增函数.②由于a ≠0,故当a<1时,f'(x )=0有两个根: x 1=-1+√1−aa,x 2=-1-√1−aa.若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f'(x )>0, 故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数; 当x ∈(x 2,x 1)时f'(x )<0,故f (x )在(x 2,x 1)是减函数; 若a<0,则当x ∈(-∞,x 1)或(x 2,+∞)时f'(x )<0, 故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数; 当x ∈(x 1,x 2)时f'(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a>0,x>0时,f'(x )=3ax 2+6x+3>0,故当a>0时,f (x )在区间(1,2)是增函数. 当a<0时,f (x )在区间(1,2)是增函数当且仅当f'(1)≥0且f'(2)≥0,解得 - 54≤ a<0.综上,a 的取值范围是[-54,0)∪(0,+∞).22.(本小题满分12分)已知抛物线C :y 2=2px (p>0)的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l'与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.分析:(1)设出Q 点坐标,利用|QF|=54|PQ|列出关于p 的方程,借助于p 的几何意义及抛物线的性质确定p.(2)通过题设分析判断直线l 与x 轴不垂直.因直线l 过F (1,0),可设l 的方程为x=my+1(m ≠0).直线l 方程与抛物线方程联立,利用韦达定理得到y 1+y 2,y 1y 2关于m 的表达式,借助弦长公式得|AB|=√m 2+1|y 1-y 2|(其中A (x 1,y 1),B (x 2,y 2)),同理可得|MN|=√1+1m |y 3-y 4|(其中M (x 3,y 3),N (x 4,y 4)).由题目中的A ,M ,B ,N 四点在同一圆上得到关于m 的方程,进而求出m ,得到直线l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得x 0=8p .所以|PQ|=8p ,|QF|=p2+x 0=p2+8p . 由题设得 p2+8p=54×8p,解得p=-2(舍去)或p=2. 所以C 的方程为y 2=4x. (2)依题意知l 与坐标轴不垂直, 故可设l 的方程为x=my+1(m ≠0). 代入y 2=4x 得y 2-4my-4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ), |AB|=2+1|y 1-y 2|=4(m 2+1).又l'的斜率为-m ,所以l'的方程为x=-1m y+2m 2+3. 将上式代入y 2=4x ,并整理得y 2+4m y-4(2m 2+3)=0. 设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3). 故MN 的中点为E (2m 2+2m 2+3,−2m ), |MN|=√1+1m 2|y 3-y 4|=4(m 2+1)√2m 2+1m .由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|, 从而14|AB|2+|DE|2=14|MN|2,即4(m 2+1)2+(2m +2m )2+(2m 2+2)2=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.。
2014年全国高考文科数学试题及答案-新课标1
2014年普通高等学校招生全国统一考试数学(文科含答案) 1.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α (3)设i iz ++=11,则=||z A.21 B. 22 C. 23 D. 2 (4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B.26 C. 25D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A. ADB.AD 21 C. BC 21D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③(8)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(9)执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158(10) 已知抛物线C :x y =2的焦点为F ,()y x A,是C 上一点,xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =A .-5 B. 3 C .-5或3 D. 5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____. (14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年全国高考数学卷文科卷1试题及答案解析
2014 年全国高考数学卷文科卷 1学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释)1.已知集合M x | 1 x 3 , N x| 2 x 1 ,则M N ()A. ( 2 ,1)B. ( 1, 1)C. (1, 3)D. ( 2 ,3)2.若tan 0,则A. sin 0B. cos 0C. sin 2 0D. cos2 01 ,则| z|3.设iz1 iA. 1B.22 C.23 D. 222 2x y 的离心率为2,则a 4.已知双曲线1( 0)a2a 3A. 2B. 6C.2 5 D. 1 25.设函数 f ( x), g( x) 的定义域为R,且f (x) 是奇函数,g( x) 是偶函数,则下列结论中正确的是A. f ( x)g( x) 是偶函数B. | f ( x) | g (x) 是奇函数C. f (x) | g( x) | 是奇函数D. | f (x) g( x) |是奇函数6.设D, E, F 分别为ABC的三边BC, CA, AB 的中点,则EB FC1 C. 1 BC D. BCA. ADB. AD2 27.在函数①y cos | 2x |,②y | cosx | ,③)y , ④)cos(2 x tan( 2xy 中,最小6 4正周期为的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()试卷第 1 页,总 6 页A.三棱锥B. 三棱柱C. 四棱锥D. 四棱柱9.执行右面的程序框图,若输入的a,b,k 分别为1,2,3 ,则输出的M ( )A. 203 B. 72C. 165D. 158510.已知抛物线C:y2 x 的焦点为 F , A x y0,是C上一点,AF x40 (),则xA. 1B. 2C. 4D. 811.已知函数 3 2f (x) ax 3x 1,若 f (x) 存在唯一的零点x0 ,且x0 0 ,则a 的取值范围是(A)2, (B)1, (C), 2 (D), 1试卷第 2 页,总 6 页二、填空题(题型注释)12.设x ,y 满足约束条件x y a, 且z x ay 的最小值为7,则ax y 1,(A)-5 (B)3 (C)-5 或3 (D)5 或-313.将2 本不同的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过 A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过 B 城市;乙说:我没去过 C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.15.设函数 f xx 1e ,x1,则使得 f x 2成立的x 的取值范围是________.13x , x 1,16.如图,为测量山高MN ,选择A和另一座山的山顶 C 为测量观测点. 从 A 点测得M 点的仰角MAN 60 ,C 点的仰角CAB 45 以及MAC 75 ;从C 点测得MCA . 已知山高BC 100m,则山高MN ________m .60三、解答题(题型注释)试卷第 3 页,总 6 页17.已知a是递增的等差数列,a2,a4是方程n2560x x的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年四川省高考数学试卷(文科)一、选择题(共10小题,每小题5分,共50分)1.(5分)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A ∩B=()A .{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}2.(5分)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本3.(5分)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度4.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3B.2C.D.15.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<6.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()第 1 页共 27 页 1A.0B.1C.2D.37.(5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c8.(5分)如图,从气球A上测得正前方的河流的两岸B ,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC 等于()A.m B.m C.m D.m 9.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y ),则|PA |+|PB|的取值范围是()A .[,2]B .[,2]C.[,4]D.[2,4] 10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()2第 2 页共 27 页A.2B.3C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)双曲线﹣y2=1的离心率等于.12.(5分)复数=.13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f (x)=,则f()=.14.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题(共6小题,共75分)16.(12分)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;第 3 页共 27 页 3(Ⅱ)求“抽取的卡片上的数字a、b 、c 不完全相同”的概率.17.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.18.(12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.4第 4 页共 27 页19.(12分)设等差数列{a n}的公差为d,点(a n ,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.20.(13分)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.第 5 页共 27 页 521.(14分)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.6第 6 页共 27 页2014年四川省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0}B.{0,1}C.{﹣2,﹣1,0,1}D.{﹣1,0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】由题意,可先化简集合A,再求两集合的交集.【解答】解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选:D.【点评】本题考查求交,掌握理解交的运算的意义是解答的关键.2.(5分)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本【考点】BE:用样本的数字特征估计总体的数字特征.【专题】5I:概率与统计.【分析】根据题意,结合总体、个体、样本、样本容量的定义可得结论.第 7 页共 27 页7【解答】解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A .【点评】本题主要考查总体、个体、样本、样本容量的定义,属于基础题.3.(5分)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】57:三角函数的图像与性质.【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.(5分)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3B.2C.D.18第 8 页共 27 页【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.【解答】解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2,∴三棱锥的体积V=××2××=1.故选:D.【点评】本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.5.(5分)若a>b >0,c<d<0,则一定有()A.>B.<C.>D .<【考点】R3:不等式的基本性质.【专题】59:不等式的解法及应用.【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,∴C、D不正确;=﹣3,=﹣∴A不正确,B正确.第 9 页共 27 页9解法二:∵c<d<0,∴﹣c>﹣d>0,∵a >b>0,∴﹣ac>﹣bd,∴,∴.故选:B.【点评】本题考查不等式比较大小,特值法有效,带数计算正确即可.6.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3【考点】7C:简单线性规划;E9:程序框图的三种基本逻辑结构的应用.10第 10 页共 27 页【专题】5K:算法和程序框图.【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.7.(5分)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c【考点】4M:对数值大小的比较.【专题】51:函数的性质及应用.【分析】利用指数式与对数式的互化、对数的运算性质和换底公式即可得出.第 11 页共 27 页11【解答】解:由5d=10,可得,∴cd=lgb=log5b=a.故选:B.【点评】本题考查了指数式与对数式的互化、对数的运算性质和换底公式,属于基础题.8.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m【考点】HU:解三角形.【专题】12:应用题;58:解三角形.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC 中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.12第 12 页共 27 页故选:B.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.9.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB |的取值范围是()A.[,2]B.[,2]C.[,4]D.[2,4]【考点】5A:函数最值的应用;IM:两条直线的交点坐标.【专题】5B:直线与圆.【分析】可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),∵动直线x+my=0和动直线mx﹣y﹣m+3=0的斜率之积为﹣1,始终垂直,P又是两条直线的交点,∴PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.设∠ABP=θ,则|PA|=sinθ,|PB|=cosθ,由|PA|≥0且|PB|≥0,可得θ∈[0,]∴|PA|+|PB|=(sinθ+cosθ)=2sin(θ+),∵θ∈[0,],∴θ+∈[,],∴sin(θ+)∈[,1],第 13 页共 27 页13第 14 页 共 27 页14 ∴2sin (θ+)∈[,2],故选:B .【点评】本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.10.(5分)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,•=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3C .D . 【考点】K8:抛物线的性质.【专题】5E :圆锥曲线中的最值与范围问题.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB 的方程为:x=ty +m ,点A (x 1,y 1),B (x 2,y 2), 直线AB 与x 轴的交点为M (m ,0),由⇒y 2﹣ty ﹣m=0,根据韦达定理有y 1•y 2=﹣m , ∵•=2,∴x 1•x 2+y 1•y 2=2, 结合及,得, ∵点A ,B 位于x 轴的两侧,∴y 1•y 2=﹣2,故m=2.不妨令点A 在x 轴上方,则y 1>0,又,∴S △ABO +S △AFO ═×2×(y 1﹣y 2)+×y 1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选:B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)双曲线﹣y2=1的离心率等于.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的方程,求出a,b,c,即可求出双曲线的离心率.【解答】解:由双曲线的方程可知a2=4,b2=1,则c2=a2+b2=4+1=5,第 15 页共 27 页15则a=2,c=,即双曲线的离心率e==,故答案为:【点评】本题主要考查双曲线的离心率的计算,求出a,c是解决本题的关键,比较基础.12.(5分)复数=﹣2i.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f (x)=,则f()=1.【考点】3Q:函数的周期性.【专题】11:计算题.【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.16第 16 页共 27 页【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.14.(5分)平面向量=(1,2),=(4,2),=m+(m∈R ),且与的夹角等于与的夹角,则m=2.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.【解答】解:∵向量=(1,2),=(4,2),=m+(m ∈R),∴=m(1,2)+(4,2)=(m+4,2m+2).∴=m+4+2(2m+2)=5m+8,=4(m+4)+2(2m+2)=8m+20.,=2.∵与的夹角等于与的夹角,∴=,∴,化为5m+8=4m+10,解得m=2.故答案为:2.【点评】本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的第 17 页共 27 页17值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【考点】29:充分条件、必要条件、充要条件;2H:全称量词和全称命题;2I:存在量词和特称命题;2K:命题的真假判断与应用;34:函数的值域.【专题】23:新定义;3A:极限思想;51:函数的性质及应用;59:不等式的解法及应用;5L:简易逻辑.【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g (x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f(x)+g(x)∈(﹣∞,+∞).18第 18 页共 27 页则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f (x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题(共6小题,共75分)16.(12分)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a、b、c不完全相同”的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c 的(a,b,c有计3个,由此求得“抽取的卡片上的数字满足a+b=c”的概率.(Ⅱ)所有的可能结果(a,b,c)共有3×3×3种,用列举法求得满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)共计三个,由此求得“抽取的卡片上的数字a,b,c完全相同”的概率,再用1减去此概率,即得所求.【解答】解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,故“抽取的卡片上的数字满足a+b=c”的概率为=.(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:(1,1,1)、(2,2,2)、(3,3,3),共计三个,第 19 页共 27 页19故“抽取的卡片上的数字a,b ,c完全相同”的概率为=,∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于中档题.17.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.【专题】56:三角函数的求值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z ,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin (α+),又f ()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin (3x +),令2kπ﹣≤3x +≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k ∈Z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)20第 20 页共 27 页即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.18.(12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.【考点】LS:直线与平面平行;LW:直线与平面垂直.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)先证明AA1⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面ACC1A1;(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1,证明四边形MDEO为平行四边形即可.【解答】(Ⅰ)证明:∵四边形ABB1A1和ACC1A1都为矩形,∴AA1⊥AB,AA1⊥AC,∵AB∩AC=A,第 21 页共 27 页21∴AA1⊥平面ABC,∵BC⊂平面ABC,∴AA1⊥BC,∵AC⊥BC,AA1∩AC=A,∴直线BC⊥平面ACC1A1;(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC 1,设O为A1C,AC1的交点,则O为AC1的中点.连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,∴MD∥OE,MD=OE,连接OM,则四边形MDEO为平行四边形,∴DE∥MO,∵DE⊄平面A1MC,MO⊂平面A1MC,∴DE∥平面A1MC,∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.【点评】本题考查线面垂直的判定与性质的运用,考查存在性问题,考查学生分析解决问题的能力,属于中档题.19.(12分)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.22第 22 页共 27 页【考点】8M:等差数列与等比数列的综合.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用等比数列的定义证明即可;(Ⅱ)先由(Ⅰ)求得a n,b n,再利用错位相减求数列{a n b n2}的前n项和S n.【解答】(Ⅰ)证明:由已知得,b n =>0,当n≥1时,===2d,∴数列{b n }为首项是,公比为2d的等比数列;(Ⅱ)解:f′(x)=2x ln2∴函数f(x)的图象在点(a2,b2)处的切线方程为y﹣=ln2(x﹣a2),∵在x轴上的截距为2﹣,∴a2﹣=2﹣,∴a2=2,∴d=a2﹣a1=1,a n=n,b n=2n,a n b n2=n4n,∴T n=1•4+2•42+3•43+…+(n﹣1)•4n﹣1+n•4n ,4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,∴T n﹣4T n=4+42+…+4n﹣n•4n+1=﹣n•4n+1=,∴T n=.【点评】本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.20.(13分)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;第 23 页共 27 页23(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【考点】KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ ,可得直线PQ的方程为x=my﹣2.设P(x1,y 1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P (x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.24第 24 页共 27 页∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交可得根与系数的关系及弦长问题、向量相等问题、平行四边形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,考查了数形结合和转化能力,属于难题.21.(14分)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【考点】51:函数的零点;6E:利用导数研究函数的最值.【专题】53:导数的综合应用.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.第 25 页共 27 页25【解答】解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b ,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x )在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a ≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x 26第 26 页共 27 页<∴h (x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=e x﹣2ax﹣b=0,故有e x=2ax+b且f(1)=0知e﹣1=a+b,则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a +1﹣e)x+e﹣a﹣2,开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,故f(x)min<0,故e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.第 27 页共 27 页27。