stm32几种时钟控制介绍,含原理图

合集下载

STM32F0xx 微控制器的时钟配置

STM32F0xx 微控制器的时钟配置

5
结论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6
版本历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3
教程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 向导模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
㟇$+%ᘏ㒓ǃ‫ݙ‬Ḍǃ ᄬ‫఼ټ‬੠'0$ 㟇FRUWH[㋏㒳ᅮᯊ఼ )+&/.&RUWH[㞾⬅䖤㸠ᯊ䩳
3&/.
㟇$3%໪䆒
4/16
文档 ID 022837 第 1 版
AN4055
1
术语表
表 1.
术语定义 术语
HCLK PCLK1 PCLK2 TIMCLK FCPU Ext.Clock VDD HSI HSE MCLK I2S Fs I2SCLK
AHB 时钟 APB1 时钟 APB2 时钟 定时器时钟 Cortex-M0 时钟 外部时钟 电源 高速内部时钟 高速外部时钟 主时钟 串行数字音频总线 采样频率 I2S 时钟

stm32单片机时钟

stm32单片机时钟

stm32单⽚机时钟stm32 单⽚机时钟学习以及分析1 引⾔:单⽚机(Microcontrollers),采⽤超⼤规模集成电路技术把具有数据处理能⼒的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O⼝和中断系统、定时器/计数器等功能(可能还包括显⽰驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到⼀块硅⽚上构成的⼀个⼩⽽完善的微型计算机系统,在⼯业控制领域⼴泛应⽤。

单⽚机时钟可以说如同⼈的⼼脏那样重要,我们在⼼脏的搏动下进⾏⾃⼰的⽣命活动,同样的单⽚机在时钟下进⾏⾃⼰的控制活动。

2 时钟的分类:单⽚机的时钟分为内部时钟与外部时钟:⼀般⽽⾔,内部时钟集成在芯⽚内部(RC振荡电路),其精度⽐较低;外部时钟,顾名思义,存在于芯⽚外部(晶体或陶瓷谐振器),可以为系统提供精确的时钟。

晶振是给单⽚机提供⼯作信号脉冲的,如图所⽰的为外部晶振,频率为4MHz,我们常⽤的晶振频率为12MHz,单⽚机⼯作时,是⼀条⼀条地从RoM中取指令,然后⼀步⼀步地执⾏。

单⽚机访问⼀次存储器的时间,称之为⼀个机器周期,这是⼀个时间基准。

—个机器周期包括12个时钟周期。

如果⼀个单⽚机选择了12MHz晶振,它的时钟周期是1/12us,它的⼀个机器周期是12×(1/12)us,也就是1us。

有些晶振的频率并数是整数,如:11.0592MHz的晶振。

单⽚机在进⾏串⾏通信时,常⽤的波特率为1200,2400,4800,9600,115200等,为了适应单⽚机的串⼝通讯波特率的计算⽽来的。

⽤11.0592MHz晶振经过相应的分频或者倍频后刚好能够得出⼀个整数的波特率,这样在上位机和下位机的同步⽅⾯⽐较⽅便。

3 stm32的时钟来源这⾥以stm32f1系列的芯⽚为例。

由上⾯可知,系统的时钟来源有内部时钟与外部时钟,详细的来说stm32f1有五个时钟源:HSI(⾼速内部时钟)HSE(⾼速外部时钟)LSI(低速内部时钟)LSE(低速外部时钟)PLL(锁相环倍频输出)每⼀个时钟都可以独⽴的开启与关闭。

STM32时钟配置方法

STM32时钟配置方法

STM32时钟配置方法详解一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

①HSI是高速内部时钟,RC振荡器,频率为8MHz。

②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③LSI是低速内部时钟,RC振荡器,频率为40kHz。

④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。

倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。

②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。

此方法可提高EMC性能;第2种:分别重映射OSC_IN 和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。

此方法可以减小功耗并(相对上面)节省2个外部电阻。

三、用HSE时钟,程序设置时钟参数流程:01、将RCC寄存器重新设置为默认值RCC_DeInit;02、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);03、等待外部高速时钟晶振工作HSEStartUpStatus = RCC_WaitForHSEStar tUp();04、设置AHB时钟RCC_HCLKConfig;05、设置高速AHB时钟RCC_PCLK2Config;06、设置低速速AHB时钟RCC_PCLK1Config;07、设置PLL RCC_PLLConfig;08、打开PLL RCC_PLLCmd(ENABLE);09、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RE SET)10、设置系统时钟RCC_SYSCLKConfig;11、判断是否PLL是系统时钟while(RCC_GetSYSCLKSource() != 0x08)12、打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1Perip hClockCmd()四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)/******************************************************************************** Function Name : RCC_Configuration* Description : RCC配置(使用外部8MHz晶振)* Input : 无* Output : 无* Return : 无*******************************************************************************/void RCC_Configuration(void){/*将外设RCC寄存器重设为缺省值*/RCC_DeInit();/*设置外部高速晶振(HSE)*/RCC_HSEConfig(RCC_HSE_ON); //RCC_HSE_ON——HSE晶振打开(ON)/*等待HSE起振*/HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS) //SUCCESS:HSE晶振稳定且就绪 {/*设置AHB时钟(HCLK)*/RCC_HCLKConfig(RCC_SYSCLK_Div1); //RCC_SYSCLK_Div1——AHB 时钟= 系统时钟/* 设置高速AHB时钟(PCLK2)*/RCC_PCLK2Config(RCC_HCLK_Div1); //RCC_HCLK_Div1——APB2时钟= HCLK/*设置低速AHB时钟(PCLK1)*/RCC_PCLK1Config(RCC_HCLK_Div2); //RCC_HCLK_Div2——APB1时钟= HCLK / 2/*设置FLASH存储器延时时钟周期数*/FLASH_SetLatency(FLASH_Latency_2); //FLASH_Latency_2 2延时周期/*选择FLASH预取指缓存的模式*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // 预取指缓存使能/*设置PLL时钟源及倍频系数*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9/*使能PLL */RCC_PLLCmd(ENABLE);/*检查指定的RCC标志位(PLL准备好标志)设置与否*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){}/*设置系统时钟(SYSCLK)*/RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟/* PLL返回用作系统时钟的时钟源*/while(RCC_GetSYSCLKSource() != 0x08) //0x08:PLL作为系统时钟 {}}/*使能或者失能APB2外设时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph _GPIOB |RCC_APB2Periph_GPIOC , ENABLE);//RCC_APB2Periph_GPIOA GPIOA时钟//RCC_APB2Periph_GPIOB GPIOB时钟//RCC_APB2Periph_GPIOC GPIOC时钟//RCC_APB2Periph_GPIOD GPIOD时钟}五、时钟频率STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。

stm32定时器时钟以及中间对齐模式

stm32定时器时钟以及中间对齐模式

stm32定时器时钟以及中间对齐模式在永磁同步电机的控制中,需要对电机的三相定⼦施加⼀定的电压,才能控制电机转动。

现在⽤的较多的是SVPWM(SVPWM的具体原理会在后⾯另写⼀篇博客说明),要想产⽣SVPWM波形,需要控制的三相电压呈如下形式,即A、B、C三相的电压是中间对齐的,这就需要⽤到stm32定时器的中间对齐模式了。

1、stm32的时钟树stm32的时钟树如下图所⽰,简单介绍⼀下stm32时钟的配置过程。

以外部时钟作为时钟源为例。

HSE代表外部时钟(假设为8M)、SYSCLK为系统时钟,经过倍频器之后变成168M、SYSCLK经过AHB预分频器(假设分频系数为1)后变成HCLK时钟等于系统时钟SYSCLK,HCLK即AHB外部总线时钟,经过APB预分频器分出APB1时钟(分频系数为2,低速设备SYSCLK/4)与APB2时钟(分频系数为1,⾼速设备SYSCLK/2)HSE->SYSCLK->HCLK->APB1、APB2。

针对stm32f427的配置源码如下static void SetSysClock(void){#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx) || defined (STM32F401xx)/******************************************************************************//* PLL (clocked by HSE) used as System clock source *//******************************************************************************/__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* Enable HSE */RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++;} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;}if (HSEStatus == (uint32_t)0x01){/* Select regulator voltage output Scale 1 mode */RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;/* HCLK = SYSCLK / 1*/RCC->CFGR |= RCC_CFGR_HPRE_DIV1;//AHB时钟#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx)/* PCLK2 = HCLK / 2*/RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;//APB2时钟/* PCLK1 = HCLK / 4*/RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;//APB1时钟#endif /* STM32F40_41xxx || STM32F427_437x || STM32F429_439xx *//* Configure the main PLL */RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);/* Enable the main PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till the main PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}#if defined (STM32F427_437xx) || defined (STM32F429_439xx)/* Enable the Over-drive to extend the clock frequency to 180 Mhz */PWR->CR |= PWR_CR_ODEN;while((PWR->CSR & PWR_CSR_ODRDY) == 0){}PWR->CR |= PWR_CR_ODSWEN;while((PWR->CSR & PWR_CSR_ODSWRDY) == 0){}/* Configure Flash prefetch, Instruction cache, Data cache and wait state */FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS; #endif /* STM32F427_437x || STM32F429_439xx *//* Select the main PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= RCC_CFGR_SW_PLL;/* Wait till the main PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);{}}else{ /* If HSE fails to start-up, the application will have wrong clockconfiguration. User can add here some code to deal with this error */}}2、stm32定时器的时钟stm32定时器分为⾼级定时器(TIM1与TIM8)、通⽤定时器(TIM2-TIM5、TIM9-TIM14)、基本定时器(TIM6、TIM7)。

stm32时钟概念

stm32时钟概念

stm32时钟概念STMicroelectronics的STM32系列是一系列基于ARM Cortex-M 内核的微控制器(MCU)。

时钟系统在STM32芯片中是一个关键的概念,因为它驱动了芯片内部的各种功能模块,包括CPU、外设、总线等。

以下是与STM32时钟相关的一些基本概念:1. 系统时钟(SYSCLK): SYSCLK是STM32中的主时钟,它驱动CPU和内存等核心模块。

其频率由时钟源和分频器的组合决定。

2. 时钟源: STM32芯片通常支持多个时钟源,包括内部RC振荡器、外部晶体振荡器、PLL(相位锁定环)等。

选择适当的时钟源取决于应用的要求,例如需要更高的稳定性或更低的功耗。

3. PLL(Phase-Locked Loop):PLL是一种用于产生高稳定性时钟信号的电路。

通过将一个参考时钟信号与一个可调节的倍频器相锁定,PLL可以生成一个高频率的时钟信号。

4. AHB、APB总线:在STM32中,系统总线被分为高性能总线(AHB)和低速外设总线(APB)。

这两个总线有各自的时钟域,因此可以独立配置时钟。

这种分级的结构有助于提高系统的性能和灵活性。

5. 时钟树:时钟树描述了时钟系统的层次结构,显示了时钟源如何通过PLL和分频器传递到各个模块。

了解时钟树结构对于调整系统时钟和解决时钟相关问题非常有用。

6. 时钟配置寄存器: STM32芯片具有一系列寄存器,允许程序员配置时钟系统。

这些寄存器包括RCC寄存器(RCC,Reset and Clock Control)等,通过编程这些寄存器,可以设置各种时钟参数。

7. 低功耗模式时钟: STM32芯片支持不同的低功耗模式,如停机模式、待机模式等。

在这些模式下,可以降低系统的功耗,因此时钟系统在这些模式下的配置也需要考虑。

时钟配置通常是在启动代码或初始化过程中完成的,程序员可以通过修改相应的寄存器来调整时钟设置以满足应用的需求。

对于具体的时钟配置和使用,建议查阅STMicroelectronics提供的芯片手册和相关文档。

STM32入门系列-STM32时钟系统,时钟使能配置函数

STM32入门系列-STM32时钟系统,时钟使能配置函数

STM32⼊门系列-STM32时钟系统,时钟使能配置函数 之前的推⽂中说到,当使⽤⼀个外设时,必须先使能它的。

怎么通过库函数使能时钟呢?如需了解寄存器配置时钟,可以参考《STM32F10x中⽂参考⼿册》“复位和时钟控制(RCC)”章节,其中有详细的寄存器介绍。

固件库已经把时钟相关寄存器的使能配置都封装好,放在stm32f10x_rcc.c和stm32f10x_rcc.h中。

只需要打开stm32f10x_rcc.h⽂件,会发现有很多的宏定义和时钟使能函数的声明。

这些时钟函数可⼤致分为三类。

⼀类是外设时钟使能函数,⼀类是时钟源和倍频因⼦配置函数,还有⼀类是外设复位函数。

当然还有⼏个获取时钟源配置的函数。

下⾯就来简单介绍下这些函数的使⽤。

⾸先看⼀下时钟使能函数,时钟使能函数包括外设时钟使能和时钟源使能。

外设时钟使能相关函数如下:void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState);void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);上⾯3个时钟使能函数也正是STM32的3条总线(这个在前⾯介绍存储器与寄存器章节讲过)。

由于STM32的外设都是挂接在AHB和APB 总线上的,所以要使能外设时钟,也就是使能对应外设所挂接的总线时钟。

⽐如GPIO外设它是挂接在APB2总线上的,如果使⽤GPIO外设,就需要先使能APB2总线时钟,使能时钟代码如下。

void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph,FunctionalState NewState);要想哪个外设挂接在哪个总线上呢,可以通过STM32中⽂参考⼿册查找,还可以在固件库stm32f10x_rcc.h⽂件中查找。

STM32中的时钟

函数开发忽略此项容)。
外部时钟晶体振荡器最好选择8MHz晶振,无论是库函数,还是Keil默
认配置启动文件时钟配置均是按照外部晶体振荡器8MHz来进行的配置,系
统时钟72MHz,如果采用其他型号的晶体震荡器振还需要自己配置时钟树,
对于新手来说可能存在一定的困难。
STM32中的时钟
下面就以STM32开发板中最常见的STM32F103系列芯片的时钟为例,
介绍一下STM32中的时钟。
时钟作用
说到时钟,你一定会问,这是用来计时的吗?没错,是用来计时的,但这
只是它在STM32中的一项功能而已,下面就为你列出了时钟的具体功能。
计时作用(供给某些计数器统计时间);
控制时序(串口数据的传输,只能一位一位的传输);
CSS时钟安全监测单元当外部时钟意外故障,CSS在短时间内切换到内
部高速时钟使单片机工作不中断
RTCCLK实时时钟时钟源选择选择锁相环倍频器时钟源128分频作为实
时时钟时钟源选择外部低速时钟作为实时时钟时钟源选择内部低俗时钟作为
实时时钟时钟源
MCO时钟输出控制锁相环时钟2分频输出内部低俗时钟输出内部高速时
控制信号(将时钟的上升下降沿作为独特的控制标志)。
STM32时钟模型
STM32内部时钟树
时钟源
时钟源就是产生时钟的电路啦,我们来一起看一下,什幺样的电路可以产
生时钟。
STM32中的时钟源分为以下五种:
低速内部时钟LSI:频率为40kHz;
高速内部时钟HSI:频率为8MHz;
低速外部时钟OSC_32:频率为32.7678kHz;
钟输出系统时钟输出
关于APB1、APB2时钟
STM32单片机外设挂接在APB1、APB2两个桥上,但两个桥允许的始终

STM32时钟配置方法详解

一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

①HSI是高速内部时钟,RC振荡器,频率为8MHz。

②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③LSI是低速内部时钟,RC振荡器,频率为40kHz。

④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。

倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。

②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。

此方法可提高EMC性能;第2种:分别重映射OSC_IN 和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。

此方法可以减小功耗并(相对上面)节省2个外部电阻。

三、用HSE时钟,程序设置时钟参数流程:01、将RCC寄存器重新设置为默认值RCC_DeInit;02、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);03、等待外部高速时钟晶振工作HSEStartUpStatus = RCC_WaitForHSEStartUp();04、设置AHB时钟RCC_HCLKConfig;05、设置高速AHB时钟RCC_PCLK2Config;06、设置低速速AHB时钟RCC_PCLK1Config;07、设置PLL RCC_PLLConfig;08、打开PLL RCC_PLLCmd(ENABLE);09、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)10、设置系统时钟RCC_SYSCLKConfig;11、判断是否PLL是系统时钟while(RCC_GetSYSCLKSource() != 0x08)12、打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)/******************************************************************************** Function Name : RCC_Configuration* Description : RCC配置(使用外部8MHz晶振)* Input : 无* Output : 无* Return : 无*******************************************************************************/void RCC_Configuration(void){/*将外设RCC寄存器重设为缺省值*/RCC_DeInit();/*设置外部高速晶振(HSE)*/RCC_HSEConfig(RCC_HSE_ON); //RCC_HSE_ON——HSE晶振打开(ON)/*等待HSE起振*/HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS) //SUCCESS:HSE晶振稳定且就绪 {/*设置AHB时钟(HCLK)*/RCC_HCLKConfig(RCC_SYSCLK_Div1); //RCC_SYSCLK_Div1——AHB 时钟= 系统时钟/* 设置高速AHB时钟(PCLK2)*/RCC_PCLK2Config(RCC_HCLK_Div1); //RCC_HCLK_Div1——APB2时钟= HCLK/*设置低速AHB时钟(PCLK1)*/RCC_PCLK1Config(RCC_HCLK_Div2); //RCC_HCLK_Div2——APB1时钟= HCLK / 2/*设置FLASH存储器延时时钟周期数*/FLASH_SetLatency(FLASH_Latency_2); //FLASH_Latency_2 2延时周期/*选择FLASH预取指缓存的模式*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // 预取指缓存使能/*设置PLL时钟源及倍频系数*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9/*使能PLL */RCC_PLLCmd(ENABLE);/*检查指定的RCC标志位(PLL准备好标志)设置与否*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){}/*设置系统时钟(SYSCLK)*/RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟/* PLL返回用作系统时钟的时钟源*/while(RCC_GetSYSCLKSource() != 0x08) //0x08:PLL作为系统时钟 {}}/*使能或者失能APB2外设时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph _GPIOB |RCC_APB2Periph_GPIOC , ENABLE);//RCC_APB2Periph_GPIOA GPIOA时钟//RCC_APB2Periph_GPIOB GPIOB时钟//RCC_APB2Periph_GPIOC GPIOC时钟//RCC_APB2Periph_GPIOD GPIOD时钟}五、时钟频率STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。

STM32最小系统原理图

STM32最小系统原理图STM32是一款高性能、高可靠性的32位单片机系列产品,采用Cortex-M内核。

它可以用来设计各种嵌入式系统,包括家电、医疗设备、汽车电子和工业自动化等领域。

在进行STM32的设计时,我们需要先画出最小系统原理图,该原理图包含了STM32所需的电源和外围器件。

首先,我们需要为STM32提供合适的电源。

通常情况下,我们可以使用LM1117-3.3三端稳压器作为主芯片的电源。

其输入电压可以在6V至12V之间,输出电流为800mA,输出电压为3.3V。

此外,还需要添加适当的电容来提供电源稳定性。

接下来,我们需要为STM32添加晶振电路。

晶振电路主要包括一个晶振和两个电容。

在选择晶振时,我们需要确定频率和精度。

常见的选择包括8MHz和16MHz的晶振。

晶振电路的作用是为STM32提供系统时钟信号。

复位电路是STM32系统中非常重要的部分,它用于在系统启动时将芯片复位到初始状态。

复位电路主要由一个复位按钮、一个电阻和一个电容组成。

在启动或出现故障时,按下复位按钮将使STM32芯片重新启动。

调试电路主要用于在开发和调试过程中进行调试操作。

它包括JTAG或SWD接口、调试器、与调试器连接的引脚等。

通过调试电路,开发人员可以通过调试器进行单步调试、变量查看和性能分析等操作。

最后,我们需要为STM32添加一些扩展接口电路,如LED指示灯、按键开关、LCD模块、以太网接口、USB接口、UART接口等。

这些扩展接口可以根据实际应用需求来选择和设计。

STM32F2系列之复位和时钟控制RCC详解


TIMxCLK TIM2..7,12..14
PCLK2 up to 60MHz VCO /P PLL48CLK (USB FS, SDIO & RNG) /Q xN /R APB2 Prescaler /1,2,4,8,16
If (APB2 pres =1)
x1
Else
x2
TIMxCLK TIM1,8..11
PLL
VCO
/P
HSI HSE MCO1 /1..5 PLLCLK LSE
/Q
Ext. Clock SPI2S_CKI N I2SCLK PLLI2SCLK MACTXCLK MACRXCLK MACRMIICL K
xN
/R
PLLI2S
USB HS ULPI clock
SYSCLK
MCO2 /1..5 PLLCLK / 2, 20 HSE
TIMxCLK TIM2..7,12..14
PCLK2 up to 60MHz VCO /P PLL48CLK (USB FS, SDIO & RNG) /Q xN /R APB2 Prescaler /1,2,4,8,16
If (APB2 pres =1)
x1
Else
x2
TIMxCLK TIM1,8..11
HSI RC 4 -26 MHz OSC_OUT OSC_IN
16MHz HSI
/M HSE PLLCLK
HSE Osc
SYSCLK AHB Prescaler 120 MHz max
/1,2…512
APB1 Prescaler /1,2,4,8,16
If (APB1 pres =1) Else
x1 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

stm32几种时钟控制介绍,含原理图
本文提到的有以下内容:
• 时钟系统与总线矩阵
• SysTick系统定时器
• RTC实时时钟
• 看门狗定时器
• 通用定时器
一、时钟系统与总线矩阵
stm32F4的时钟树如下图所示:
在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

HSI是高速内部时钟,RC振荡器,频率为8MHz。

HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

LSI是低速内部时钟,RC振荡器,频率为40kHz。

LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。

倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

我们在学习51单片机的时候,其内部是没有晶振的,而stm32是有的。

stm32可以通过RCC(时钟控制寄存器)对时钟进行参数配置以及使能。

我们还可以通过修改system_stm32f4xx.c文件,来配置上述时钟树上的一些分频、倍频参数,得到理想的频率。

在单片机系统中,CPU和总线以及外设的时钟设置是非常重要的,因为没有时钟就没有时序,组合电路需要好好理解清楚。

我们先来看一下总线矩阵。

片上总线标准种类繁多,而由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标
准片上结构。

AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。

二者分别适用于高速与相对低速设备的连接。

一般性的时钟设置需要先考虑系统时钟的来源,是内部RC还是外部晶振还是外部的振荡器,是否需要PLL。

然后考虑内部总线和外部总线,最后考虑外设的时钟信号。

遵从先倍频作为CPU时钟,然后在由内向外分频,下级迁就上级的原则。

二、SysTick系统定时器
SysTick—系统定时器是属于CM4内核中的一个外设,内嵌在NVIC中。

系统定
时器是一个24bit的向下递减的计数器,计数器每计数一次的时间为1/SYSCLK,一般我们设置系统时钟SYSCLK等于180M。

当重装载数值寄存器的值递减到0
的时候,系统定时器就产生一次中断,以此循环往复。

因为SysTick是属于CM4内核的外设,所以所有基于CM4内核的单片机都具有
这个系统定时器,使得软件在CM4单片机中可以很容易的移植。

系统定时器一般用于操作系统,用于产生时基,维持操作系统的心跳。

一般用于系统内部运行以及延时函数。

三、RTC实时时钟
RTC(Real-Time Clock)实时时钟为操作系统提供了一个可靠的时间,并且在断电的情况下,RTC实时时钟也可以通过电池供电,一直运行下去。

RTC通过STRB/LDRB这两个ARM指令向CPU传送8位数据(BCD码)。

数据包括秒,分,小时,日期,天,月和年。

RTC实时时钟依靠一个外部的32.768Khz
的石英晶体,产生周期性的脉冲信号。

每一个信号到来时,计数器就加1,通
过这种方式,完成计时功能。

RTC实时时钟有如下一些特性:
1,BCD数据:这些数据包括秒、分、小时、日期、、星期几、月和年。

2,闰年产生器
3,报警功能:报警中断或者从掉电模式唤醒
4,解决了千年虫问题(详见)
5,独立电源引脚RTCVDD
6,支持ms中断作为RTOS内核时钟
7,循环复位(round reset)功能
如图,RTC实时时钟的框架图,XTIrtc和XTOrtc产生脉冲信号,即外部晶振。

传给2^15的一个时钟分频器,得到一个128Hz的频率,这个频率用来产生滴答计数。

当时钟计数为0时,产生一个TIME TICK中断信号。

时钟控制器用来控制RTC实时时钟的功能。

复位寄存器用来重置SEC和MIN寄存器。

闰年发生器用来产生闰年逻辑。

报警发生器用来控制是否产生报警信号。

四、看门狗定时器
看门狗定时器又分为独立看门狗IWDG和窗口看门狗WWDG。

1、独立看门狗
独立看门狗IWDG其实是一个12位递减计数器,有故障时,计数器减到0,产生复位,无故障时,计数器减到0之前就刷新计数值(喂狗),不进行复位。

其采用独立时钟,主要用于监视硬件错误(不受系统时钟影响)。

2、窗口看门狗
窗口看门狗WWDG其实是一个7位递减计数器,有计数上下限,下限位0x40,上限由用户指定,上下限之间刷新计数值则不复位,其他都复位。

采用系统时钟,主要用于监视软件错误。

五、通用定时器
stm32的定时器有基本定时器、通用定时器和高级定时器。

这里以通用定时器为例,其内部结构如下图所示,需要设置预分频系数,并不是直接使用APB1的时钟。

通用定时器的计数模式分为5种:
• 向上计数:计数器从0计数到自动装载值。

• 向下计数:从自动装载值计数到0。

• 向上向下计数(中心对齐计数):计数器从0计数到自动装载值,再从自动装载值计数到0,反复循环。

• 输入捕获:测量输入信号的脉宽、PWM波的占空比等。

• 输出比较:PWM波用的就是这种模式。

定时器的时间公式:T=((n-1)*(pre-1))/Tclk,其中n为计数值,pre为预分频系数,Tclk为定时器时钟。

为什么计数值和预分频系数要减一?因为计数是从0开始的,而预分频系数为0时,表示不分频。

定时器用于中断时,注意更新中断标志位。

相关文档
最新文档