标准偏差与相对标准偏差公式

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准偏差

数学表达式:

S-标准偏差(%)

n-试样总数或测量次数,一般n值不应少于20-30个

i-物料中某成分的各次测量值,1~n;

标准偏差的使用方法

六个计算标准偏差的公式[1]

标准偏差的理论计算公式

设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i- X

σ2 = l2- X

…… 

σn = l n- X

我们定义标准偏差(也称标准差)σ为

(1)

由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式

由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值

来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。

于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即

设一组等精度测量值为l1、l2、……l n

…… 

通过数学推导可得真差σ与剩余误差V的关系为

将上式代入式(1)有

(2)

式(2)就是著名的贝塞尔公式(Bessel)。

它用于有限次测量次数时标准偏差的计算。由于当时,

,可见贝塞尔公式与σ的定义式(1)是完全一致的。

应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标

准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用表示。于是, 将式(2)改写为

“S ” 

(2')

在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有

于是, 式(2')可写为

(2")

按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺, 即可。

标准偏差σ的无偏估计

数理统计中定义S2为样本方差

数学上已经证明S2是总体方差σ2的无偏估计。即在大量重复试验中, S2围绕σ2散布, 它们之间没有系统误差。而式(2')在n有限时,S并不是总体标准偏差σ的无偏估计, 也就是说S和σ之间存在系统误差。概率统计告诉我们, 对于服从正态分布的正态总体, 总体标准偏差σ的无偏估计值为

(3)

即S1和S仅相差一个系数Kσ,Kσ是与样本个数测量次数有关的一个系数, Kσ值见表。

计算Kσ时用到

Γ(n + 1) = nΓ(n)

Γ(1) = 1

由表1知, 当n>30时, 。因此, 当n>30时, 式(3')和式(2')之间的

差异可略而不计。在n=30~50时, 最宜用贝塞尔公式求标准偏差。当n<10时, 由于Kσ值的影响已不可忽略, 宜用式(3'), 求标准偏差。这时再用贝塞尔公式显然是不妥的。

标准偏差的最大似然估计

将σ的定义式(1)中的真值X用算术平均值代替且当n有限时就得到

(4)

式(4)适用于n>50时的情况, 当n>50时,n和(n-1)对计算结果的影响就很小了。

2.5标准偏差σ的极差估计由于以上几个标准偏差的计算公式计算量较大, 不宜现场采用, 而极差估计的方法则有运算简便, 计算量小宜于现场采用的特点。

极差用"R"表示。所谓极差就是从正态总体中随机抽取的n个样本测得值中的最大值与最小

值之差。

若对某量作次等精度测量测得l1、,且它们服从正态分布, 则

R = l

max- l min

概率统计告诉我们用极差来估计总体标准偏差的计算公式为

(5)

S3称为标准偏差σ的无偏极差估计, d2为与样本个数n(测得值个数)有关的无偏极差系数, 其值见表 2

由表2知, 当n≤15时,, 因此, 标准偏差σ更粗略的估计值为

(5')

还可以看出, 当200≤n≤1000时,因而又有

(5")

显然, 不需查表利用式(5')和(5")了即可对标准偏差值作出快速估计, 用以对用贝塞尔公式

及其他公式的计算结果进行校核。

应指出,式(5)的准确度比用其他公式的准确度要低, 但当5≤n≤15时,式(5)不仅大大提高了计

算速度, 而且还颇为准确。当n>10时, 由于舍去数据信息较多, 因此误差较大, 为了提高准确度,

这时应将测得值分成四个或五个一组, 先求出各组的极差R1、, 再由各组极差求出

极差平均值。

极差平均值和总体标准偏差的关系为

需指出, 此时d2大小要用每组的数据个数n而不是用数据总数N(=nK)去查表2。再则, 分组时一定要按测得值的先后顺序排列,不能打乱或颠倒。

标准偏差σ的平均误差估计

平均误差的定义为

误差理论给出

(A)

可以证明与的关系为

(证明从略)

于是(B)

由式(A)和式(B)得

从而有

式(6)就是佩特斯(C.A.F.Peters.1856)公式。用该公式估计δ值, 由于\right|V\right|不需平方,故计算较为简便。但该式的准确度不如贝塞尔公式。该式使用条件与贝塞尔公式相似。

标准偏差的应用实例[1]

对标称值R a = 0.160 < math> μm < math > 的一块粗糙度样块进行检定, 顺次测得以下15个数据:1.45,1.65,1.60,1.67,1.52,1.46,1.72,1.69,1.77,1.64,4.56,1.50,1.64,1.74和1.63μm, 试求该样块R n的平均值和标准偏差并判断其合格否。

解:1)先求平均值

相关文档
最新文档