【北师大版】2016秋九上期末专题训练(8)相似三角形性质的运用(含答案)
4.5 相似三角形的性质及其应用(3) 九年级上册

∵DE∥BC,∴△ADE∽△ABC.
∴ S△ADE AD 1 1 . 2 4 AB S△ABC ∴S1:S=1:4.
2 2
九年级上 4.5(3)提高 No.10
(2) ∵AB=4,AD=x,
S△ADE 1 2 S△ADE AD x x,① ,∴ ∴ S△ ABC 16 S△ ABC AB 4
∴梯子长为440cm.
九年级上 4.5(3)课后 No.9
19 . 6
九年级上 4.5(3)提高 No.10
九年级上 4.5(3)提高 No.10
解:(1)∵D为AB中点,∴AB=2AD. ∵DE∥BC,∴AE=EC. ∵△ADE的边AE上的高和 △CED的边CE上的高相等, ∴S△ADE=S△CDE=S1.
九年级上册
九年级上 4.5(3)
九年级上 4.5(3)课前
九年级上 4.5(3)课前 No.1
B
九年级上 4.5(3)课前 No.2
C
九年级上 4.5(3)课前 No.3
C
九年级上 4.5(3)课前 No.4
A
九年级上 4.5(3)课前 No.5
B
九年级上 4.5(3)课前 No.6
①÷②得, S1 1 1 2 ∴ y x x. S 16 4 ∵AB=4,∴x的取值范围是0<x<4.
(3)不存在,理由:假设存在点D,使得 S1> 1 S , 4 S1 1 则y > , S 4 2 2 x 1 1 1 1 ∵ y x x 3 0, 4 16 4 4 16 1 ∴ y . 4 1 ∴ S1> S 不成立. 4
G
F
九年级上 4.5(3)答案
北师大版九年级上第四章相似三角形复习课件

6. 四边形ABCD是平行四边形,点E是 BC的延长线 上的一点,而CE:BC=1:3,则 △ADG和△EBG的周 长比3:4 , 9:16 为面积比。
A
D
GF
B
CE
7. 举例说明三角形类似的一些应用. 例如用类似测物体的高度
测山高
测楼高
D
E 1.2m
A 1.6m B 8.4m C
8. 如图,△ABC是一块锐角三角形材料,边BC=120mm,高AD= 80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两 个顶点分别在AB、AC上,这个正方形零件的边长是多少?
3.如图,DE∥BC,AD:DB=1:2,DC,BE交于点O, 则△DOE与△BOC的周长之比是__1_:_3___, 面积比是___1_:_9___.
A
D
E
O
B
C
4、 两类似三角形对应高之比为3∶4,周长之和为28cm, 则两个三角形周长分别为 12cm与16cm
5、 两类似三角形的类似比为3∶5,它们的面积和为 102cm2,则较大三角形的面积为 75cm2
C2
A
C
B
A2
C1 B2
A
A1 B1
C
B
4、如图,在△ABC中,∠BAC=90°,AB=6, BC=12,点P从A点出发向B以1m/s的速度移动,点Q 从B点出发向C点以2m/s的速度移动,如果P、Q分别 从A、B两地同时出发,几秒后△ PBQ与原三角形类 似?
C
Q Q
B PP A
学以致用:
5.如图⊿ABC中,AB=8cm,BC=16cm ,点P从A点开始沿AB边向点B以2cm/s 的速度移动,点Q从点B开始沿BC边向 点C以4cm/s的速度移动。若点P、Q从A 、B处同时出发,经过几秒钟后, ⊿PBQ与⊿ABC类似?
北师大九年级数学上思维特训(九)含答案:相似三角形的基本模型

类型二 相交线型 常见的有如下三种情形: 如图 9-S-4①,已知∠1=∠B,则由公共角∠A 得△ADE∽△ABC. 如图②,已知∠1=∠B,则由公共角∠A 得△ADE∽△ACB. 如图③,已知∠B=∠D,则由对顶角∠1=∠2 得△ADE∽△ABC.
图 9-S-4
3.如图 9-S-5,在△ABC 中,点 D,E 分别在边 AB,AC 上,且∠ABE=∠ACD, BE,CD 相交于点 G. (1)求证:△AED∽△ABC; (2)如果 BE 平分∠ABC,求证:DE=CE.
又∵∠BED=∠DEF,∴∠AEF=∠BED=∠DEF=60°. 又∵AE=AF,∴∠BAC=60°. 又∵AB=AC,∴△ABC 是等边三角形, ∴∠B=60°,∴△BED 是等边三角形, ∴BE=DE. 1 AE 1 又∵AE=DE,∴AE= AB,∴ = . 2 AB 2 11.解:(1)证明:∵在△ABC 中,∠BAC=120°,AB=AC,∴∠B=∠C=30°. ∵∠B+∠BPE+∠BEP=180°, ∴∠BPE+∠BEP=150°. 又∵∠BPE+∠EPF+∠CPF=180°,∠EPF=30°, ∴∠BPE+∠CPF=150°, ∴∠BEP=∠CPF, ∴△BPE∽△CFP. (2)①△BPE∽△CFP. 理由同(1). ②△BPE 与△PFE 相似. 理由:由(1)得△BPE∽△CFP, ∴ BE PE = , CP PF
图 9-S-15
10.在△ABC 中,AB=AC,点 D,E,F 分别在 BC,AB,AC 上,∠EDF=∠B. (1)如图 9-S-16①,求证:DE· CD=DF·BE. (2)若 D 为 BC 的中点,如图②,连接 EF. ①求证:ED 平分∠BEF; AE ②若四边形 AEDF 为菱形,求∠BAC 的度数及 的值. AB
相似三角形的判定及习题精讲(含答案)

-x, ∴ =
, ∴ x= . (2)如图(2),∵ DE//AC, ∴ ΔBDE∽ΔBAC, ∴ = , 设CF=x, 则BE=6-x, DE=x, ∴ = , ∴ x= . 答:ΔABC内接正。 (四)矩形DGFE内接于ΔABC, DG∶DE=3∶5, S矩形DGFE=60cm2, 高AH=10cm,求:SΔABC。 (五)如图,在ΔABC中,AD是BC边上中线,E是AD中点,求证:AF= FC,EF=
BE。
(六)已知:如图,在ΔABC中,D为AB边上一点,Q为BC延长线上一 点,DQ交AC于P,且∠BDQ=∠PCQ,求证:AB·QD=AC·QB。 (七)已知:ΔABC中,∠C=90°,AC=8cm, BC=6cm 求:在ΔABC内作正方形,使正方形的四个顶点都在三角形的边或顶点 上,求这个正方形的边长。 练习参考答案: (一)填空: 1.3∶7; (合比性质) 2. (注意顺序为b, a,c的第四比例项)
BC=9,则DE=________。 8.已知:RtΔABC中,∠ACB=90°,CD⊥AB于D,AD=4,BD=2,则 CD=________,AC=_________。 9.ΔABC中,∠ACB=90°,CD是高,AC=3,BC=4,则CD=_______, AD=_________,BD=_________。 10.ΔABC中,AB=AC=10,∠A=36°,BD是角平分线交AC于D,则 CD=_________。 11.等边三角形的边长为a,则它的内接正方形的边长为_________。 12.ΔABC中,DE//BC,DE交AB,AC于D,E,AD∶DB=5∶4,则S梯形 BCED∶SΔADE=________。 13.两个相似多边形面积比是1∶3,则周长比是_______。 14.两个相似多边形的面积比为25∶9,其中一个多边形的周长为45, 则另一个多边形的周长为_________。 15.如果两个相似多边形的最长边分别为35cm和14cm,它们的周长差 为60cm,那么这两个多边形的周长分别为__________。 (二)选择题: 1.在ΔABC中,DE//BC交AB于D,AC于E,若四边形DECB的面积为 ΔADE面积的3倍,则DE∶BC=( ) A、1∶3 B、1∶9 C、3∶1 D、1∶2 2.如图,在ΔABC中 = , = ,设AD与CE的交点为P,则CP∶PE=( )。 A、5∶1 B、4∶1 C、3∶1 D、5∶2 3.一个直角三角形两条直角边之比是1∶2,则它们在斜边上射影的比
北师大版九年级上册数学期末考试试卷含答案

北师大版九年级上册数学期末考试试题一、单选题1.下列命题是真命题的是()A .四个角都相等的四边形是菱形B .四条边都相等的四边形是正方形C .平行四边形、菱形、矩形都既是轴对称图形,又是中心对称图形D .顺次连接菱形各边中点得到的四边形是矩形2.如图,该几何体的俯视图是()A .B .C .D .3.如图,直线AB//CD//EF ,若BD :DF =3:4,AC =3.6,则AE 的长为()A .4.8B .6.6C .7.6D .8.44.已知在Rt △ABC 中,∠C =90°,若sinA cosA 等于()A .12B C D .15.若关于x 的一元二次方程21022kx x +=-有两个实数根,则实数k 的取值范围是()A .2k <B .2k ≥C .k 2≤且0k ≠D .2k <且0k ≠6.一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.137.已知正比例函数y1=kx的图象与反比例函数y2=mx的图象相交于点A(2,4),则下列说法正确的是()A.正比例函数y1与反比例函数y2都随x的增大而增大B.两个函数图象的另一交点坐标为(2,﹣4)C.当x<﹣2或0<x<2时,y1<y2D.反比例函数y2的解析式是y2=﹣8 x8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=35,E为边AC的中点,则cos∠ADE的值为()A.45B.513C.512D.12139.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.1410.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,AD=6,则BE的长为()A.52B.73C.3D.3.511.如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.43B.4C.23D.212.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是()A.DN ADBM AB=B.AD DEAB BC=C.DO DEOC BC=D.AE AOEC OM=二、填空题13.方程x2=2x的解是_______.14.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.15.小明要把一篇文章录入电脑,所需时间(min)y与录入文字的速度x(字/min)之间的反比例函数关系如图所示,如果小明要在9min内完成录入任务,则小明录入文字的速度至少为______字/min.16.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为___.17.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30角时,已知两次测量的影长相差8米,则树高AB 为多少?___.(结果保留根号)18.如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1是以坐标原点O 为位似中心的位似图形,且点B (5,1),B 1(10,2),若△ABC 的面积为m ,则△A 1B 1C 1的面积为_____.19.如图,点A ,B 在反比例函数()10y x x=>的图象上,点C ,D 在反比例函数()0k y k x =>的图像上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为2,4,OAC 与ABD △的面积之和为3,则k的值为_______.三、解答题20.解方程:3x2+5(2x+1)=0.21.如图,CD是线段AB的垂直平分线,M是AC延长线上一点.(1)用直尺和圆规:作∠BCM的角平分线CN,过点B作CN的垂线,垂足为E;(保留作图痕迹,不要求写作法)(2)求证:四边形BECD是矩形.22.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?23.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米,(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54米,那么小路的宽度是多少米?24.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF .(1)求证:CF =AE ;(2)当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.25.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()4,8A -、(),2B m -两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式;(2)根据图象回答:在第四象限内,当一次函数的值小于反比例函数的值时,x 的取值范围是什么?(3)若点P 在x 轴上,点Q 在坐标平内面,当以A 、B 、P 、Q 为顶点的四边形是矩形时,求出点P 的坐标.26.如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .(1)求证:BE =2CF ;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.27.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.参考答案1.D【分析】根据正方形、菱形、矩形、平行四边形的判定和性质一一判断即可【详解】解:A、若四个角都相等,则这四个角都为直角,有三个角是直角的四边形是矩形,故A选项为假命题,不符合题意;B、四条边都相等的四边形是菱形,故B选项为假命题,不符合题意;C、平行四边形是中心对称图形,但不是轴对称图形,菱形和矩形既是轴对称图形,又是中心对称图形,故C选项为假命题,不符合题意;D、顺次连接菱形各边中点得到的四边形是矩形,故D选项为真命题,符合题意,故选:D.【点睛】本题考查的是命题的真假判断以及正方形、菱形、矩形、平行四边形的判定和性质等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.A 【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.3.D 【分析】根据平行线分线段成比例定理得到比例式,然后带入已知条件即可得到CE 的长,最后求得AE 的长.【详解】解:∵AB//CD//EF ,BD :DF =3:4,∴34AC B DF CE D ==,∵AC =3.6,∴ 4.8=CE ,∴ 3.6 4.88.4AE AC CE =+=+=.故选:D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.4.A 【分析】利用60°的三角函数值解决问题.【详解】解:∵∠C =90°,sinA 2=,∴∠A =60°,∴cosA =cos60°12=.故选:A .【点睛】本题考查了特殊角的三角函数值,记住特殊角的三角函数值是解决此类问题的关键.5.C 【分析】根据根的判别式24b ac ∆=-是非负数,且二次项系数不等于0,列不等式求解即可.【详解】解:由题意得,21(2)402k --⨯≥且0k ≠解得k 2≤且0k ≠.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)根的判别式24b ac ∆=-与根的关系求参数,熟练掌握根的判别式与根的关系是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.6.D 【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D .【点睛】本题考查了列表法与树状图法以及概率公式,解决本题的关键是画出树状图.7.C 【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.【详解】∵正比例函数1y kx =的图象与反比例函数2my x=的图象相交于点(2,4)A ,42k ∴=,42m =,解得:2k =,8m =,∴正比例函数12y x =,反比例函数28y x=,28y x y x =⎧⎪⎨=⎪⎩,解得:24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,∴两个函数图象的另一个交点为(2,4)--,在正比例函数12y x =中,20k => ,∴y 随x 的增大而增大,在反比例函数28y x=中,80m => ,,∴在每个象限内y 随x 的增大而减小,∵当x <﹣2或0<x <2时,y 1<y 2,∴A 、B 、D 选项说法错误;选项C 说法正确.故选:C .【点睛】本题考查反比例函数与正比例函数,掌握函数的图像与性质是解题的关键.8.D 【分析】根据直角三角形勾股定理及余弦函数可得12AD =,再由勾股定理可得13AC =,根据直角三角形中斜边上中线等于斜边的一半可得12ED AC EC ==,依据等边对等角可得EDA DAE ∠=∠,由此计算角的余弦即可.【详解】解:∵AD BC ⊥于D ,9BD =,3cos 5B =,∴15cos BDAB B==,12AD ==,∵5DC =,∴13AC ==,∵E 为AC 中点,∴12ED AC EC ==,∴EDA DAE ∠=∠,∴12cos cos 13AD EDA DAE AC ∠=∠==,故选:D .【点睛】题目主要考查勾股定理、锐角三角函数解三角形,等腰三角形的判定和性质,理解题意,综合运用解三角形方法是解题关键.9.C 【分析】先利用平行四边形的性质得AD BC ∥,AD=BC ,由AE BC ∥可判断△AEF ∽△CBF ,根据相似三角形的性质得12EF AF AE BF CF BC ===,然后根据三角形面积公式得16AEF ABC S S ∆∆=,,则=6=12ABC AEF S S ∆∆.【详解】∵平行四边形ABCD∴AD BC ∥,AD=BC∵E 为边AD 的中点∴BC=2AE∵AE BC∥∴∠EAC=∠BCA又∵∠EFA=∠BFC∴△AEF ∽△CBF如图,过点F 作FH ⊥AD 于点H ,FG ⊥BC 于点G ,则12EF AF AE HF BF CF BC FG ====,∴111221362AEF ABC AE FH BC FH S S BC FH BC HG ∆∆⋅⋅⋅===⋅⋅⋅,∵△AEF 的面积为2∴66212ABCAEF S S ∆∆==⨯=故选C .【点睛】本题考查了相似三角形的性质,属于同步基础题.10.A 【分析】作EH ⊥BD 于H ,根据折叠的性质得到EG =EA ,根据菱形的性质、等边三角形的判定定理得到△ABD 为等边三角形,得到AB =BD ,根据勾股定理列出方程,解方程即可.【详解】解:作EH ⊥BD 于H ,由折叠的性质可知,EG=EA,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=12∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=AD=6,设BE=x,则EG=AE=6﹣x,在Rt△EHB中,BH=12x,EH32,在Rt△EHG中,EG2=EH2+GH2,即(6﹣x)2=(32x)2+(4﹣12x)2,解得,x=5 2,∴BE=5 2,故选:A.【点睛】此题考查了菱形的性质,折叠的性质,等边三角形的判定及性质,勾股定理,熟记各知识点并综合运用是解题的关键.11.A【详解】∵菱形ABCD的周长为16,∠ABC=120°,∴∠BAD=60°,AC⊥BD,AD=AB=4∴△ABD为等边三角形,∴EB=11=2 22BD AB=在Rt△ABE中,2223AB BE-=故可得AC=2AE=3故选A.12.D【详解】试题分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴DN ADBM AB=,AD DEAB BC=,DO DEOC BC=,所以A、B、C正确;∵DE∥BC,∴△AEN∽△ACM,∴AE AN AC AM=,∴AE AN EC NM=,所以D错误.故选D.点睛:本题考查了相似三角形的判定与性质.注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成比例.注意数形结合思想的应用.13.x1=0,x2=2【分析】先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.【详解】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.14.42【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:7530x=,解得:x=42.故答案为:42.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.15.14009【分析】先利用待定系数法求出反比例函数的解析式,再求出9y =时,x 的值,然后根据反比例函数的增减性即可得.【详解】解:设反比例函数的解析式为(0)k y x x =>,将点(140,10)代入得:140101400k =⨯=,则反比例函数的解析式为1400y x =,当9y =时,14009x =, 反比例函数的1400y x=在0x >内,y 随x 的增大而减小,∴如果小明要在9min 内完成录入任务,则小明录入文字的速度至少为14009字/min ,故答案为:14009.【点睛】本题考查了反比例函数的图象与性质,熟练掌握待定系数法是解题关键.16.4【分析】由菱形的性质得出OA=OC=6,OB=OD ,AC ⊥BD ,则AC=12,由直角三角形斜边上的中线性质得出OH=12BD ,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD 是菱形,∴OA=OC=6,OB=OD ,AC ⊥BD ,∴AC=12,∵DH ⊥AB ,∴∠BHD=90°,∴OH=12BD ,∵菱形ABCD 的面积=12AC•BD=12×12•BD=48,∴BD=8,∴OH=12BD=4,故答案为:4.【点睛】本题主要考查了菱形的性质,直角三角形的性质,菱形的面积公式,解题的关键是根据直角三角形斜边上的中线性质求得OH=12BD .17.AB x =,利用正切的定义以及特殊角的正切值,表示出BC 和CD ,然后求解即可.【详解】解:设AB x =米在Rt ABD △中,tan tan 60AB ADB BD ∠=︒==BD =在Rt ABC 中,tan tan 30AB ACB BC ∠=︒==BCCD BC BD =-8=,解得x =即AB =故答案为【点睛】本题考查了解直角三角形的实际应用,涉及正切的定义,解题的关键是掌握正切三角函数的定义以及特殊角的正切值.18.4m 【分析】根据面积比等于位似比的平方即可求得.【详解】 B (5,1),B 1(10,2)则2OB '==12OB OB '∴=,111:1:4ABC A B C S S ∴= ,△ABC 的面积为m ,则△A 1B 1C 1的面积为4m .故答案为4m .【点睛】本题考查了位似图形的性质,位似图形上任意一对对应点到位似中心的距离之比等于相似比,位似图形面积的比等于相似比的平方,掌握位似图形的性质是解题的关键.19.5【分析】根据题意求得A B C D 、、、四边的坐标,再根据OAC 与ABD △的面积之和为3,列方程求解即可.【详解】解:AC BD y ∥∥轴,点A ,B 的横坐标分别为2,4,点C ,D 的横坐标分别为2,4又∵点A ,B 在反比例函数()10y x x=>的图象上,点C ,D 在反比例函数()0k y k x =>的图像上∴1(2,)2A ,1(4,)4B ,(2,)2k C ,(4,)4k D∴12k AC -=,14k BD -=由图形可得,11222OAC k S AC AC -=⨯==△,11224ABD k S BD BD -=⨯==△由题意可得:3OAC ABD S S +=△△,即11342k k --+=解得5k =故答案为:5【点睛】此题考查了反比例函数的性质,解题的关键是掌握反比例函数的有关性质,根据题意正确列出方程.20.1x =2x =b 2-4ac 的值,再代入公式求出解即可.【详解】解:3x 2+5(2x+1)=0,整理得:3x 2+10x+5=0,∴a=3,b=10,c=5,∴22=410435400b ac ∆-=-⨯⨯=>,∴10563x -±-±=,则原方程的解为1x =,2x =21.(1)见解析(2)见解析【分析】(1)尺规作∠BCM 的角平分线CN 的作法:先以点C 为圆心,某一长度为半径作圆,交射线CM 、CN 于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,在角的内部产生交点,连接交点与点C ,即为∠BCM 的角平分线CN ;尺规作过点B 作CN 的垂线段BE :先以点B 为圆心,某一长度为半径作圆,交CN 于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,交CN 上方于一点,连接该点与点B ,与CN 交点即为点E .(2)由CD 是线段AB 的垂直平分线,可得AC =BC ,∠DCB =12∠ACB ,又因为CN 平分∠BCM ,易证∠DCN =12(∠ACB+∠BCM)=90°,再结合CD ⊥AB ,BE ⊥CN ,即可证明四边形BECD 是矩形.(1)如图所示,CN,BE为所求(2)证明:∵CD是AB的垂直平分线∴CD⊥BD,AD=BD∴∠CDB=90°,AC=BC∴∠DCB=12∠ACB∵CN平分∠BCM∴∠BCN=12∠BCM∵∠ACB+∠BCM=180°∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°∵BE⊥CN∴∠BEC=∠DCN=∠CDB=90°∴四边形BECD是矩形.【点睛】本题主要考查了尺规作图、矩形的判定,要求掌握5类基本尺规作图:作一条线段等于已知线段、作一个角等于已知角、作已知角的角平分线、作已知线段的垂直平分线、过一点作已知直线的垂线.22.(1)见解析;(2)小明获胜的概率大,见解析【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有12种等可能的结果数,m,n都是方程x2﹣5x+6=0的解的结果有4个,m,n都不是方程x2﹣5x+6=0的解的结果有2个,然后根据概率公式求解.【详解】(1)树状图如图所示:所有(m ,n)可能的结果有(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)共12种结果;(2)∵m ,n 都是方程x 2﹣5x+6=0的解,∴m =2,n =3,或m =3,n =2,由树状图得:共有12个等可能的结果,m ,n 都是方程x 2﹣5x+6=0的解的结果有4个(包括m =n =2,和m =n =3两种情况),m ,n 都不是方程x 2﹣5x+6=0的解的结果有2个,小明获胜的概率为41=123,小利获胜的概率为21=126,∴小明获胜的概率大.【点睛】本题考查了列表法与树状图法、一元二次方程的解法以及概率公式,画出树状图是解题的关键.23.(1)长为10米,宽为8米;(2)小路的宽为1米.【分析】(1)设与墙垂直的一面为x 米,然后可得另两面则为(26﹣2x+2)米,然后利用其面积为80,列出方程求解即可;(2)设小路的宽为a 米,利用去掉小路的面积为54平米列出方程求解即可得到答案.【详解】解:(1)设与墙垂直的一面为x 米,另一面则为(26﹣2x+2)米根据题意得:(282)80x x -=整理得:214400x x -+=解得4x =或10x =,当x =4时,28﹣2x =20>12,不符合题意,舍去当x =10时,28﹣5x =8<12,符合题意∴长为10米,宽为8米.(2)设宽为a 米,根据题意得:(8﹣2a )(10﹣a )=54,a 2﹣14a+13=0,解得:a =13>10(舍去),a =1,答:小路的宽为1米.【点睛】此题考查了一元二次方程与几何图形面积的应用,理解题意找到题中的等量关系是解题的关键.24.(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)由平行四边形的性质得AD =BC ,AD//BC ,则∠ADE =∠CBF ,再由SAS 证△ADE ≌△CBF 即可求解;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD//BC ,∴∠ADB =∠CBD ,∵∠ADB+∠ADE=180°,∠CBD+∠CBF=180°∴∠ADE =∠CBF ,在△ADE 和△CBF 中,=AD CBADE CBF DE BF=⎧⎪∠∠⎨⎪=⎩,∴△ADE ≌△CBF (SAS ),∴CF=AE;(2)四边形AFCE 是菱形,理由如下:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD//BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的性质与判定判定、全等三角形的性质与判定,角平分线的定义,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)32yx-=,1102y x=-;(2)当4<x<16时,(3)(0,0),(15,0),P(10+或(10-.【分析】(1)将点A(4,﹣8),B(m,﹣2)代入反比例函数yax=(x>0)中,可求m、a;再将点A(4,﹣8),B(m,﹣2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值小于反比例函数的值时x的范围;(3)根据矩形形的性质,分类讨论,即可得出结论.【详解】解:(1)∵反比例函数yax=(x>0)的图象于A(4,﹣8),∴k=4×(﹣8)=﹣32.∵双曲线yax=过点B(m,﹣2),∴m=16.由直线y =kx+b 过点A ,B 得:48162k b k b +=-⎧⎨+=-⎩,解得,1210k b ⎧=⎪⎨⎪=-⎩,∴反比例函数关系式为32y x -=,一次函数关系式为1102y x =-.(2)观察图象可知,当4<x <16时,一次函数的值小于反比例函数的值.(3)在直线y 12=x ﹣10中,令y =0,则x =20,∴C (20,0),∴OC =20,AC ==BC ==AO==∴22280320400AO AC OC +=+==∴△OAC 为直角三角形∴OA ⊥AB四边形是矩形时分三种情况①当PA ⊥AB 时∵OA ⊥AB∴P 点以O 点重合∴P 点坐标为(0,0)②当PB ⊥AB 时设P (m ,0),则PC =20﹣m ,∵∠PBC=∠OAC=90°,∠PCB=∠OCA ∴△BCP ∽△ACO ,∴PCBC OC AC=,即2020m-=,,∴m =15,此时P (15,0),③当∠APB=90°时设P (m ,0),作AM ⊥OC ,BN ⊥OC∴∠AMP=∠BNP=90°∵()4,8A -,()16,2B -∴AM=8,BN=2,PM=m-4,NP=16-m∵∠APB=90°∴∠APM+∠BPN=90°∵∠MAP+∠APM=90°∴∠MAP=∠BPN∴△APM ∽△PBN ,∴AM PM PN BN=,即84162m m =--,解得:1025m =±此时P (105,0)+或(105,0)-综上,四边形是矩形时P 点的坐标为(0,0),(15,0),P (1025,0)+或(1025,0)-.【点睛】本题考查了用待定系数法求函数解析式以及反比例函数和一次函数的交点问题,这里体现了数形结合的思想.26.(1)见解析;(2)四边形BFGN 是菱形,理由见解析.【分析】(1)过F 作FH ⊥BE 于点H ,可证明四边形BCFH 为矩形,可得到BH =CF ,且H 为BE 中点,可得BE =2CF ;(2)由条件可证明△ABN ≌△HFE ,可得BN =EF ,可得到BN =GF ,且BN ∥FG ,可证得四边形BFGN 为菱形.【详解】(1)证明:过F 作FH ⊥BE 于H 点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.27.(1)证明见解析;(2)四边形AFBE是菱形【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGE和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.【点睛】考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.。
相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。
第二十一讲 相似三角形的性质(含答案)-
第二十一讲 相似三角形的性质两个相似三角形的对应角相等,对应边成比例,对应边之比称为它们的相似比,可以想到这两个相似三角形中其他一些对应元素也与相似比有一定的关系.1.相似三角形对应高的比、对应中线的比,对应角平分线的比都等于相似比; 2.相似三角形周长之比等于相似比;3.相似三角形面积之比等于相似比的平方.以上诸多相似三角形的性质,丰富了与角、面积等相关的知识方法,开阔了研究角、面积等问题的视野.例题求解 【例1】如图,梯形ABCD 中,AD ∥BC(AD<BC),AC 、BD 交于点O ,若S △OAB =256S 梯形ABCD ,则△AOD与△BOC 的周长之比是 .(2001年浙江省绍兴市中考题)思路点拨 只需求BCAD的值,而题设条件与面积相关,应求出BOC AOD S S ∆∆的值,注意图形中隐含的丰富的面积关系.注 相似三角形的性质及比例线段的性质,在生产、生活中有广泛的应用. 人类第一次运用相似原理进行测量,是2000多年前泰勒斯测金字塔的高度,泰勒斯是古希腊著名学者,有“科学之父”的美称.他把逻辑论证引进了数学,确保了数学命题的正确 性.使教学具有不可动摇的说明力.【例2】如图,在平行四边形ABCD 中.E 为CD 上一点,DE :CE=2:3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =( )A .4:10:25B .4:9:25C .2:3:5D .2:5:25 (2001年黑龙江省中考题)思路点拨 运用与面积相关知识,把面积比转化为线段比. 【例3】如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C=90°,AB=5cm ,BC=3㎝,试设计一种方案,用这批不锈钢片裁出面积达最大的正方形不锈钢片,并求出这种正方形不锈钢片的边长.思路点拨 要在三角形内裁出面积最大的正方形,那么这正方形所有顶点应落在△ABC 的边上,先画出不同方案,把每种方案中的正方形边长求出.注 本例是一道有实际应用背景的开放性题型,通过分析、推理、构思可能的方案,再通过比较、鉴别、筛选出最佳的设计方案,问题虽简单,但基本呈现了现实的生产中产生最佳设计方案的基本思路.【例4】 如图.在△ABC 的内部选取一点P ,过P 点作3条分别与△ABC 的三边平行的直线,这样所得的3个三角形1t 、2t 、3t 的面积分别为4、9和49,求△ABC 的面积.(美国数学邀请赛试题)思路点拔 图中有相似三角形、平行四边形,通过相似三角形性质建立面积关系式,关键是恰当选择相似比,注意等线段的代换.追求形式上的统一.【例5】 如图,△ABC 中.D 、E 分别是边BC 、AB 上的点,且∠l =∠2=∠3,如果△ABC 、△EBD 、△ADC 的周长依次是m 、m 1、m 2,证明:4521≤+m m m . (全国初中数学联赛试题)思路点拨 把周长的比用相应线段比表示,力求统一,得到同—线段比的代数式,通过代数变形证明.注 例4还隐舍着下列重要结论: (1)△FDP ∽△IPE ∽△PHG ∽△ABC ; (2)1=++BCHGAC IE AB DF ; (3) 2=++ACFGAB HI BC DE .学历训练1.如图,已知DE ∥BC ,CD 和BE 相交于O ,若S △DOE :S △COB =9:16,则AD :DB= . 2.如图,把正方形ABCD 沿着对角线AC 的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD 面积的一半,若AC=2,则正方形移动的距离AA'是 . (2003年江西省中考题)(第1题) (第2题) (第4题)3.若正方形的4个顶点分别在直角三角形的3条边上,直角三角形的两直角边的长分别为3cm 和4cm ,则此正方形的边长为 . (2000年武汉市中考题) 4.阅读下面的短文,并解答下列问题: 我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同.就把它们叫做相似体.如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a :b ,设S 甲:S 乙分别表示这两个正方体的表面积,则222)(66b a ba S S ==乙甲,又设V 甲、V 乙分别表示这两个正方体的体积,则333)(b a b a V V ==乙甲. (1)下列几何体中,一定属于相似体的是( )A .两个球体B .两个圆锥体C .两个圆柱体D .两个长方体 (2)请归纳出相似体的3条主要性质:①相似体的一切对应线段(或弧)长的比等于 ;②相似体表面积的比等于 ;③相似体体积的比等于 . (2001年江苏省泰州市中考题)5.如图,一张矩形报纸ABCD 的长AB=acm ,宽BC=b ㎝,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a :b 于( )A .2:1B .1:2C .3:1D .1:3 (2004年南京市中考题)(第5题) (第6题) (第7题)6.如图,D 为△ABC 的边AC 上的一点,∠DBC=∠A ,已知BC=2,△BCD 与△ABC 的面积的比是2:3,则CD 的长是( ) A.34 B.3 C .232 D .334 7.如图,在正三角形ABC 中,D 、E 分别在AC 、AB 上,且31=AC AD ,AE=BE ,则有( ) A .△AED ∽△BED; B .△AED ∽△CBD;C .△AED ∽△ABD; D .△BAD ∽△BCD. (2001年杭州市中考题) 8.如图,已知△ABC 中,DE ∥FG ∥BC ,且AD :FD :FB=1:2:3,则S △ADE :S 四边形DFGE :S 四边形FBCG 等于( )A .1:9:36B .l :4:9C .1:8:27D .1:8:36(第8题) (第9题) 9.如图,已知梯形ABCD 中,AD ∥BC ,∠ACD=∠B ,求证:ADBCCD AB =22. 10.如图,在平行四边形ABCD 中,过点B 作BE ⊥CD 于E ,连结AE ,F 为AE 上一点,且∠BFE=∠C .(1)求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(1)、(2)的条件下,若AD=3,求BF 的长. (2003年长沙市中考题)11.如图,在△ABC 中,AB =5,BC=3,AC=4,PQ ∥AB ,P 点在AC 上(与点A 、C 不重合),Q 点在BC 上.(1)当△PQC 的面积与四边形PABQ 的面积相等时,求CP 的长; (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长;(3)试问:在AB 上是否存在点M ,使得△PQM 为等腰直角三角形?若不存在,请简要说明理由,若存在,请求出PQ 的长. (2002年厦门市中考题)12.如图,在△ABC 中,AB =AC =5,BC=2,在BC 上有100个不同的点P l 、P 2、…P 100,过这100个点分别作△ABC 的内接矩形P 1E 1F 1G 1,P 2E 2F 2G 2…P 100E 100F 100G 100,设每个内接矩形的周长分别为L 1、L 2,…L 100,则L 1+L 2+…+L 100= . (安徽省竞赛题) 13.如图,在△ABC 中,DE ∥FG ∥BC ,GI ∥EF ∥AB ,若△ADE 、△EFG 、△GIC 的面积分别为20cm 2、45cm 2、80cm 2,则△ABC 的面积为 .(第12题) (第13题) (第14题)14.如图,一个边长为3、4、5厘米的直角三角形的一个顶点与正方形的顶点B 重合,另两个顶点分别在正方形的两条边AD 、DC 上,那么这个正方形的面积是 厘米2. (第11届“希望杯”邀请赛试题)15.如图,正方形ABCD 中,AE =EF=FB ,BG=2CG ,DE ,DF 分别交AG 于P 、Q ,以下说法中,不正确的是( )A .AG ⊥FDB .AQ :QG =6,7C .EP :PD=2 : 11D .S 四边形GCDQ :S 四边形BGQF =17:9 (2002年重庆市竞赛题) 16.如图,梯形ABCD 中,AB ∥CD ,且CD=3AB ,EF ∥CD ,EF 将梯形ABCD 分成面积相等的两部分,则AE :ED 等于( )A .2B .23 C .215+ D .215-(第15题) (第16题) (第17题) 17.如图,正方形OPQR 内接于△ABC ,已知△AOR 、△BOP 和△CRQ 的面积分别是S 1=1,S 2=3和S 3=1,那么正方形OPQR 的边长是( ) A .2 B .3 C .2 D .318.在一块锐角三角形的余料上,加工成正方形零件,使正方形的4个顶点都在三角形边上,若三角形的三边长分别为 a 、b 、c ,且a >b >c d ,问正方形的2个顶点放在哪条边上可使加工出来的正方形零件面积最大?19.如图,△PQR 和△P ′Q ′R ′,是两个全等的等边三角形,它们的重叠部分是一个六边形ABCDEF ,设这个六边形的边长为AB= a 1,BC =b 1,CD= a 2,DE= b 2,EF= a 3,FA =b 3 .求证:a 1 +a 2 +a 3= b 1+ b 2 +b 3.20.如图,在△ABC 中,AB=4,D 在AB 边上移动(不与A 、B 重合),DE ∥BC 交AC 于E ,连结CD ,设S △ABC = S ,S △DEC =S 1. (1)当D 为AB 中点时,求SS 1的值; (2)若AD= x ,y SS =1,求y 与x 之间的关系式,并指出x 的取值范围; (3)是否存在点D ,使得S S 411>成立?若存在,求出D 点位置;若不存在,请说明理由. (2002年福州市中考题)21.已知∠AOB=90°,OM 是∠AOB 的平分线,按以下要求解答问题:(1)将三角板的直角顶点P 在射线OM 上移动,两直角边分别与边OA ,OB 交于点C ,D . ①在图甲中,证明:PC=PD ;②在图乙中,点G 是CD 与OP 的交点,且PG=23PD ,求△POD 与△PDG 的面积之比. (2)将三角板的直角顶点P 在射线OM 上移动,一直角边与边OB 交于点D ,OD=1,另一直角边与直线OA ,直线OB 分别交于点C 、E ,使以P 、D 、E 为顶点的三角形与△OCD 相似,在图丙中作出图形,试求OP 的长.(2003年绍兴市中考题)。
北师大版九年级上册相似三角形判定定理证明课件
定 定理2:两边成比例且夹角相等的
理 证
两个三角形类似.
明
类似三角形
定理3:三边成比例的两个三
判定定理的
角形类似.
证明
定理的运用
再见
∴BACB=BBDE , 即:BBCE=BADB .
在△DBE和△ABC中,∠CBE=∠ABD, ∴∠CBE+∠DBC=∠ABD+∠DBC, ∴∠DBE=∠ABC且 BBCE=BADB. ∴△DBE∽△ABC.
练习 1.如图,在等边三角形ABC中,D,E,F分别是 三边上的点,AE=BF=CD,那么△ABC与△DEF类似 吗?请证明你的结论.
∴ ΔADE≌ΔA'B'C', ∴ ∠ADE=∠B',
A A'
又∵ ∠B'=∠B,
∴ ∠ADE=∠B, ∴ DE//BC, ∴ ΔADE∽ΔABC。
D
E
B
C B'
C'
∴ Δ A'B'C' ∽ΔABC
定理2:两边成比例且夹角相等的两个三角形类似.
如图,在△ABC与△A′B′C′中,已知∠A= ∠A′,
分析:由已知条件∠ABD=∠CBE, ∠DBC公用,所以∠DBE=∠ABC,要证 的△DBE和△ABC,有一对角相等,要证 两个三角形类似,可再找一对角相等,或
者找夹这个角的两边对应成比例.从已知条件中可看 到△CBE∽△ABD,这样既有相等的角,又有成比例 的线段,问题就可以得到解决.
证明:在△CBE和△ABD中,∠CBE=∠ABD, ∠BCE=∠BAD,∴△CBE∽△ABD,
2.如图,在正方形ABCD中,E是CD的中 点,点F在BC上,且FC= 1 BC.图中类似
专题22.6相似三角形的应用【十大题型】-2024-2025学年九年级数学上册举一[含答案]
cm.
【变式 5-1】(23-24 九年级·陕西咸阳·阶段练习)
18.如图, EF 是一个杠杆,可绕支点 O 自由转动,当 EF 处于图中的位置时,点 O 到点 E
的水平距离 OM = 2 ,点 O 到点 F 的水平距离 ON = 4 ,若已知杠杆的 OE 段长为 2.5,则杠杆
的 OF 段长为
.
【变式 5-2】(23-24 九年级·河南南阳·期末)
专题 22.6
相似三角形的应用【十大题型】
【沪科版】
【题型 1 建筑物高问题】
【题型 2 影长问题】
【题型 3 河宽问题】
【题型 4 树高问题】
【题型 5 杠杆问题】
【题型 6 实验问题】
【题型 7 古文问题】
【题型 8 裁剪问题】
【题型 9 现实生活相关问题】
【题型 10 三角形内接矩形问题】
【题型 1 建筑物高问题】
CD=16m , BE = 10m ,请根据这些数据,计算河宽 AB.
【变式 3-3】(23-24 九年级·北京·期末)
12.如图,为了测量平静的河面的宽度,即 EP 的长,在离河岸 D 点 3.2 米远的 B 点,立一
根长为 1.6 米的标杆,在河对岸的岸边有一根长为 4.5 米的电线杆 MF ,电线杆的顶端 M
19.如图是用杠杆撬石头的示意图,点 C 是支点,当用力压杠杆的 A 端时,杠杆绕 C 点转
动,另一端 B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的 B 端必须向
上翘起 5cm ,已知 AB : BC = 10 :1 ,要使这块石头滚动,至少要将杠杆的 A 端向下压
cm .
【变式 5-3】(23-24 九年级·浙江温州·期中)
相似三角形几何题(含答案)
相似三角形几何题(WORD 版,有答案)1、如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。
求证:AC AF AB AE ⋅=⋅;F O E DBA2为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、 丙位同学设计方案新颖,构思巧妙.(10分)(1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立 在对角线AC 上,问:甲生的设计方案是否可行?请说明理由.(2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处.(3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视 力表.如果大视力表中“E ”的长是3.5cm ,那么小视力表中相应“E ”的长是多少cm ?3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(12分)(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.HH(图1)(图2) (图3)3.5㎝ACF3mB5mDA B CD EF P ·4已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.5.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.6.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.7.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC 与△OAB相似(相似比不为1),并写出C点的坐标.8.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC 交AB 于E 点.(1)求∠D 的度数;(2)求证:AC 2=AD ·CE .9.已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.10.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值; (2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.11.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.12.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.13.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.(1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?14.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?15、已知:如图,在平面直角坐标系中,ABC△是直角三角形,90ACB∠=,点A C,的坐标分别为(30)A-,,(10)C,,43=ACBC.(13分)(1)求过点A B,的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得ADB△与ABC△相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P Q,分别是AB和AD上的动点,连接PQ,设AP DQ m==,问是否存在这样的m使得APQ△与ADB△相似,如存在,请求出m的值;如不存在,请说明理由.16.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙80cm,梯上点D距墙70cm,BD长55cm.求梯子的长.17.如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,求CO和DO.18.如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,当BD与a、b之间满足怎样的关系式时,△ACB∽△CBD?A COBxy19.(本题10分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.20.(本题10分)如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E .(1)求证:ABF COE △∽△;(2)当O 为AC 边中点,2ACAB=时,如图2,求OF OE 的值; (3)当O 为AC 边中点,ACn AB=时,请直接写出OF OE 的值.21(6分)一般的室外放映的电影胶片上每一个图片的规格为3.5cm ×3.5cm ,放映的银幕规格为2m ×2m ,若影机的光源距胶片20cm 时,问银幕应在离镜头多远的地方,放映的图像刚好布满整个银幕?DMA BCNBBA A C OE D DE C O F图1 图2 F22.(6分)如图13,四边形ABCD 、CDEF 、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由. (2)求∠1+∠2的度数.23.(6分)如图13,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 分别是OA 、OB 的中点. (1)试问:△ADE 与△BCF 全等吗?请说明理由;(2)若AD = 4cm ,AB = 8cm ,求CF 的长.24(6分)已知:如图14,在△ABC 中,AB=AC=a ,M 为底边BC 上任意一点,过点M 分别作AB 、AC 的平行线交AC 于P ,交AB 于Q. (1)求四边形AQMP 的周长;(2)写出图中的两对相似三角形(不需证明);BACPQ MBCDOFF E O CBAAA A BBBCCCD DDOE FGPMN⑴⑵⑶25(6分)如图15,已知△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,底边BC 、CE 、EG 在同一直线上,且AB=3,BC=1.连结BF ,分别交AC 、DC 、DE 于点P 、Q 、R.(1)求证:△BFG ∽△FEG ,并求出BF 的长; (2)观察图形,请你提出一个与点..P .相关..的问题,并进行解答(根据提出问题的层次和解答过程评分).26(6分)(1)如图16(1),在正方形ABCD 中,对角线AC 、BD 相交于点O ,易知AC ⊥BD ,AC CO =21; (2)如图16(2),若点E 是正方形ABCD 的边CD 的中点,即21=DC DE ,过D 作DG ⊥AE ,分别交AC 、BC 于点F 、G.求证:31=AC CF ; (3)如图16(3),若点P 是正方形ABCD 的边CD 上的点,且nDC DP 1=(n 为正整数),过点D 作DN ⊥AP ,分别交AC 、BC 于点M 、N ,请你先猜想CM 与AC 的比值是多少?然后再证明你猜想的结论.27(8分)如图17,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A M N ,,为顶点的三角形与ACD △相似?若存在,求t 的值;若不存在,请说明理由.28.如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽△CBD ;(2)若CE = 3,CB=5 ,求DE 的长.29.如图,把菱形ABCD 沿着BD 的方向平移到菱形A /B /C /D /′的位置, (1)求证:重叠部分的四边形B /EDF /是菱形(2)若重叠部分的四边形B /EDF /面积是把菱形ABCD 面积的一半,且BD=2,求则此菱形移动的距离.30.如图,在Rt ABC △中,90C =∠,12BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中,请回答下列问题:(1n1 2 3 n x(2)第n 个正方形的边长n = ;(3)若m n p q ,,,是正整数,且m n p q x x x x =,试判断m n p ,,,的关系.AB C DMF E /CB/A/DB BC A2x3x1x答案1.方法1:连接ED,DF,证⊿ADE∽⊿ABD,得AB AE AD •=2同理可证⊿ADF∽⊿ACD,得AC AF AF •=2故,AE·AB=AF·AC方法2:连接EF,ED证⊿AEF∽⊿ACB2.⑴在Rt ⊿ABC中,AC=22CD AD +=223.42.3+>5故,可行;⑵ 1.8;⑶利用⊿AED∽⊿ACB可求得FD=2.1m3.(1)证⊿DA F∽⊿ABC(2) )0(273〉+=x x y(3)当点P 运动到点E 的位置,即x =12.5时,△PBC 的周长最小,此时y 的值为64.54.(1)4943+=x y(2)过点B作AB 的垂线交x 轴于点D , D 点的坐标为(3.25,0) (3)存在,m =925或36125 5.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ; (2)△ABC ∽△CDE ,DE =1.5.6..cm 133提示:连结AC .7.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 8.C (4,4)或C (5,2).9.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .A C OBxyD10.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2- .12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时,△ABD ≌△DCE .可得.12-=x当∠ADE 为底角时:⋅=21AE 11.(1)S '∶S =1∶4; (2)).40(41162<<+-=x x x y 12.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P13.(1)y =x 2-2x -3,A (-1,0),B (3,0); (2))49,43(-D 或D (1,-2).14.(1);643+-=x y (2)1130=t 或;1350 (3)t =2或3.15.(1)略; (2));30(8311832≤<+-=x x x S 16.梯子长为cm 440 17.cm DO cm CO 65.55,35.103==(提示:设xcm DO =,则()cm x CO -=159,因为AB BD AB AC ⊥⊥,,︒=∠=∠90B A ,BOD AOC ∠=∠,所以△AOC ∽△BDO ,所以DO CO BO AO =即x x -=1594278,所以65.55=x ) 18.b a BD 2=(提示:由△ACB ∽△CBD ,得BC a a b BD CB CD AC ==,,所以b a BD 2=) (3)当x =3时,S 最大值33=.19.解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°,AM MN ⊥,90AMN ∴∠=°,90CMN AMB ∴∠+∠=°,在Rt ABM △中,90MAB AMB ∠+∠=°,CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△,(2)Rt Rt ABM MCN △∽△,44AB BM x MC CN x CN∴=∴=-,,244x x CN -+∴=, ()222141144282102422ABCN x x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形·,当2x =时,y 取最大值,最大值为10.(3)90B AMN ∠=∠=°,∴要使ABM AMN △∽△,必须有AM AB MN BM=,由(1)知AM AB MN MC=,BM MC ∴=, ∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.20.解:(1)AD BC ⊥,90DAC C ∴∠+∠=°.90BAC BAF C ∠=∴∠=∠°,.90OE OB BOA COE ∴∠+∠=⊥,°,90BOA ABF ∠+∠=°,ABF COE ∴∠=∠.ABF COE ∴△∽△;(2)解法一:作OG AC ⊥,交AD 的延长线于G .2AC AB =,O 是AC 边的中点,AB OC OA ∴==.由(1)有ABF COE △∽△,ABF COE ∴△≌△,BF OE ∴=.90BAD DAC ∠+∠=°,90DAB ABD DAC ABD ∠+∠=∴∠=∠°,,又90BAC AOG ∠=∠=°,AB OA =.ABC OAG ∴△≌△,2OG AC AB ∴==.OG OA ⊥,AB OG ∴∥,ABF GOF ∴△∽△,OF OG BF AB ∴=,2OF OF OG OE BF AB ===. 解法二:902BAC AC AB AD BC ∠==°,,⊥于D , Rt Rt BAD BCA ∴△∽△.2AD AC BD AB ∴==. 设1AB =,则2AC BC BO ===,12AD BD AD ∴=== 90BDF BOE BDF BOE ∠=∠=∴°,△∽△,BD BO DF OE∴=. 由(1)知BF OE =,设OE BF x ==, BA D E C O FGB ADE C O F5DF x=,x ∴=.在DFB △中2211510x x =+,3x ∴=.OF OB BF ∴=-==322OF OE ∴==. (3)OF n OE=. 21807cm 22.相似,450 23.(1)全等,略;(2)CF ==cm 24.(1) 2a ;(2)△ABC ∽△QBM ∽△PMC ; 25.(1)BF=BG=3;(2)略 26.(1)略;(2)猜想11+=n AC CM ,证明略 27.(1)经过1秒或2秒后;(2)经过32秒或125秒时 28.(1)证明:∵弦CD 垂直于直径AB ∴BC=BD ∴∠C =∠D 又∵EC = EB∴∠C =∠CBE ∴∠D =∠CBE 又∵∠C =∠C ∴△CEB ∽△CBD(2)解:∵△CEB ∽△CBD ∴CE CB CB CD= ∴CD=2252533CB CE == ∴DE = CD -CE =253-3 =163 29.(1)有平移的特征知A ´B ´∥AB,又CD ∥AB ∴A ´B ´∥CD,同理B ´C ´∥AD ∴四边形BEDF 为平行四边形∵四边形ABCD 是菱形 ∴AB=AD ∴∠ABD=∠ADB 又∠A ´B ´D=∠ABD ∴∠A ´B ´D=∠ADB ∴FB ´=FD∴四边形B ´EDF 为菱形.(2)∵菱形B ´EDF 与菱形ABCD 有一个公共角 ∴此两个菱形对应角相等 又对应边成比例 ∴此两个菱形相似∴B D BD '=,∴12B D '== ∴平移的距离BB ´=BD –B ´1 30.(1)2483927,, (2)23n ⎛⎫ ⎪⎝⎭.(3)m n p q x x x x = 22223333m n p q⎛⎫⎛⎫⎛⎫⎛⎫∴= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 2233m n p q ++⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭.m n p q ∴+=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练(八)相似三角形性质的运用
1.已知△ABC∽△DEF,若△ABC与△DEF的相似比为3∶4,则△ABC与△DEF的面积之比为()
A.4∶3B.3∶4
C.16∶9D.9∶16
2.如图,AB∥CD,
AOOD=2
3
,则△AOB的周长与△DOC的周长比是()
A.25B.32C.49D.
2
3
3.如图,在□ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的
周长之比是()
A.1∶2B.1∶3C.1∶4D.1∶5
4.两个相似三角形对应中线的比2∶3,周长的和是20,则两个三角形的周长分别为()
A.8和12B.9和11
C.7和13D.6和14
5.如图,在△ABC中,AD∶DB=1∶2,DE∥BC,若△ABC的面积为9,则四边形DBCE的面积为________.
6.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则
AD
AB
=________.
7.已知:△ABC∽△A′B′C′,AB=4cm,A′B′=10cm,AE是△ABC的一条高,AE=4.8cm.求△A′B′C′中对
应高线A′E′的长.
8.如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm,从这张硬纸片上
剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与
HG的交点为M.
(1)求证:
AMAD=HG
BC
;
(2)求这个矩形EFGH的周长.
参考答案
1.D2.D3.A4.A5.86.227.∵△ABC∽△A′B′C′,∴
AEA′E′=ABA′B′.∴4.8A′E′=4
10
.∴A′E′=12cm.8.(1)证明:
∵四边形EFGH为矩形,∴EF∥GH.∴△AHG∽△ABC.∴AMAD=HGBC.(2)由(1)得AMAD=HGBC,设HE=x,则HG=2x,
AM=AD-DM=AD-HE=30-x.可得30-x30=2x40.解得x=12.∴2x=24.∴矩形EFGH的周长为2×(12+24)=
72(cm).